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Abstract. We present a method for using first-order logic to specify the
semantics of preferences as used in common vote counting algorithms.
We also present a corresponding system that uses Celf linear-logic pro-
grams to describe voting algorithms and which generates explicit exam-
ples when the algorithm departs from its specification. When our method
and system are applied to analyse the vote counting algorithm used to
elect CADE Trustees, we find that it strictly differs from the standard
definition of Single Transferable Vote (STV). We therefore argue that it
is a misnomer to say that the CADE algorithm implements STV.

1 Introduction

Most research in electronic voting is about ensuring correctness and voter-
verifiability of the vote-casting process. But it is also vital to imbue the second
step, namely vote counting and the computation of election results, with the
trust enjoyed by physical counting of paper ballots.

Counting votes in a “first past the post” system is easy, but there are nu-
merous schemes for preferential voting where the counting process is extremely
complicated. Schemes that also allow for proportional representation are even
more complicated since multiple rather than single candidates can be elected.

In social choice theory, the general problem of finding an election result that
perfectly reflects the electorate’s collective preferences has no solution. Collective
preferences can even be cyclic (Condorcet’s paradox). Various voting systems
(and corresponding algorithms) exist which attempt to provide “good” election
results from the preferences expressed in voters’ ballots. They compromise in
different ways between giving everything to the majority and giving something
to minorities, and also treat inconsistent preferences in different ways.

A prominent class of such algorithms is the Single Transferable Vote (STV)
system (see Section . Variants of STV are used in many jurisdictions around
the world. In this paper, we concentrate on STV systems, but the general ideas
apply to other vote counting systems as well.

In preferential voting, the correct election result for a given set of votes is
usually described algorithmically (in natural language or in some pseudo-code
language). One can use testing and verification methods to validate that an im-
plementation refines that high-level description, but if the high-level algorithmic
description is erroneous, the error is elusive unless it leads to obviously un-
democratic results. Therefore we need declarative properties for analysing and
comparing vote counting algorithms that are vital for finding errors in high-level
descriptions. Unfortunately, it is notoriously hard to devise such declarative spec-
ifications for STV w.r.t. which the high-level algorithms or their implementation
can be validated; a possible solution is presented in Section

We present a system that supports automated reasoning about vote counting
algorithms w.r.t. their declarative properties in Section [l Building on earlier



work [4], we use the concurrent logical framework Celf [§] for (1) representing vote
counting algorithms, (2) representing declarative properties, and (3) for building
tools such as a bounded model checker for constructing counter examples. The
Celf source code can be found at http://www.demtech.dk/wiki/CADE24-STV.

As a case study, we have applied our system to the “STV” counting algo-
rithm that is used in the CADE Trustees Elections (Section [5). We found that
the CADE algorithm differs from the standard in that it does not implement
a proportional voting system. Thus it is a misnomer to say that the CADE
algorithm implements a system for Single Transferable Voting (Section E[)

In related work, a group at the Australian National University has formalised
and analysed the Hare-Clark system used in the governmental elections of the
Australian Capital Territory [6], which is similar to STV. Dermot Cochran has
formally specified and analysed the Danish and Irish vote counting algorithms [3].
Both differ from our work in that they are mainly concerned with verifying im-
plementations, while we are mainly interested in analysing abstract algorithms.

2 The Single Transferable Vote System

Single transferable vote (STV) is a preferential voting system [9] for multi-
member constituencies aiming to achieve proportional representation according
to the voters’ preferences. Suppose that C candidates, numbered 1,2,...,C, are
competing for S > 0 vacant seats in an election. Furthermore, assume that V> 0
votes have been cast and are collected in a ballot box. It is commonly agreed
that for & < C, a vote [Py, P,,..., P ranks a subset of the candidates with
P, € {1,2,...,C} in decreasing order of preference. Each vote defines a partial
order on candidates.

To determine the election result, STV first computes a quota necessary to
obtain a seat. Different definitions of quotas are used in practice and the most
common is the Droop quota Q = [V/(S+ 1) |+1. Then, STV computes the result
using an iterative process, which repeats the following two steps until either a
winner is found for every seat or no further candidate can be elected:

1. Any candidate with Q or more first-preference votes is declared elected. The
Q votes used to elect such a candidate are removed from the ballot box. If
the elected candidate has more votes than the quota Q, these surplus votes
are transferred to other candidates. To do that, the elected candidate is
removed from the ballot, the second-preference candidate becomes the first
preference, the third preference becomes the second preference, and so on.

2. If no candidate reaches the quota, the candidate with the fewest first-pref-
erence votes is eliminated and that candidate’s votes are transferred in the
same way as described in step 1.

Ezxample 1. Assume there are four candidates A, B, C, D for two vacant seats,
and the votes to be counted are [A, B, D], [4, B, D], [4, B, D], D, C],[C, D]. The
Droop quota here is Q = |5/(2 + 1)] + 1 = 2. In the first iteration, we tally first
preferences, only A meets the quota and is hence elected. Two votes [A, B, D] are
deleted, the third is a surplus vote. It is transferred and transformed into [B, D].
In the second iteration, no candidate reaches the quota, thus the weakest of
the remaining candidates B,C, D is eliminated — which one depends on the
kind of tie-breaker used as all three have exactly one first-preference vote at
that point. (1) If the tie-break eliminates B, the aforementioned transferred
vote [B, D] will be transferred again and will become a vote for D, so that D
will be elected in the next iteration. (2) If the tie-break eliminates C, the vote
[C, D] will be transferred into a vote for D, and thus D will be elected. (3) If the
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tie-break eliminates D, then C will be elected, analogously, in the next iteration.
In summary, the algorithm reports either [A, D] or [A, C] as the election result
but not, for example, [4, B] or [B, D]. If the number of second-preference votes
is used as a tie-breaker, then B is eliminated first (case 1 above).

This example illustrates that STV, as given above in informal English, defines
not only one but an entire family of vote counting algorithms. There are a
number of parameters to play with, which we name here to be able to refer
back to them later: the choice of quota (QUOTA/DROOP, QUOTA/HARE,
QUOTA/MAJORITY), the choice of tie-breaker (TIE), the possible resurrection
of already eliminated candidates when they receive transferred votes in later
rounds (ZOMBIE), the automatic placement of candidates once there are as
many free seats as remaining candidates (AUTOFILL).

Further options, which — as we argue in Section [5] - lead to election systems
that can no longer be considered part of the STV family, are the persistence
of votes used in electing candidates from one iteration to the next (NODEL),
or even restarting the STV algorithm with the original ballot box (RESTART)
after a candidate has been elected (with only the elected candidate removed).
RESTART is a combination of NODEL and ZOMBIE.

3 Semantic Criteria

When voting systems are implemented and deployed at a national level, it seems
natural to expect them to be verified against a specification preferably using
formal methods. But what is a good specification in case of STV? The law itself
is rarely helpful because voting systems are frequently massively underspecified
via something like “The members of the parliament are to be elected by a reg-
ular, direct, and secret election”, or often overspecified by including a concrete
algorithm in the law text in the form of pseudocode that may itself contain bugs.
Neither of the approaches lends itself to an easy verification exercise.

In the case of preferential voting, many semantic criteria have been proposed
for vote counting algorithms, including the majority criterion, Condorcet cri-
terion, monotonicity criterion, to name a few [I]. The majority criterion, for
example says, that if one candidate is highest ranked by a majority of voters,
then that candidate must be elected. A violation of the majority criterion would
clearly be undemocratic. But to analyse and distinguish variants of (democratic)
voting systems, stronger criteria are needed that are tailored towards the partic-
ular system. For some voting systems, axiomatic criteria can be given that fully
characterise the correct election result (an example is the Borda Rule [5]).

However, for STV systems, writing a declarative specification that fully char-
acterises the election result is very hard. For our analysis of STV, we have instead
devised several semantic criteria that capture the essence of STV and are suitable
for program verification but which do not form a fully unambigous specification.
Two of these criteria are mentioned here:

(1): There must be enough votes for each elected candidate.
(2): If the preferences of all voters w.r.t. two particular candidates are consistent,
then that collective preference is not contradicted by the election resultﬁ

4 This criterion is weaker than what is known as the Condorcet Criterion. We assume
a preference to be collective if all voters agree (or at least not disagree), while the
Condorcet Criterion assumes a preference to be collective if it is supported by a
magjority of voters. It is well known that the (stronger) Condorcet Criterion is not
satisfied by standard STV, so it is not suitable for our purposes.



The first criterion only considers number of votes and ignores preferences, while
the second criterion only considers preferences and ignores number of votes. This
separation of the two dimensions (number of votes and preferences) is the key
to finding criteria that can be described declaratively.

As said above, our two criteria are not complete or sufficient in the sense
that they fully characterise the correct election result. They cover many possible
errors in STV algorithms, but for a more thorough analysis more such criteria
will have to be added. Also, due to space restrictions, we do not further consider
Criterion 2 in this paper but concentrate on Criterion 1. This criterion captures
that the votes can be partitioned with an assignment of exactly one class in the
partition to each elected candidate such that, if () is the quota, then:

1. There are exactly Q votes in each class that supports an elected candidate.
2. For each vote in a class that supports a candidate, that candidate occurs
somewhere among the preferences of the supporting vote.

In the second condition above, the actual order of preferences is not taken into
consideration. Thus, this is actually a weak property that can be satisfied by a
wide variety of STV variants. But it is strict in that each vote counts only once.

Ezample 2. Returning to Example[l} note that the election result [A4, D] satisfies
Criterion 1 with the partition {[4, B, D], [4, B, D]}, {|C, D], [D, C1},{[A, B, D]}.
The incorrect election result [B, D] also satisfies Criterion 1 choosing the same
partition (because the ordering of A and B is not considered), which shows
that the criterion is not a complete specification of the election result. But, the
incorrect result [A, B] is not supported by this or any other partition.

We use first-order logic over the theories of natural numbers and arrays with
the following notation in addition to the notation defined previously:

b: is the ballot box, where b[¢, j] is the number of the candidate that is ranked
by voter ¢ in the jth place. If the voter does not rank all candidates, then
bli, j] = 0 for the empty places.

r: is the result, where r[i] is the ith candidate that is elected (1 < ¢ < 8). If
less than S candidates are elected, then r[¢] = 0 for the empty seats.

Our criterion is formalised by a formula ¢ in which all the above (free) variables
occur. We also use an existentially quantified array a that represents the partition
and the assignment of classes in the partition to elected candidates as follows:

ali] = k if the ith vote supports the kth elected candidate r[k]. If the ith vote
does not support any elected candidate, then a[i] = 0.

Then, the formula ¢ = Ja(P1A. .. A¢y) is the existentially quantified conjunction
of:

Vi(l<i<V—0<ali] <8) (¢1)
Vi(l <i<V— (a[i] # 0 — rlali]] #0) (62)
Vi((1<i<VAali]#0)— 3j(1 <j <CAB[i,j] = rlali]])) (¢3)
VE((1 <k <SAT[k] #0) — (¢4)

Feount(count[0] = 0 A
Vi(l <i <V — (afi] = k — count[i] = count[i — 1]+ 1) A
(ali] # k — count[i] = count[i — 1])) A
count[V] = Q))

Formulas and [@2] express well-formedness of the partition. Formula
expresses that only votes can support a candidate in which that candidate is



somewhere ranked. Formula[§4] expresses that each class supporting a particular
elected candidate has exactly Q elements. To formalise this, we use an array
count such that count|i] is the number of supporters among votes 1,...,4 that
support the kth elected candidate. Note, that this criterion is only justified for
versions of STV that do not use AUTOFILL.

4 The System for Analyzing Vote Counting Algorithms

Vote-counting algorithms treat votes as resources that must be counted one time
and one time only. This requirement already suggests that linear logics are well-
suited for representing voting-algorithms (see Section and Criterion 1 (see
Section [3)). Our system of choice is therefore the logical framework Celf [3]. For
the bounded model-checking part we have considered using model checkers and
SMT solvers, at the end, we stayed with Celf, mainly as a matter of convenience.
Because of space restrictions, we only sketch the system here.

4.1 Vote Counting Algorithms as Linear-Logic Programs

The Celf logical framework is based on intuitionistic linear logic. Its operational
semantics is proof search, which means that running a vote counting algorithm
is tantamount to constructing a derivation for

I'AbruniCVSwd

We explain the symbols in turn. The I" is the unrestricted (intuitionistic) con-
text. Its declarations, like AUTOFILL, NODEL, etc. define precisely the partic-
ular STV algorithm to be analyzed. During execution, I" is also populated with
assumptions about who was elected and who was defeated.

The A to the right of I' denotes the linear context that contains assump-
tions that must be used exactly once. It contains, for example, all information
about the ballot-box, running totals, etc. The ballot box is represented by a
multi-set of assumptions uncounted-ballot A L (first preference A, remaining
preferences L); the running totals as a multi-set of assumptions hopeful A N,
summarizing that A’s running total is N.

run is a 6-ary predicate, relating the number of times 7 that STV may be
restarted (see RESTART), the number of candidates C, the number of cast votes
V, the number of seats S that should be filled with each iteration, the list of
winners w, and the list of defeated candidates d. The total number of seats filled
by the algorithm is hence ¢ x S.

To save space, we present only one of the rules implementing STV. [4] gives
an introduction on how to represent STV counting algorithms in Celf. This rule
elects candidate A after receiving an additional vote that meets the quota.

count/2 : count-ballots (S+2) (H+1) (U+1) ®
uncounted-ballot A L ®
hopeful A N ® !quota Q ® lnat-lesseq Q@ (N+1) ®
winners W D
—o {counted-ballot A L ® lelected A ®
winners (scons A (N+1) W) D ®
count-ballots (S+1) H U?Z.

All uppercase variables should be considered universally bound, we write —o for
linear implication, ® for multiplicative conjunction, ! for the bang modality per-
mitting unrestricted assumptions to appear in declarations, and {...} for the



polarity shift from positive to negative formulas (as Celf is an implementation of
a focused linear logic). The rule count/2 can be read as a forward-chaining mul-
tiset rewrite rule. In the case no candidate reaches the !quota @, the candidate
with the least amount of votes must be eliminated, and its (already counted)
votes redistributed. The bang in front of quota indicates that this is an unre-
stricted assumption that should not be consumed. It is therefore mandatory to
keep information about counted ballots around, and we do this by replacing an
uncounted-ballot A L by a counted-ballot A L.

Theorem 1 (Standard STV). Let I' = QUOTA/DROOP, AUTOFILL, TIE,
and let A = ballot box + initialized running counts, then run 1 CV S w d is
provable if and only if w corresponds to the list of candidates elected by the
standard STV algorithm, and d is the list of defeated candidates.

4.2 Bounded Model Checker

Our bounded model checker is implemented in Celf, taking advantage of the
generate and test behavior of logic programs. Our system provides an implemen-
tation of Criterion 1 as a linear logic program: sem W D. Other criteria may be
implemented analogously. The model checker generates all possible ballot boxes
up to a given bound. The bound comprises the maximal number of permitted
RESTARTSs max;, the maximal number of candidates max¢, the maximal size
of the ballot box maxy, and the maximal number of seats maxs. Checking the
algorithm for a particular input corresponds to running the query:

I'NAF (runicvs W D) & (sem W D)

As above, I' selects the algorithm for the desired version of STV, A i, ¢, v, s are
inputs for the algorithm that have been generated by the model checker. We use
additive conjunction & in a clever way: it copies the ballot box and allows the
box to be used both for running STV and for semantically checking the result.

As inherent in bounded model checking, we get a semi-decision procedure. The
analysis terminates for any given bound (this is easy to prove by an inspection of
the linear logic program). But only in the negative case, where we get a counter
example, the model checker provides a definite answer to the question of whether
the algorithm always computes an election result satisfying the given criterion.

In the positive case, where the model checker construct as many solutions to
the above query as there are ballot boxes, we can conclude that the particular
STV algorithm selected by I" computes valid solutions for all possible elections
up to the given bound. Note, that this conclusion requires the vote counting to
be deterministic because the current version of the checker does not backtrack
over different results for the same input and only validates the first election
result found for a particular ballot boxEI

The more interesting case is when the model checker fails to find a solution
for one of two reasons. Either, the STV algorithm did not manage to construct
an election result for some ballot box, a case that may happen, for example,
if AUTOFILL is not selected. Or the model checker was unable to justify an
election result w.r.t. the semantic criteria (the really negative case). The Celf
tracing model provides enough information to deduce where to find the culprit.

5 This is not a critical limitation in practice. Although there are various ways of
resolving non-determinism in STV, it is important to clearly specify how it is resolved
in real-world elections i.e., the particular implementation of TTE. Otherwise, choices
by the election officials (or their computers) when counting the ballot could influence
the election result, which is clearly undesirable. One could change the checker to
backtrack over election results, but that would greatly increase runtime.



5 Case Study: CADE-STV

The bylaws of the Conference on Automated Deduction (CADE) specify an
algorithm for counting the ballots cast for the election of members to its Steer-
ing Committee [2]. The intention of the bylaws is to design a voting algorithm
that takes the voters’ preferences into account. The algorithm has been imple-
mented and used by several CADE Presidents and Secretaries in elections for
the CADE Board of Trustees. It has also been used by TABLEAUX Steering
Committee Presidents, including one of the authors, for the election of members
to the TABLEAUX Steering Committee. The CADE-STV specification shown
in Appendix [A] gives an algorithmic specification for how to count ballots.
Note that the specification of CADE-STV is not formal. Although the pseudo
code language that is used may be intuitive for programmers, it does not come
with a precise operational semantics. Despite being semi-formal, the pseudo code
lacks precision in how to break a tie when eliminating or seating candidates.
The CADE-STYV algorithm deviates from standard STV in using RESTART,
which combines NODEL and ZOMBIE. Moreover, QUOTA/MAJORITY is used
instead of QUOTA/DROOP and there is no AUTOFILL, which is unusualﬂ

Ezample 3. Let us run CADE-STV on Example[l] First, we compute the major-
ity quota Q = 3. In the first iteration, A has three first preferences, which means
that A is the majority winner and is seated. Since CADE-STV uses RESTART,
A’s votes are not deleted but are redistributed at the end of the first iteration.
Now the ballot box contains [B, D], [B, D], [B, D], [D,C],[C, D]. Following the
algorithm, we observe that now B is the majority candidate with 3 first prefer-
ence votes and is seated. The election is over, and the election result is [A, B].

Standard STV and CADE-STYV produce different results on the same votes.
Examplehas already shown that [A, B] is “incorrect” as it violates Criterion 1.

Theorem 2. Let I' = QUOTA/MAJORITY,RESTART and A = ballot box +
initialized running counts, then run S C V.1 w d is provable if and only if w
corresponds to the list of candidates elected by the CADE-STV algorithm, and d
is the list of defeated candidates.

Running the bounded model checker confirms that the election results com-
puted by CADE-STV do not always satisfy Criterion 1. Indeed, it finds smaller
counter examples than our running example, but these are not as illustrative.

The effect of the differences between standard STV and CADE-STV is clar-
ified by the following theorem and its corollary: in certain cases, there is no
proportional representation in the election results computed by CADE-STV.

Theorem 3. If a majority of voters vote in exactly the same way [P, ..., Py,
then CADE-STV will elect the candidates preferred by that majority in order of
the majority’s preference.

Proof. Since a majority of voters choose P, as their first preference, no other
candidate can meet the “majority quota”. Thus P; is elected in the first round.
When redistributing the ballots, each of the majority of ballots with P, as first
preference have P, as second preference. All become first preferences for Ps.
Thus candidate P, is guaranteed to have a majority of first preferences and is
elected in round two, and so on until all vacancies are filled. a

5 Presumably, QUOTA/MAJORITY was introduced into CADE STV following crit-
icism of DROOP/QUOTA by David Plaisted [7].



Corollary 1. If the electorate consists of two diametrically opposed camps that
vote for their candidates only, in some fixed order, then the camp with a majority
will always get their candidates elected and the camp with a minority will never
get their candidate elected.

Standard STV does not use RESTART (nor NODEL) and so it will elect the
first ranked candidate of the majority, but will then distribute only the surplus
votes and not all votes as done by CADE-STV. Thus the second preference
from the majority is not necessarily the second person elected. Consequently,
majorities do not rule outright in standard STV.

6 Conclusion

The experiments with our tool have have shown that the voting system of CADE
does not satisfy the intuitive semantic criterion defined in Section [3] We discov-
ered that the bylaws of the CADE community require elections to be decided
by a single transferable vote algorithm that does not try to achieve proportional
representation. We suspect that CADE’s voting system was conceived with the
intention to combine the advantages of preferential and majority voting (nothing
can happen that the majority does not want). Unfortunately, it also combines
their disadvantages (no proportional representation).

Our observations do not imply that CADE voting is undemocratic. But call-
ing the CADE algorithm “Single Transferable Vote” is a misnomer because the
goal of proportional representation is inherent to STV. The CADE algorithm is
actually closer to what is known as Majority Preference Voting.

CADE-STV has been used for many years. It has been implemented, tested,
re-implemented, and re-tested by various people. Its properties have been thor-
oughly discussed at various times by the CADE Trustees. But to our knowledge,
the problems outlined in this paper have not been observed before, which clearly
indicates that a formal analysis like the one presented here is indispensable.
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A Appendix: Official CADE-STYV Specification

The following is an exact quote from the web page of CADE Inc. [2], where the
STV algorithm to be used in CADE elections is described.

Problem: M voters must elect K of N candidates.

Input: M x N matrix, Tbl, of votes.
Tbl(i,j) = p, 1<=p<=N,
means that voter i gave preference p to candidate j.
Every voter can support n (1<=n<=N) of the N candidates, and has
to give a preference order between those n candidates.
This is expressed by assigning a preference
between 1 (highest preference) to n (lowest preference) to each
of the supported candidates. Each of the values 1...n is assigned
to exactly one candidate. All candidates not supported receive a
preference of N+1.

Weakest candidate:
The candidate with the fewest votes of preference 1.
Ties are broken by fewest votes of preference 2, then 3, etc.

Equally weak candidates:
c is equally weak as w iff c and w have the same number
of votes of preference 1, 2, etc.

Output: List of K elected candidates in order of election.

Redistribute(k, Tbl):
for v <-—- 1 to M
p <-- Tbl(v,k) {* v’s preference for candidate k *}
for ¢ <—- 1 to N
p’ <—- Tbl(v,c) {* v’s preference for candidate c *}
if p’ > p and not p’ == N+1 then
decrement Tbl(v,c) by one
end for
end for
Now remove candidate k from Tbl {* column k *}

Procedure STV

Elected <-- empty
T <-- Tbl {* Start with the original vote matrix *}
for E <-- 1 to K
N’ <-- N-E+1  {* Choose a winner among N’ candidates *}
T <= T {* store the current vote matrix *}
while (no candidate has a majority of 1st preferences)
w <-- one weakest candidate
for all candidates c {* remove all weakest candidates *}
if ¢ is equally weak as w
Redistribute(c,T)
end for
end while
win <-- the majority candidate
Elected <-- append(Elected, [win])
T <—- T’ {* restore back to N’ candidates *}
Redistribute(win, T) {* remove winner & redistrb. votes *}
end for

End STV




