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Abstra
t. In this paper, we de�ne a program logi
 (an instan
e of Dy-nami
 Logi
) for formalising properties of JavaCard programs, and wegive a sequent 
al
ulus for formally verifying su
h properties. The pur-pose of this work is to provide a framework for software veri�
ation that
an be integrated into real-world software development pro
esses.1 Introdu
tionMotivation. The work that is reported in this paper has been 
arried outas part of the KeY proje
t [1℄. The goal of KeY is to enhan
e a 
ommer
ialCASE tool with fun
tionality for formal spe
i�
ation and dedu
tive veri�
ationand, thus, to integrate formal methods into real-world software development pro-
esses. A

ordingly, the design prin
iples for the software veri�
ation 
omponentof the KeY system are:{ The programs that are veri�ed should be written in a \real" obje
t-orientedprogramming language (we de
ided to use JavaCard).{ The logi
al formalism should be as easy as possible to use for software de-velopers (that do not have years of training in formal methods).The ultimate goal of the KeY proje
t is to fa
ilitate and promote the use offormal veri�
ation as an integral part of the development pro
ess of JavaCardappli
ations in an industrial 
ontext.In this paper, after giving an overview of the KeY proje
t in Se
tion 2, wepresent a Dynami
 Logi
 (a program logi
 that 
an be seen as an extensionof Hoare logi
) for JavaCard. It allows to express properties of JavaCardprograms. The syntax of this logi
 is des
ribed in Se
tion 3 and its semanti
s inSe
tion 4. In Se
tion 5, we present a 
al
ulus for this program logi
 that allows toreason about the properties of JavaCard programs and verify them. The mainideas and prin
iples of the 
al
ulus are des
ribed and its most important rules arepresented (due to spa
e restri
tions, we 
annot list all the rules in this paper). InSe
tion 6, we give an example for the veri�
ation of a small JavaCard program.As part of the KeY proje
t we 
urrently implement an intera
tive theorem proverfor our 
al
ulus; this and other future work is des
ribed in Se
tion 7, where wealso 
ompare our work with other approa
hes to the veri�
ation of JavaCardprograms.



Java Card. Sin
e JavaCard is a \real" obje
t-oriented language, it has fea-tures that are diÆ
ult to handle in a software veri�
ation system, su
h as dy-nami
 data stru
tures, ex
eptions, obje
t initialisation, and dynami
 binding.On the other hand, JavaCard la
ks some 
ru
ial 
ompli
ations of the full Javalanguage su
h as threads and dynami
 loading of 
lasses. Java smart 
ards arean extremely suitable appli
ation for software veri�
ation:{ JavaCard appli
ations are small;{ at the same time, they are embedded into larger program systems or busi-ness pro
esses whi
h should be modeled (though not ne
essarily formallyveri�ed);{ JavaCard appli
ations are often se
urity-
riti
al, giving in
entive to applyformal methods;{ the high number of deployed smart 
ards 
onstitutes a new motivation forformal veri�
ation, as arbitrary updates are not feasible.Dynami
 Logi
. We use an instan
e of Dynami
 Logi
 (DL) [14℄|whi
h 
anbe seen as an extension of Hoare logi
 [3℄|as the logi
al basis of the KeY sys-tem's software veri�
ation 
omponent. Dedu
tion in DL is based on symboli
program exe
ution and simple program transformations and is, thus, 
lose to aprogrammer's understanding of JavaCard. DL is used in the software veri�-
ation systems KIV [20℄ and VSE [12℄ (for a programming language that is notobje
t-oriented). It has su

essfully been applied in pra
ti
e to verify softwaresystems of 
onsiderable size.DL 
an be seen as a modal predi
ate logi
 with a modality hp i for everyprogram p (we allow p to be any sequen
e of legal JavaCard statements);hp i refers to the su

essor worlds (
alled states in the DL framework) that arerea
hable by running the program p . In standard DL there 
an be several su
hstates (worlds) be
ause the programs 
an be non-deterministi
; but here, sin
eJavaCard programs are deterministi
, there is exa
tly one su
h world (if pterminates) or there is no su
h world (if p does not terminate). The formulahp i� expresses that the program p terminates in a state in whi
h � holds. Aformula �! hp i is valid if for every state s satisfying pre-
ondition � a runof the program p starting in s terminates, and in the terminating state thepost-
ondition  holds.Thus, the formula �! hp i is similar to the Hoare triple f�gp f g. But in
ontrast to Hoare logi
, the set of formulas of DL is 
losed under the usual logi
aloperators: In Hoare logi
, the formulas � and  are pure �rst-order formulas,whereas in DL they 
an 
ontain programs. DL allows to involve programs inthe des
riptions � resp.  of states. For example, using a program, it is easy tospe
ify that a data stru
ture is not 
y
li
, whi
h is impossible in pure �rst-orderlogi
. Also, all Java 
onstru
ts are available in DL for the des
ription of states(in
luding while loops and re
ursion). It is, therefore, not ne
essary to de�ne anabstra
t data type state and to represent states as terms of that type; insteadDL formulas 
an be used to give a (partial) des
ription of states, whi
h is a more
exible te
hnique and allows to 
on
entrate on the relevant properties of a state.



In 
omparison to 
lassi
al versions of DL that use a simple \arti�
ial" pro-gramming languages, a DL for a \real" obje
t-oriented programming languagelike JavaCard has to 
ope with the following 
ompli
ations:{ A program state does not only depend on the value of (lo
al) program vari-ables but also on the values of the attributes of all existing obje
ts.{ The evaluation of a Java expression may have side e�e
ts; thus, there is adi�eren
e between an expression and a logi
al term.{ Language features su
h as built-in data types, ex
eptions, obje
t initialisa-tion, and dynami
 binding have to be handled.2 The Proje
t1While formal methods are by now well established in hardware and system de-sign, usage of formal methods in software development is still (and in spite ofex
eptions [7, 8℄) more or less 
on�ned to a
ademi
 resear
h. This is true though
ase studies 
learly demonstrate that 
omputer-aided spe
i�
ation and veri�
a-tion of realisti
 software is feasible [10℄.The future 
hallenge for formal methods is to make their 
onsiderable poten-tial feasible to use in an industrial environment. This leads to the requirements:1. Tools for formal software spe
i�
ation and veri�
ation must be integratedinto industrial software engineering pro
edures.2. User interfa
es of these tools must 
omply with state-of-the-art softwareengineering tools.3. The ne
essary amount of training in formal methods must be minimised.To be sure, the thought that full formal software veri�
ation might be possiblewithout any ba
kground in formal methods is utopian. An industrial veri�
ationtool should, however, allow for gradual veri�
ation so that software engineersat any (in
luding low) experien
e level with formal methods may bene�t. Inaddition, an integrated tool with well-de�ned interfa
es fa
ilitates \outsour
ing"those parts of the modeling pro
ess that require spe
ial skills.Another important motivation to integrate design, development, and veri�-
ation of software is provided by modern software development methodologieswhi
h are iterative and in
remental. Post mortem veri�
ation would enfor
e theantiquated waterfall model.The KeY proje
t [1℄) addresses the goals outlined above. In the prin
ipaluse 
ase of the KeY system there are a
tors who want to implement a softwaresystem that 
omplies with given requirements and formally verify its 
orre
t-ness (typi
ally a smart 
ard appli
ation). In this s
enario, the KeY system isresponsible for adding formal detail to the analysis model, for 
reating 
ondi-tions that ensure the 
orre
tness of re�nement steps (
alled proof obligations),for �nding proofs showing that these 
onditions are satis�ed by the model, andfor generating 
ounter examples if they are not. Spe
ial features of KeY are:1 More information on the KeY proje
t 
an be found at i12www.ira.uka.de/~key.



{ We 
on
entrate on obje
t-oriented analysis and design methods (OOAD)|be
ause of their key role in today's software development pra
ti
e|, and onJavaCard as the target language. In parti
ular, we use the Uni�ed Mod-eling Language (UML) [18℄ for visual modeling of designs and spe
i�
ationsand the Obje
t Constraint Language (OCL) for adding further restri
tions.This 
hoi
e is supported by the fa
t, that the UML (whi
h 
ontains OCL)is not only an OMG standard, but has been adopted by all major OOADsoftware vendors and is featured in re
ent OOAD textbooks [15℄.{ We use a 
ommer
ial CASE tool as starting point and enhan
e it by addi-tional fun
tionality for formal spe
i�
ation and veri�
ation. The tool of our
hoi
e is TogetherSoft LLC's TogetherJ.{ Formal veri�
ation is based on a Dynami
 Logi
 for JavaCard.{ As a 
ase study to evaluate the usability of our approa
h we develop as
enario using smart 
ards with JavaCard as programming language.{ Through dire
t 
onta
ts with software 
ompanies we 
he
k the soundness ofour approa
h for real world appli
ations (some of the experien
es from these
onta
ts are reported in [4℄).A �rst KeY system prototype has been implemented, integrating the CASEtool TogetherJ and a dedu
tive 
omponent. Work on the full KeY system isunder progress. Although 
onsisting of di�erent 
omponents, the KeY system isgoing to be fully integrated with a uniform user interfa
e.3 Syntax of Java Card DLAs said above, a dynami
 logi
 is 
onstru
ted by extending some non-dynami
logi
 with modal operators of the form hp i. The non-dynami
 base logi
 of ourDL is a typed �rst-order predi
ate logi
. To de�ne its syntax, we spe
ify itstypes and the variable sets and signatures from whi
h terms are built (whi
h weoften 
all \logi
al terms" in the following to emphasise that they are di�erentfrom Java expressions). Then, we de�ne whi
h programs p are allowed in theoperators hp i, i.e., in the program parts of DL formulas. Finally, the syntax ofDL formulas and sequents is de�ned.Program Contexts. In order to redu
e the 
omplexity of the programs o

ur-ring in DL formulas, we introdu
e the notion of a program 
ontext. The 
ontext
an 
onsist of any legal JavaCard program, i.e., it is a sequen
e of 
lass andinterfa
e de�nitions. Syntax and semanti
s of DL formulas is then de�ned withrespe
t to a given 
ontext; and the programs in DL formulas are assumed to not
ontain 
lass de�nitions.A 
ontext must not 
ontain any 
onstru
ts that a

ording to the Java lan-guage spe
i�
ation lead to a 
ompile-time error or that are not available inJavaCard. An additional restri
tion is that a program 
ontext must not 
on-tain inner 
lasses (this restri
tion is \harmless" be
ause inner 
lasses 
an be re-moved with a stru
ture-preserving program transformation and are rarely usedin JavaCard anyway).



Types. Given a program 
ontext, the set T of types 
ontains:{ the primitive types of JavaCard (boolean, byte, short),{ the built-in 
lasses Obje
t and String,{ the 
lasses de�ned in the program 
ontext,2{ an array type T [ ℄ for ea
h primitive type, ea
h array type T , and ea
h 
lass,{ the type Null ,{ abstra
t types.Abstra
t types are not de�ned in the program 
ontext but are given separately.They 
an be de
lared to be generated by 
ertain fun
tion symbols (
alled 
on-stru
tors), in whi
h 
ase they 
an be used for indu
tion proofs (see Se
tion 5).For example, a type nat may be de
lared to be generated by 0 and su

; and anabstra
t (data) type list may be de
lared to be generated by 
ons and nil. Ax-ioms may be provided to spe
ify the properties of abstra
t types. Sin
e abstra
ttypes are not de�ned as Java 
lasses, they 
an only be used in the non-programparts of a DL formula and not in programs (in parti
ular not in the program 
on-text). Nevertheless, they 
an be used in DL formulas to des
ribe the behaviourof programs (in parti
ular they 
an be used as abstra
tions of obje
t stru
tures).Note that there are three kinds of types in our DL: Built-in JavaCardtypes, types de�ned in the program 
ontext (
lasses), and abstra
t types de�nedseparately from the program 
ontext. The 
lasses, the array types, and Null are
alled obje
t types.3We assume that the methods and �elds shown in Table 1 are impli
itly de�nedfor ea
h 
lass and ea
h array type and 
an thus be used in DL formulas (but notin the program 
ontext). Note that they are not a
tually implemented, but onlyprovide additional expressiveness for the logi
. They allow to a

ess informationabout the program state that is otherwise ina

essible in Java: a list of allexisting obje
ts of a 
lass or array type and information on whether obje
ts and
lasses are initialised (
lassInitialised is only available for 
lasses and not forarray types). The obje
ts of a 
ertain type are 
onsidered to be organised intoan (in�nite) ordered list; this list is used by new to \
reate" obje
ts (intuitively,new 
hanges the attributes lastCreatedObj of the 
lass and sets the attribute
reated of the new obje
t to true, see Se
tion 5).The sub-type relation � is transitive and re
exive. If C 1 is de�ned to be asub-
lass of C 2 in the program 
ontext, then C 1 � C 2 and C 1[ ℄ � C 2[ ℄. Null isa sub-type of all obje
t types.Variables. In 
lassi
al versions of DL there is only one type of variables. Herehowever, to avoid 
onfusion, we use two kinds of variables, namely programvariables and logi
al variables.Program variables are denoted with x, y, z, : : : Their value 
an di�er fromstate to state and 
an be 
hanged by programs. They o

ur in programs as2 Interfa
es de�ned in the 
ontext are not types of the logi
.3 In Java, arrays are 
onsidered to be obje
ts.



publi
 stati
 Cls firstObj; // the �rst obje
t in the list,// whether already 
reated or notpubli
 stati
 Cls lastCreatedObj; // the last 
reated obje
t,// null if no obje
t existspubli
 Cls prevObj; // the previous obje
t in the list;// null for the �rst obje
tpubli
 Cls nextObj; // the next obje
t in the listpubli
 boolean beforeObj(Cls obj); // returns true if this// is before obj in the listpubli
 boolean 
reated; // true if the obje
t has already been// 
reated with new, and false otherwisepubli
 stati
 boolean 
lassInitialised; // true if the 
lass resp.publi
 boolean objInitialised; // the obje
t is initialisedTable 1. Methods and �elds that are impli
itly de�ned for ea
h 
lass Cls .lo
al variables.4 Program variables 
an also be used in the non-program parts ofDL formulas (there they behave like modal 
onstants, i.e., 
onstants whose value
an di�er from state to state). They 
annot be quanti�ed. We assume the setof program variables to 
ontain an in�nite number of variables of ea
h primitivetype and ea
h obje
t type. In parti
ular, it 
ontains the spe
ial variable this oftype Obje
t.Logi
al variables are denoted with x, y, z, : : : They are assigned the samevalues in all states; a statement su
h as \x = 1;", whi
h tries to 
hange thevalue of the logi
al variable x, is illegal. Free o

urren
es of logi
al variables areimpli
itly universally quanti�ed. The set of logi
al variables 
ontains an in�nitenumber of variables of ea
h type.Terms. Logi
al terms are 
onstru
ted from program variables, logi
al variables,and the 
onstant and fun
tion symbols of all types (observing the usual typingrestri
tions). The set of logi
al terms in
ludes in parti
ular all JavaCard literalsfor the primitive types, string literals, and the null obje
t referen
e literal (whi
his of type Null).In addition, (a) if o is a term of 
lass type C (i.e., denotes an obje
t) and a isa �eld (attribute) of 
lass C, then o.a is a term. (b) If Class is a 
lass nameand a is a stati
 �eld of Class , then Class.a is a term. (
) If a is an arraytype term and i is a term of type byte, then a[i℄ is a term.Example 1. Assume 
lass C has an attribute a of type C and an attribute i oftype byte, and o is a variable of type C. Then o, o.a, o.a.a, et
. are terms oftype C; and o.i, o.a.i et
. are terms of type byte. Also, 1+2 and o.i+1 areterms of type byte. The Java expression o.i++, however, is not a logi
al term4 In the Java language spe
i�
ation, 
ertain more 
omplex expressions su
h as x.a are
alled variables as well. A

ording to our de�nitions, however, x.a is not a variablebut a (
omplex) term.



be
ause ++ is not a fun
tion symbol (it is an operator with side e�e
ts). Theexpression o.i==1 is a logi
al term of type boolean.Programs. Basi
ally, the programs in DL formulas are exe
utable JavaCard
ode; as said above, they must not 
ontain 
lass de�nitions but 
an only use
lasses that are de�ned in the program 
ontext. There are two additions thatare not available in pure JavaCard: Programs 
an 
ontain a spe
ial 
onstru
tfor method invo
ation (see below), and they 
an 
ontain logi
al terms. Theseextensions are not used in the input formulas, i.e., we prove properties of pureJavaCard programs. Extended programs only o

ur within proofs; they resultfrom rule appli
ations.The basi
, non-extended programs either are a legal JavaCard statementor a (�nite) sequen
e of su
h statements:{ expression statements su
h as \x = 1;" (assignments), \m(1);" (method
alls), \i++;", \new Cls;", lo
al variable de
larations (whi
h restri
t the\visibility" of program variables)|expressions with inner 
lasses are notallowed;{ blo
ks and 
ompound statements built with if-else, swit
h, for, while,and do-while;{ statements with ex
eption handling using try-
at
h-finally;{ statements that abruptly redire
t the 
ontrol 
ow (throw, return, break,
ontinue);{ labelled statements;{ the empty statement.A basi
 program must not 
ontain anything that would lead to a 
ompile-timeerror (a

ording to the Java language spe
i�
ation) if it were used as, for exam-ple, a method's implementation. The only ex
eption to that rule is that programvariables may be used as lo
al variables in a program without being de
lared.Example 2. The statement i=0; may be used as a program in a DL formulaalthough i is not de
lared as a lo
al variable.The statement break l; is not a legal program be
ause su
h a statement isonly allowed to o

ur inside a blo
k labelled with l. A

ordingly, l:{break l;}is a legal program and 
an be used in a DL formula.The purpose of our �rst extension of pure JavaCard is the handling ofmethod 
alls. Methods are invoked by synta
ti
ally repla
ing the 
all by themethod's implementation. To handle the return statement in the right way, itis ne
essary to re
ord the program variable or obje
t �eld that the result is tobe assigned to and to mark the boundaries of the implementation when it issubstituted for the method 
all. For that purpose, we allow statements of theform 
all(x){prog} resp. 
all{prog} to o

ur in DL programs, where progis 
onsidered to be the implementation of a method and x is the variable orobje
t �eld that the return value of prog is to be assigned to (if (x) is omitted,prog must not return a value).



The se
ond extension is that we allow programs in DL formulas (not in theprogram 
ontext) to 
ontain logi
al terms. A Java expression of type T 
anbe repla
ed by a logi
al term of type T . However, sin
e the value of logi
alterms 
annot and must not be 
hanged by a program, a logi
al term 
an onlybe used in positions where a final lo
al variable 
ould be used a

ording to theJava language spe
i�
ation (the value of lo
al variables that are de
lared final
annot be 
hanged either). In parti
ular, logi
al terms 
annot be used as the lefthand side of an assignment.Note that, a

ording to our de�nitions, both program variables and logi
alvariables 
an o

ur in the program parts as well as the non-program parts of aDL formula. Nevertheless, there is a di�eren
e between the two kinds of variables,as the following example demonstrates.Example 3. If x is a program variable and y is a logi
al variable, then the for-mula (8y)(hx=yix := y) is synta
ti
ally 
orre
t. However, (8y)(hy=xix := y) is nota formula be
ause logi
al variables must not be used as the left side of an as-signment. And (8x)(hx=yix := y) is a not a formula be
ause program variables
annot be quanti�ed.Formulas. Atomi
 formulas are built as usual from the (logi
al) terms and thepredi
ate symbols of all the types, in
luding the following spe
ial predi
ates:{ the equality predi
ate :=,{ the (unary) de�nedness predi
ate isdef (whi
h, for example, is false for x.aif the value of x is null),{ the (binary) predi
ate instan
eof .Complex formulas are 
onstru
ted from the atomi
 formulas using the logi
al
onne
tives :, ^, _, !, the quanti�ers 8 and 9 (that 
an be applied to logi
alvariables but not to program variables), and the modal operator hp i, i.e., if p isa program and � is a formula, then hp i� is a formula as well.Updates. One of the main problems of designing a program logi
 for JavaCard(or any other obje
t-oriented language) is aliasing. That is, di�erent obje
t typevariables o1 and o2 
an be aliases for the same obje
t, su
h that 
hanging anattribute of o1 
hanges the same attribute of o2 as well. A 
onsiderable amountof literature has been published on this problem (see e.g. [6℄ for an overview),whi
h is 
omparable to the problem of array handling. In the same way, as o1.aand o2.a are the same if o1 and o2 have the same obje
t as their value and a isan attribute, a[i1℄ and a[i2℄ are the same if the byte variables i1 and i2 havethe same value and a is the name of an array.To handle aliasing in our 
al
ulus, we need a way of synta
ti
ally denot-ing what the value of o1.a (resp. a[i1℄) is in a state where the value o2.a(resp. a[i2℄) has been 
hanged; the representation should be independent ofwhether o1 and o2 (resp. i1 and i2) have the same value or not. For that pur-pose, we allow updates of the form v  e to be atta
hed as supers
ripts to terms,



formulas, attributes, and array variables; v is either a lo
al variable or of theform o:a , and e is a logi
al term of 
ompatible type. Thus, if U is an update andt and � are a term resp. a formula, then tU and �U are a term resp. a formulaas well. Moreover, o:a U is a term if o:a is a term, and a U[i℄ is a term if a [i℄is a term.The intuitive meaning of an update is that the term or formula that it isatta
hed to is to be evaluated after 
hanging the state a

ordingly, i.e., �x ehas the same semanti
s as hx =ei� but is easier to handle be
ause the evaluationof e is known to have no side e�e
ts. Note, that the terms o:a U and (o:a )U mayhave di�erent values be
ause in the former term the update does not apply to o(whi
h is evaluated in the non-updated state) whereas in the latter term theupdate applies to o as well.Rules for simplifying terms and formulas with atta
hed updates are des
ribedin Se
tion 5.Example 4. The formula (hi=j;i(i := j))i 1 is valid, i.e., true in all states. Theformula hi=j;i((i := j)i 1) is only valid in states where the value of j is 1.Sequents. A sequent is of the form �1; : : : ; �m `  1; : : : ;  n (m;n � 0), wherethe �i and  j are DL formulas. The intuitive meaning of a sequent is that the
onjun
tion of the �i's implies the disjun
tion of the  j 's.4 Semanti
s of Java Card DLIn the de�nition of the semanti
s of JavaCard DL, we use the semanti
s ofthe JavaCard programming language. The language spe
i�
ation [9℄, thoughwritten in English and not in a formal language, is very pre
ise. In 
ase of doubt,we refer to the pre
ise semanti
s of Java (and, thus, of the subset JavaCard)de�ned by B�orger and S
hulte [5℄ using Abstra
t State Ma
hines.5The models of DL are Kripke stru
tures 
onsisting of possible worlds thatare 
alled states. All states of a model share the same universe 
ontaining asuÆ
ient number of elements of ea
h type. In parti
ular, they 
ontain in�nitelymany obje
ts of all 
lasses and all array types and the spe
ial value null , whi
his the only element of type Null .The fun
tion and predi
ate symbols that are not user-de�ned|su
h as theequality predi
ate and the fun
tion symbols of the primitive JavaCard types|have a �xed interpretation. In all models they are interpreted a

ording to theirintended semanti
s resp. their meaning in the JavaCard language.Logi
al variables are interpreted using a (global) variable assignment; theyhave the same value in all states of a model.5 Following another approa
h, Nipkow and von Oheimb have obtained a pre
ise se-manti
s of a Java sublanguage by embedding it into Isabelle/HOL; they also use anaxiomati
 semanti
s [16℄.



States. In ea
h state a (possibly di�erent) value (an element of the universe)of the appropriate type is assigned to:{ the program variables (in
luding this),{ the attributes (�elds) of all obje
ts (in
luding arrays),{ the 
lass attributes (stati
 �elds) of all types,Variables and attributes of type T 
an be assigned a value of type T 0 if T 0 � T .In parti
ular, variables and attributes of any obje
t type 
an be assigned thevalue null , be
ause Null is a sub-type of all obje
t types.Note, that states do not 
ontain any information on 
ontrol 
ow su
h as aprogram 
ounter or the fa
t that an ex
eption has been thrown.Programs and Formulas. The semanti
s of a program p is a state transition,i.e., it assigns to ea
h state s the set of all states that 
an be rea
hed by running pstarting in s. Sin
e JavaCard is deterministi
, that set either 
ontains exa
tlyone state (in 
ase p terminates) or is empty (in 
ase p does not terminate).The set of states of a model must be 
losed under the rea
hability relation forall programs p , i.e., all states that are rea
hable must exist in a model (othermodels are not 
onsidered).The semanti
s of a logi
al term t o

urring in a program is the same as thatof a Java expression whose evaluation is free of side-e�e
ts and gives the samevalue as t.For formulas � that do not 
ontain programs, the notion of � being satis�edby a state is de�ned as usual in �rst-order logi
. A formula hp i� is satis�ed bya state s if the program p, when started in s, terminates normally in a state s0in whi
h � is satis�ed.6 A formula is satis�ed by a model M , if it is satis�ed byone of the states of M . A formula is valid in a model M if it is satis�ed by allstates of M ; and a formula is valid if it is valid in all models.We 
onsider programs that terminate abruptly to be non-terminating. Exam-ples are a program that throws an un
aught ex
eption and a return statementthat is not within the boundaries of a method invo
ation. Thus, for example,hthrow x;i� is unsatis�able for all �. Nevertheless, it is possible to express and(if true) prove the fa
t that a program p terminates abruptly. For example, theformulae := null ! htry{p}
at
h{Ex
eption e}i(: e := null) ;is true in a state s if and only if the program p , when started in s, terminatesabruptly by throwing an ex
eption.6 A

ording to the Java language spe
i�
ation, a program either terminates normallyor terminates abruptly (or does not terminate at all). It terminates abruptly ifthe reason for termination is an un
aught ex
eption, or the exe
ution of a break,
ontinue, or return statement.



Sequents. The semanti
s of a sequent �1; : : : ;  m `  1; : : : ;  n is the sameas that of the formula (8x1) � � � (8xk)((�1 ^ : : : ^  m)! ( 1 _ : : : _  n)), wherex1; : : : ; xk are the free variables of the sequent.5 A Sequent Cal
ulus for Java Card DLIn this se
tion, we outline the ideas behind our 
al
ulus for JavaCard DL,and we present some of the basi
 rules. As JavaCard has many features andprogramming 
onstru
ts, many rules are required. Due to spa
e restri
tions, weonly present one or two typi
al representatives from ea
h 
lass of rules. No rulesare shown for method invo
ations,7 lo
al variable de
larations, and type 
on-versions; and the rules for the 
lassi
al logi
al operators (in
luding the 
ut rule)and for handling equality and the predi
ates isdef and instan
eof are omitted aswell. Moreover, we present simpli�ed versions of our rules that do not 
onsiderinitialisation of obje
ts and 
lasses.8All the rules shown in this se
tion, ex
ept the indu
tion rules, handle 
ertain
onstru
ts of the JavaCard language. It is easy to see, that these rules basi
allyperform a symboli
 program exe
ution.The semanti
s of sequent rules is that, if all sequen
es above the line (thepremisses of the rule) are valid, then the sequen
e below the line (the 
on
lusion)is valid as well. The rules are applied from bottom to top. That is, the proofsear
h starts with the original proof obligation at the bottom.Notation. In the de�nition of the 
al
ulus, we assume that the programs areparsed, i.e., they are not given as a string but their syntax tree is available. Thus,the 
al
ulus needs not to know about operator priorities et
., and we 
an usenotions like \immediate sub-expression" in the de�nition of our rules.Many formulas in the rules are of the form (hp i�)U , where U is a sequen
e ofstate updates. Note, that the parentheses 
annot be omitted, as the program pis to be exe
uted in the updated state.The rules of our 
al
ulus operate on the �rst a
tive 
ommand p of a pro-gram �p!. The non-a
tive pre�x � 
onsists of an arbitrary sequen
e of open-ing bra
es \{", labels, beginnings \try{" of try-
at
h blo
ks, and beginnings\
all(: : :){" of method invo
ation blo
ks. The pre�x is needed to keep tra
kof the blo
ks that the (�rst) a
tive 
ommand is part of, su
h that the 
ommandsthrow, return, break, and 
ontinue that abruptly 
hange the 
ontrol 
ow 
an7 Method invo
ation is handled by synta
ti
ally repla
ing the method 
all by the im-plementation of the method. In 
ase of dynami
 binding, where the implementationthat is to be used depends on the a
tual type that the value of an obje
t variablehas in the 
urrent state, method invo
ation leads to a 
ase distin
tion in the proof,i.e., the proof tree bran
hes.8 The 
omplete rule set of our 
al
ulus for JavaCard DL 
an be found in a te
hni
alreport that|at the date of submission of this paper|is in the pro
ess of beingpublished. It will be publi
ly available before TACAS 2001; and I am happy toprovide a draft of the report for the referees if they wish to have it.



be handled appropriatly.9 The post�x ! denotes the \rest" of the program, i.e.,everything ex
ept the non-a
tive pre�x and the part of the program that therule operates on. For example, if a rule is applied to the following Java blo
koperating on its �rst a
tive 
ommand i=0;, then the non-a
tive pre�x � and the\rest" ! are the marked parts of the blo
k:l:{try{| {z }� i=0; j=0; }finally{ k=0; }}| {z }!Rules for Assignment and Expression Evaluation. Sin
e assignments arethe basi
 state 
hanging statements of Java, the rule for assignments is one ofthe basi
 and most important rules of the 
al
ulus:10� ` isdef (o.a U ) � ` isdef (exprU ) � ` ((h� !i�)o.a expr)U� ` (h� o.a = expr; !i�)U (R1)Rule (R1) is not always appli
able; it 
an only be used if the expression expr isa logi
al term. Otherwise, other rules have to be applied �rst to evaluate expr(as that evaluation may have side e�e
ts). An example is the following rule forevaluating expressions with the ++ pre�x operator:� ` isdef (vU ) � ` (h� e=e+1; v=e; !i�)U� ` (h� v = ++e; !i�)U (R2)where v and e are logi
al terms.There are also rules for de
omposing 
omplex expressions that are not alogi
al term and whose evaluation, thus, potentially has side e�e
ts. An exampleis the following rule:� ` isdef (vU ) � ` (h� x 1=e 1; x 2=e 2; v=x 1+x 2; !i�)U� ` (h� v = e 1+e 2; !i�)U (R3)where v is a logi
al term, and x 1 and x 2 are new lo
al variables. This rulehas to be applied in 
ase the expression e 1+e 2 is not a term; for example, theexpression (++i) + (++i) has to be de
omposed be
ause the evaluation of itssub-expressions 
hanges the state.The premisses of the form � ` isdef (v) in the above rules ensure that theexpression v is de�ned in the state, i.e., its evaluation does not lead to a nullpointer ex
eption being thrown. That, for example, happens if v = o.a and thevalue of o is null . Other rules are available for handling this parti
ular situation.9 In DL versions for simple arti�
ial programming languages, where no pre�xes areneeded, any formula of the form hp q i� 
an be repla
ed by hp ihq i�. In our 
al
ulus,splitting of h�pq!i� into h�p ihq!i� is not possible (unless the pre�x � is empty)be
ause �p is not a valid program; and the formula h�p!ih�q!i� 
annot be usedeither be
ause its semanti
s is in general di�erent from that of h�pq!i�.10 A similar rule is de�ned for the 
ase where the left side of the assignment is a lo
alvariable.



Rules for Update Simpli�
ation. In many 
ases, formulas and terms withan update 
an be simpli�ed. For example, if x is a lo
al variable, the term xv e
an be repla
ed by x in 
ase x 6= v and by e in 
ase x = v. Another rule allowsto repla
e a term of the form (f(o))v e by f(ov e) if the fun
tion f does notdepend on the state.When no further simpli�
ation of a formula �(o0.a o.a e) is possible, be
ausethe terms o and o0 may be aliases for the same obje
t, the following bran
hingrule has to be applied:�; o := o0 ` �(e) �; :(o := o0) ` �(o0.a)� ` �(o0.a o.a e) (R4)where o and o0 are terms of the same obje
t type and a is an instan
e attribute,i.e., it is not de
lared stati
.Rules for Creating Obje
ts. The new statement is treated by the 
al
ulus as ifit were a method implemented as follows (this implementation a

esses the �eldsthat are impli
itly de�ned for all 
lasses and array types, see the explanation inSe
tion 3):publi
 stati
 Cls new() {if (lastCreatedObj == null)lastCreatedObj = firstObj;elselastCreatedObj = lastCreatedObj.nextObj;lastCreatedObj.
reated = true;return lastCreatedObj;}Note, that this is a simpli�ed version where obje
t initialisation is not 
onsidered.Rules for Loops. The following rule \unwinds" while loops. Its appli
ationis the prerequisite for symboli
ally exe
uting the loop body. Similar rules arede�ned for for and do-while loops. These \unwind" rules allow to handle whileloops if used together with indu
tion s
hemata for the primitive and the userde�ned types (see below). Se
tion 6 
ontains an example for the veri�
ation ofa while loop.� ` (h� l0:{if(
)l00:{p0} l :while(
){p}} !i�)U� ` (h� l :while(
){p} !i�)U (R5)where l0 and l00 are new labels, and p0 is the result of (simultaneously) repla
ingin p (a) every break (with no label) that has the while loop as its target bybreak l0, and (b) every 
ontinue (with no label) that has the while loop asits target by break l00.1111 The target of a break or 
ontinue statement with no label is the loop that imme-diately en
loses it.



In the \unwound" instan
e p0 of the loop body p , the new label l0 is the newtarget for break statements and l00 is the new target for 
ontinue statements.This results in the desired behaviour: break abruptly terminates the whole loop,while 
ontinue abruptly terminates the 
urrent instan
e of the loop body.Rule R5 only applies to unlabelled while loops, i.e., in 
ase � is not of theform �0l :; another rule is de�ned for labelled while loops.From the general while rule (R5), the following simpler rules 
an be derived.The two rules are appli
able if (a) the loop 
ondition is a logi
al term 
 (and,thus, its evaluation does not have side e�e
ts), and (b) the loop body p doesnot 
ontain any break or 
ontinue statements.� ` isdef (
U ) � ` 
U := true � ` (h� p while(
) p !i�)U� ` (h� while(
) p !i�)U (R6)� ` isdef (
U ) � ` 
U := false � ` (h� !i�)U� ` (h� while(
) p !i�)U (R7)Indu
tion Rules. Indu
tion s
hemata are available for the primitive type byteand all abstra
t types that are de
lared to be generated by 
onstru
tors. Thefollowing rules are the indu
tion s
hemata for byte and for an abstra
t type listgenerated by 
ons and nil:� `  (0) � ` (8x : byte)( (x) !  (x+ 1))� ` (8x : byte) (x) (R8)� `  (nil) � ` (8l : list)(8o : Obje
t)( (l)!  (
ons(o; l)))� ` (8l : list) (l) (R9)Rules for Conditionals. Two rules are available for handling if-then-elsestatements: One rule for the 
ase where the 
ondition evaluates to true and onefor the 
ase where the 
ondition evaluates to false:� ` isdef (
U ) � ` 
U := true � ` (h� p !i�)U� ` (h� if(
) p else q !i�)U (R10)� ` isdef (
U ) � ` 
U := false � ` (h� q !i�)U� ` (h� if(
) p else q !i�)U (R11)These rules are only appli
able if the 
ondition 
 is a logi
al term. Otherwise,rules for the de
omposition and evaluation of 
 have to be applied �rst.Similar rules are de�ned for if-then without else and for the swit
h state-ment.



Rules for Handling Ex
eptions. The following rules allow to handle try-
at
h-finally blo
ks and the throw statement. These are restri
ted versions ofthe a
tual rules, they apply to the 
ase where there is exa
tly one 
at
h 
lauseand one finally 
lause. And again, these rules are only appli
able if both theex
eption ex
 that is thrown and the variable e that it is bound by the 
at
h
lause are logi
al terms. If they are more 
omplex expressions, they �rst have tobe de
omposed and evaluated by applying other rules.� ` isdef (ex
U ) � ` instan
eof (ex
U ; T ) � ` isdef (eU )� ` (h� try{e=ex
; q }finally{r} !i�)U� ` (h� try{throw ex
; p }
at
h(T e){q}finally{r} !i�)U (R12)� ` isdef (ex
U ) � ` :instan
eof (ex
U ; T )� ` (h� r ; throw ex
; !i�)U� ` (h� try{throw ex
; p }
at
h(T e){q}finally{r} !i�)U (R13)� ` (h� r !i�)U� ` (h� try{}
at
h(T e){q}finally{r} !i�)U (R14)Rule (R12) applies if an ex
eption ex
 is thrown that is an instan
e of ex-
eption 
lass T , i.e., the ex
eption is 
aught; otherwise, if the ex
eption is not
aught, rule (R13) applies. Rule (R14) applies if the try blo
k is empty and,thus, terminates normally.Rules for the break Statement. The following rule handles break statements:� ` (h� !i�)U� ` (h�l :{�0 break l ; !0}!i�)U (R15)where �l :{�0 is a non-a
tive pre�x and {�0 break l ; !0} is a blo
k, i.e., thetwo bra
es in the 
on
lusion of the rule are the opening and the 
losing bra
e ofthe same blo
k.Note, that a

ording to the Java language spe
i�
ation, a label l is notallowed to o

ur within a blo
k that is itself labelled with l . This ensures thatthe label l o

urs only on
e in the pre�x �l :{�0.Similar rules are de�ned for break statements without label and for the
ontinue statement.6 ExampleAs an example, we use the 
al
ulus presented in the previous se
tion to provethat, if the while loopwhile (true) {if (i==10) break;else i++;}



is started in a state in whi
h the value of the program variable i of type byteis between 0 and 10, then it terminates normally in a state in whi
h the valueof i is 10. That is, we prove that the sequen
e0 � i ^ i � 10 ` hpwhileii := 10 (1)is valid, where pwhile is an abbreviation for the above while loop. Instead ofproving (1) dire
tly, we �rst use the indu
tion rule (R8) to derive the sequen
e` (8n)((0 � n ^ n � 10)! (hpwhileii := 10)i 10�n) (2)as a lemma (the logi
al variable n is of type byte). It basi
ally expresses thesame as (1), the di�eren
e is that its form allows it to be proved by indu
tionon n. The introdu
tion of this lemma is the only step in the proof where anintuition for what the JavaCard program pwhile a
tually does is needed andwhere a veri�
ation tools would require user intera
tion.Due to spa
e restri
tions, we only show the proof for the indu
tion basen = 0; the proof for the indu
tion step is omitted. The proof obligation for theindu
tion base is` (0 � 0 ^ 0 � 10)! (hpwhileii := 10)i 10�0) (3)whi
h simpli�es to` (hpwhileii := 10)i 10An appli
ation of the rule for while loops (R5) results in the new proof obligation` (hl1:{if (true) l2:{if (i==10) break l1; else i++;}pwhile}ii := 10)i 10Now, the rule for 
onditionals with a 
ondition that evaluates to true (R10) 
anbe applied. This results in three new proof obligations:` isdef (truei 10) (4)` truei 10 := true (5)` (hl1:{l2:{if (i==10) break l1; else i++;} pwhile}ii := 10)i 10(6)Sequen
es (4) and (5) 
an easily be shown to be valid. To prove sequen
e (6),we apply rule (R10) again and derive the proof obligations` isdef ((i==10)i 10) (7)` (i==10)i 10 := true (8)` (hl1:{l2:{break l1; else i++;} pwhile}ii := 10)i 10 (9)Sequen
e (7) 
an easily be shown to be valid, as well as sequen
e (8), whi
h 
anbe simpli�ed to ` (10==10) := true.



To prove (9) to be valid, the rule for break statements (R15) has to beapplied. The result is ` (i := 10)i 10. This simpli�es to ` 10 := 10 and 
anthus be shown to be valid.After the lemma (2) has been proved by indu
tion, it 
an be used to provethe original proof obligation (1). First, we use a quanti�er rule to instantiate nwith 10� i. The result is` (0 � 10� i ^ 10� i � 10)! (hpwhileii := 10)i 10�(10�i)whi
h 
an be simpli�ed to` (0 � i ^ i � 10)! (hpwhileii := 10)i i (10)And, sin
e (10) is derivable, the original proof obligation (1) is derivable as well,be
ause the trivial update i i 
an be omitted.7 Con
lusionExtensions and Future Work. We are 
urrently implementing an intera
tiveprover for our 
al
ulus as part of the KeY proje
t. Su
h an implementation is aprerequisite for applying the 
al
ulus to more 
omplex examples.Further work is to prove soundness and relative 
ompleteness of the 
al
ulusw.r.t. a formal semanti
s. And we plan to extend the 
al
ulus with the 
on
eptof parameters (or meta-variables) that 
an be instantiated with logi
al terms\on demand" during the proof using uni�
ation. Meta-variables are the mostimportant te
hnique for automated dedu
tion in 
lassi
al logi
, and this promisesto make the automated proof sear
h in JavaCard DL mu
h more eÆ
ient aswell.Related Work. There are many proje
ts dealing with formal methods in soft-ware engineering in
luding several ones aimed at Java as a target language.Work on the veri�
ation of Java programs in
ludes [19, 13, 11, 17, 21℄. The maindi�eren
e of all these approa
hes to our work is that they use a Hoare logi
instead of full DL, i.e., formulas and programs remain separated.In [19℄, states are represented as terms of an abstra
t data type, whereasin our approa
h the states 
orrespond to \worlds" in the models. They are notrepresented as terms but des
ribed with formulas. This allows to use the fullexpressiveness of DL to formalise the properties of a state.Another important di�eren
e to other approa
hes is that abrupt termination,in parti
ular ex
eption handling, is either not treated at all or is treated in a
ompletely di�erent way (e.g. [11℄ where the reason for abrupt termination ismade a part of the states, whi
h leads to a more 
omplex notion of states andof method return values).
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