In: Java on Smart Cards: Programming and Security, pages 6—24, LNCS 2041, Springer, 2001.

A Dynamic Logic for the
Formal Verification of Java Card Programs

Bernhard Beckert

Universitdt Karlsruhe
Institut fiir Logik, Komplexitat und Deduktionssysteme
D-76128 Karlsruhe, Germany

i12www.ira.uka.de/ beckert

Abstract. In this paper, we define a program logic (an instance of Dy-
namic Logic) for formalising properties of JAvA CARD programs, and we
give a sequent calculus for formally verifying such properties. The pur-
pose of this work is to provide a framework for software verification that
can be integrated into real-world software development processes.

1 Introduction

Motivation. The work that is reported in this paper has been carried out
as part of the KeY project [1]. The goal of KeY is to enhance a commercial
CASE tool with functionality for formal specification and deductive verification
and, thus, to integrate formal methods into real-world software development pro-
cesses. Accordingly, the design principles for the software verification component
of the KeY system are:

— The programs that are verified should be written in a “real” object-oriented
programming language (we decided to use JAvAa CARD).

— The logical formalism should be as easy as possible to use for software de-
velopers (that do not have years of training in formal methods).

The ultimate goal of the KeY project is to facilitate and promote the use of
formal verification as an integral part of the development process of JAvVA CARD
applications in an industrial context.

In this paper, after giving an overview of the KeY project in Section 2, we
present a Dynamic Logic (a program logic that can be seen as an extension
of Hoare logic) for JAva CARD. It allows to express properties of JAvA CARD
programs. The syntax of this logic is described in Section 3 and its semantics in
Section 4. In Section 5, we present a calculus for this program logic that allows to
reason about the properties of JAvA CARD programs and verify them. The main
ideas and principles of the calculus are described and its most important rules are
presented (due to space restrictions, we cannot list all the rules in this paper). In
Section 6, we give an example for the verification of a small JAVA CARD program.
As part of the KeY project we currently implement an interactive theorem prover
for our calculus; this and other future work is described in Section 7, where we
also compare our work with other approaches to the verification of JAvAa CARD
programs.



Java Card. Since JAvA CARD is a “real” object-oriented language, it has fea-
tures that are difficult to handle in a software verification system, such as dy-
namic data structures, exceptions, object initialisation, and dynamic binding.
On the other hand, JAvVA CARD lacks some crucial complications of the full JAVA
language such as threads and dynamic loading of classes. JAVA smart cards are
an extremely suitable application for software verification:

— Java CARD applications are small;

— at the same time, they are embedded into larger program systems or busi-
ness processes which should be modeled (though not necessarily formally
verified);

— Java CARD applications are often security-critical, giving incentive to apply
formal methods;

— the high number of deployed smart cards constitutes a new motivation for
formal verification, as arbitrary updates are not feasible.

Dynamic Logic. We use an instance of Dynamic Logic (DL) [14]—which can
be seen as an extension of Hoare logic [3]—as the logical basis of the KeY sys-
tem’s software verification component. Deduction in DL is based on symbolic
program execution and simple program transformations and is, thus, close to a
programmer’s understanding of JAVA CARD. DL is used in the software verifi-
cation systems KIV [20] and VSE [12] (for a programming language that is not
object-oriented). It has successfully been applied in practice to verify software
systems of considerable size.

DL can be seen as a modal predicate logic with a modality (p) for every
program p (we allow p to be any sequence of legal JAVA CARD statements);
(p) refers to the successor worlds (called states in the DL framework) that are
reachable by running the program p. In standard DL there can be several such
states (worlds) because the programs can be non-deterministic; but here, since
JAvA CARD programs are deterministic, there is exactly one such world (if p
terminates) or there is no such world (if p does not terminate). The formula
(p)¢ expresses that the program p terminates in a state in which ¢ holds. A
formula ¢ — (p )¢ is valid if for every state s satisfying pre-condition ¢ a run
of the program p starting in s terminates, and in the terminating state the
post-condition v holds.

Thus, the formula ¢ — (p )t is similar to the Hoare triple {¢}p{¢}. But in
contrast to Hoare logic, the set of formulas of DL is closed under the usual logical
operators: In Hoare logic, the formulas ¢ and v are pure first-order formulas,
whereas in DL they can contain programs. DL allows to involve programs in
the descriptions ¢ resp. ¢ of states. For example, using a program, it is easy to
specify that a data structure is not cyclic, which is impossible in pure first-order
logic. Also, all JAVA constructs are available in DL for the description of states
(including while loops and recursion). It is, therefore, not necessary to define an
abstract data type state and to represent states as terms of that type; instead
DL formulas can be used to give a (partial) description of states, which is a more
flexible technique and allows to concentrate on the relevant properties of a state.



In comparison to classical versions of DL that use a simple “artificial” pro-
gramming languages, a DL for a “real” object-oriented programming language
like JAvA CARD has to cope with the following complications:

— A program state does not only depend on the value of (local) program vari-
ables but also on the values of the attributes of all existing objects.

— The evaluation of a JAVA expression may have side effects; thus, there is a
difference between an expression and a logical term.

— Language features such as built-in data types, exceptions, object initialisa-
tion, and dynamic binding have to be handled.

2 The K3” Project!

While formal methods are by now well established in hardware and system de-
sign, usage of formal methods in software development is still (and in spite of
exceptions [7, 8]) more or less confined to academic research. This is true though
case studies clearly demonstrate that computer-aided specification and verifica-
tion of realistic software is feasible [10].

The future challenge for formal methods is to make their considerable poten-

tial feasible to use in an industrial environment. This leads to the requirements:

1. Tools for formal software specification and verification must be integrated
into industrial software engineering procedures.

2. User interfaces of these tools must comply with state-of-the-art software
engineering tools.

3. The necessary amount of training in formal methods must be minimised.

To be sure, the thought that full formal software verification might be possible
without any background in formal methods is utopian. An industrial verification
tool should, however, allow for gradual verification so that software engineers
at any (including low) experience level with formal methods may benefit. In
addition, an integrated tool with well-defined interfaces facilitates “outsourcing”
those parts of the modeling process that require special skills.

Another important motivation to integrate design, development, and verifi-
cation of software is provided by modern software development methodologies
which are iterative and incremental. Post mortem verification would enforce the
antiquated waterfall model.

The KeY project [1]) addresses the goals outlined above. In the principal
use case of the KeY system there are actors who want to implement a software
system that complies with given requirements and formally verify its correct-
ness (typically a smart card application). In this scenario, the KeY system is
responsible for adding formal detail to the analysis model, for creating condi-
tions that ensure the correctness of refinement steps (called proof obligations),
for finding proofs showing that these conditions are satisfied by the model, and
for generating counter examples if they are not. Special features of KeY are:

! More information on the KeY project can be found at i12www.ira.uka.de/key.



— We concentrate on object-oriented analysis and design methods (OOAD)—
because of their key role in today’s software development practice—, and on
JAava CARD as the target language. In particular, we use the Unified Mod-
eling Language (UML) [18] for visual modeling of designs and specifications
and the Object Constraint Language (OCL) for adding further restrictions.
This choice is supported by the fact, that the UML (which contains OCL)
is not only an OMG standard, but has been adopted by all major OOAD
software vendors and is featured in recent OOAD textbooks [15].

— We use a commercial CASE tool as starting point and enhance it by addi-
tional functionality for formal specification and verification. The tool of our
choice is TogetherSoft LLC’s TOGETHERJ.

— Formal verification is based on a Dynamic Logic for JAVA CARD.

As a case study to evaluate the usability of our approach we develop a

scenario using smart cards with JAvA CARD as programming language.

— Through direct contacts with software companies we check the soundness of
our approach for real world applications (some of the experiences from these
contacts are reported in [4]).

A first KeY system prototype has been implemented, integrating the CASE
tool TOGETHERJ and a deductive component. Work on the full KeY system is
under progress. Although consisting of different components, the KeY system is
going to be fully integrated with a uniform user interface.

3 Syntax of Java Card DL

Asg said above, a dynamic logic is constructed by extending some non-dynamic
logic with modal operators of the form (p). The non-dynamic base logic of our
DL is a typed first-order predicate logic. To define its syntax, we specify its
types and the variable sets and signatures from which terms are built (which we
often call “logical terms” in the following to emphasise that they are different
from JAVA expressions). Then, we define which programs p are allowed in the
operators (p), i.e., in the program parts of DL formulas. Finally, the syntax of
DL formulas and sequents is defined.

Program Contexts. In order to reduce the complexity of the programs occur-
ring in DL formulas, we introduce the notion of a program context. The context
can consist of any legal JAvA CARD program, i.e., it is a sequence of class and
interface definitions. Syntax and semantics of DL formulas is then defined with
respect to a given context; and the programs in DL formulas are assumed to not
contain class definitions.

A context must not contain any constructs that according to the JAvA lan-
guage specification lead to a compile-time error or that are not available in
Java CARD. An additional restriction is that a program context must not con-
tain inner classes (this restriction is “harmless” because inner classes can be re-
moved with a structure-preserving program transformation and are rarely used
in JAvA CARD anyway).



Types. Given a program context, the set 7 of types contains:

— the primitive types of JAVA CARD (boolean, byte, short),

— the built-in classes Object and String,

— the classes defined in the program context,?

— an array type T[] for each primitive type, each array type T', and each class,
— the type Null,

— abstract types.

Abstract types are not defined in the program context but are given separately.
They can be declared to be generated by certain function symbols (called con-
structors), in which case they can be used for induction proofs (see Section 5).
For example, a type nat may be declared to be generated by 0 and succ; and an
abstract (data) type list may be declared to be generated by cons and nil. Ax-
ioms may be provided to specify the properties of abstract types. Since abstract
types are not defined as JAVA classes, they can only be used in the non-program
parts of a DL formula and not in programs (in particular not in the program con-
text). Nevertheless, they can be used in DL formulas to describe the behaviour
of programs (in particular they can be used as abstractions of object structures).

Note that there are three kinds of types in our DL: Built-in JAvA CARD
types, types defined in the program context (classes), and abstract types defined
separately from the program context. The classes, the array types, and Null are
called object types.>

We assume that the methods and fields shown in Table 1 are implicitly defined
for each class and each array type and can thus be used in DL formulas (but not
in the program context). Note that they are not actually implemented, but only
provide additional expressiveness for the logic. They allow to access information
about the program state that is otherwise inaccessible in JAvVA: a list of all
existing objects of a class or array type and information on whether objects and
classes are initialised (classInitialisedis only available for classes and not for
array types). The objects of a certain type are considered to be organised into
an (infinite) ordered list; this list is used by new to “create” objects (intuitively,
new changes the attributes lastCreated0bj of the class and sets the attribute
created of the new object to true, see Section 5).

The sub-type relation < is transitive and reflexive. If €y is defined to be a
sub-class of C» in the program context, then €1 <X Cy and C4[] < C2[]. Null is
a sub-type of all object types.

Variables. In classical versions of DL there is only one type of variables. Here
however, to avoid confusion, we use two kinds of variables, namely program
variables and logical variables.

Program variables are denoted with x, y, z, ... Their value can differ from
state to state and can be changed by programs. They occur in programs as

2 Interfaces defined in the context are not types of the logic.
% In JAvA, arrays are considered to be objects.



public static Cls firstObj; // the first object in the list,

// whether already created or not
public static Cls lastCreatedObj; // the last created object,

// null if no object exists
public Cls prevObj; // the previous object in the list,
// null for the first object
public Cls nextObj; // the next object in the list
public boolean beforeObj(Cls obj); // returns true if this
// is before obj in the list
public boolean created; // true if the object has already been
// created with new, and false otherwise

public static boolean classInitialised; // true if the class resp.
public boolean objInitialised; // the object is initialised

Table 1. Methods and fields that are implicitly defined for each class Cls.

local variables.* Program variables can also be used in the non-program parts of
DL formulas (there they behave like modal constants, i.e., constants whose value
can differ from state to state). They cannot be quantified. We assume the set
of program variables to contain an infinite number of variables of each primitive
type and each object type. In particular, it contains the special variable this of
type Object.

Logical variables are denoted with z, y, 2z, ... They are assigned the same
values in all states; a statement such as “xz = 1;”, which tries to change the
value of the logical variable z, is illegal. Free occurrences of logical variables are
implicitly universally quantified. The set of logical variables contains an infinite
number of variables of each type.

Terms. Logical terms are constructed from program variables, logical variables,
and the constant and function symbols of all types (observing the usual typing
restrictions). The set of logical terms includes in particular all JAva CARD literals
for the primitive types, string literals, and the null object reference literal (which
is of type Null).

In addition, (a) if o is a term of class type C (i.e., denotes an object) and a is
a field (attribute) of class C, then o.a is a term. (b) If Class is a class name
and a is a static field of Class, then Class.a is a term. (c) If a is an array
type term and 4 is a term of type byte, then ali] is a term.

Example 1. Assume class C has an attribute a of type C and an attribute i of
type byte, and o is a variable of type C. Then o, 0.a, o0.a.a, etc. are terms of
type C; and 0.1, o.a.i etc. are terms of type byte. Also, 1+2 and o.i+1 are
terms of type byte. The JAVA expression o.i++, however, is not a logical term

* In the Java language specification, certain more complex expressions such as x.a are
called wariables as well. According to our definitions, however, x.a is not a variable
but a (complex) term.



because ++ is not a function symbol (it is an operator with side effects). The
expression o.i==1 is a logical term of type boolean.

Programs. Basically, the programs in DL formulas are executable JAvA CARD
code; as said above, they must not contain class definitions but can only use
classes that are defined in the program context. There are two additions that
are not available in pure JAVA CARD: Programs can contain a special construct
for method invocation (see below), and they can contain logical terms. These
extensions are not used in the input formulas, i.e., we prove properties of pure
JAavA CARD programs. Extended programs only occur within proofs; they result
from rule applications.

The basic, non-extended programs either are a legal JAVA CARD statement
or a (finite) sequence of such statements:

[43

— expression statements such as “x = 1;” (assignments), “m(1);” (method

calls), “i++;”, “new Cls;”, local variable declarations (which restrict the
“visibility” of program variables)—expressions with inner classes are not
allowed;

— blocks and compound statements built with if-else, switch, for, while,
and do-while;

— statements with exception handling using try-catch-finally;

— statements that abruptly redirect the control flow (throw, return, break,
continue);

— labelled statements;

— the empty statement.

A basic program must not contain anything that would lead to a compile-time
error (according to the JAVA language specification) if it were used as, for exam-
ple, a method’s implementation. The only exception to that rule is that program
variables may be used as local variables in a program without being declared.

Ezample 2. The statement i=0; may be used as a program in a DL formula
although i is not declared as a local variable.

The statement break 1; is not a legal program because such a statement is
only allowed to occur inside a block labelled with 1. Accordingly, 1:{break 1;}
is a legal program and can be used in a DL formula.

The purpose of our first extension of pure JAVA CARD is the handling of
method calls. Methods are invoked by syntactically replacing the call by the
method’s implementation. To handle the return statement in the right way, it
is necessary to record the program variable or object field that the result is to
be assigned to and to mark the boundaries of the implementation when it is
substituted for the method call. For that purpose, we allow statements of the
form call(z){prog} resp. call{prog} to occur in DL programs, where prog
is considered to be the implementation of a method and z is the variable or
object field that the return value of prog is to be assigned to (if (z) is omitted,
prog must not return a value).



The second extension is that we allow programs in DL formulas (not in the
program context) to contain logical terms. A JAVA expression of type T can
be replaced by a logical term of type T. However, since the value of logical
terms cannot and must not be changed by a program, a logical term can only
be used in positions where a final local variable could be used according to the
JAvA language specification (the value of local variables that are declared f£inal
cannot be changed either). In particular, logical terms cannot be used as the left
hand side of an assignment.

Note that, according to our definitions, both program variables and logical
variables can occur in the program parts as well as the non-program parts of a
DL formula. Nevertheless, there is a difference between the two kinds of variables,
as the following example demonstrates.

Example 3. If x is a program variable and y is a logical variable, then the for-
mula (Vy)((x=y)x = y) is syntactically correct. However, (Vy)({(y=x)x = y) is not
a formula because logical variables must not be used as the left side of an as-
signment. And (Vx)((x=y)x = y) is a not a formula because program variables
cannot be quantified.

Formulas. Atomic formulas are built as usual from the (logical) terms and the
predicate symbols of all the types, including the following special predicates:

— the equality predicate =,

— the (unary) definedness predicate isdef (which, for example, is false for x.a
if the value of x is null),

— the (binary) predicate instanceof .

Complex formulas are constructed from the atomic formulas using the logical
connectives =, A, V, —, the quantifiers V and 3 (that can be applied to logical
variables but not to program variables), and the modal operator (p), i.e., if p is
a program and ¢ is a formula, then (p)¢ is a formula as well.

Updates. One of the main problems of designing a program logic for JAVA CARD
(or any other object-oriented language) is aliasing. That is, different object type
variables 0; and o2 can be aliases for the same object, such that changing an
attribute of o; changes the same attribute of oy as well. A considerable amount
of literature has been published on this problem (see e.g. [6] for an overview),
which is comparable to the problem of array handling. In the same way, as 0; .a
and o0, .a are the same if 0; and 0; have the same object as their value and a is
an attribute, a[i;] and a[is] are the same if the byte variables i; and iy have
the same value and a is the name of an array.

To handle aliasing in our calculus, we need a way of syntactically denot-
ing what the value of 0;.a (resp. ali;]) is in a state where the value 0s.a
(resp. alio]) has been changed; the representation should be independent of
whether 0; and o0y (resp. i1 and i) have the same value or not. For that pur-
pose, we allow updates of the form v < e to be attached as superscripts to terms,



formulas, attributes, and array variables; v is either a local variable or of the
form 0.a, and e is a logical term of compatible type. Thus, if U is an update and
t and ¢ are a term resp. a formula, then tV and ¢V are a term resp. a formula
as well. Moreover, o.a¥ is a term if 0.a is a term, and aV [i] is a term if a [4]
is a term.

The intuitive meaning of an update is that the term or formula that it is
attached to is to be evaluated after changing the state accordingly, i.e., ¢®<*¢
has the same semantics as (z=e)¢ but is easier to handle because the evaluation
of e is known to have no side effects. Note, that the terms 0.a” and (0.a)" may
have different values because in the former term the update does not apply to o
(which is evaluated in the non-updated state) whereas in the latter term the
update applies to o as well.

Rules for simplifying terms and formulas with attached updates are described
in Section 5.

Ezample 4. The formula ((i=];)(i = 3))* ! is valid, i.e., true in all states. The
formula (i=3;)((1 = j)*") is only valid in states where the value of j is 1.

Sequents. A sequent is of the form ¢q,... ,¢m F ¥1,... 0, (m,n > 0), where
the ¢; and 1; are DL formulas. The intuitive meaning of a sequent is that the
conjunction of the ¢;’s implies the disjunction of the 1;’s.

4 Semantics of Java Card DL

In the definition of the semantics of JAVA CARD DL, we use the semantics of
the JAVA CARD programming language. The language specification [9], though
written in English and not in a formal language, is very precise. In case of doubt,
we refer to the precise semantics of JAvA (and, thus, of the subset JAVA CARD)
defined by Borger and Schulte [5] using Abstract State Machines.?

The models of DL are Kripke structures consisting of possible worlds that
are called states. All states of a model share the same universe containing a
sufficient number of elements of each type. In particular, they contain infinitely
many objects of all classes and all array types and the special value null, which
is the only element of type Null.

The function and predicate symbols that are not user-defined—such as the
equality predicate and the function symbols of the primitive JAVA CARD types—
have a fixed interpretation. In all models they are interpreted according to their
intended semantics resp. their meaning in the JAva CARD language.

Logical variables are interpreted using a (global) variable assignment; they
have the same value in all states of a model.

% Following another approach, Nipkow and von Oheimb have obtained a precise se-
mantics of a JAVA sublanguage by embedding it into Isabelle/HOL; they also use an
axiomatic semantics [16].



States. In each state a (possibly different) value (an element of the universe)
of the appropriate type is assigned to:

— the program variables (including this),
— the attributes (fields) of all objects (including arrays),
— the class attributes (static fields) of all types,

Variables and attributes of type T can be assigned a value of type T" if T' < T.
In particular, variables and attributes of any object type can be assigned the
value null, because Null is a sub-type of all object types.

Note, that states do not contain any information on control flow such as a
program counter or the fact that an exception has been thrown.

Programs and Formulas. The semantics of a program p is a state transition,
i.e., it assigns to each state s the set of all states that can be reached by running p
starting in s. Since JAVA CARD is deterministic, that set either contains exactly
one state (in case p terminates) or is empty (in case p does not terminate).
The set of states of a model must be closed under the reachability relation for
all programs p, i.e., all states that are reachable must exist in a model (other
models are not considered).

The semantics of a logical term ¢ occurring in a program is the same as that
of a JAVA expression whose evaluation is free of side-effects and gives the same
value as t.

For formulas ¢ that do not contain programs, the notion of ¢ being satisfied
by a state is defined as usual in first-order logic. A formula (p )¢ is satisfied by
a state s if the program p, when started in s, terminates normally in a state s’
in which ¢ is satisfied.® A formula is satisfied by a model M, if it is satisfied by
one of the states of M. A formula is valid in a model M if it is satisfied by all
states of M; and a formula is valid if it is valid in all models.

We consider programs that terminate abruptly to be non-terminating. Exam-
ples are a program that throws an uncaught exception and a return statement
that is not within the boundaries of a method invocation. Thus, for example,
(throw x;)¢ is unsatisfiable for all ¢. Nevertheless, it is possible to express and
(if true) prove the fact that a program p terminates abruptly. For example, the
formula

e =null — (try{pl}catch{Exception e})(—e =null) ,

is true in a state s if and only if the program p, when started in s, terminates
abruptly by throwing an exception.

6 According to the Java language specification, a program either terminates normally
or terminates abruptly (or does not terminate at all). It terminates abruptly if
the reason for termination is an uncaught exception, or the execution of a break,
continue, or return statement.



Sequents. The semantics of a sequent ¢1,... %, F ¥1,... 1, is the same
as that of the formula (Vz1) -« (V) (1 A ... Atbm) = (Y1 V...V 9y)), where
z1,...,x) are the free variables of the sequent.

5 A Sequent Calculus for Java Card DL

In this section, we outline the ideas behind our calculus for JAvA CARD DL,
and we present some of the basic rules. As JAVA CARD has many features and
programming constructs, many rules are required. Due to space restrictions, we
only present one or two typical representatives from each class of rules. No rules
are shown for method invocations,” local variable declarations, and type con-
versions; and the rules for the classical logical operators (including the cut rule)
and for handling equality and the predicates isdef and instanceof are omitted as
well. Moreover, we present simplified versions of our rules that do not consider
initialisation of objects and classes.?

All the rules shown in this section, except the induction rules, handle certain
constructs of the JAVA CARD language. It is easy to see, that these rules basically
perform a symbolic program execution.

The semantics of sequent rules is that, if all sequences above the line (the
premisses of the rule) are valid, then the sequence below the line (the conclusion)
is valid as well. The rules are applied from bottom to top. That is, the proof
search starts with the original proof obligation at the bottom.

Notation. In the definition of the calculus, we assume that the programs are
parsed, i.e., they are not given as a string but their syntax tree is available. Thus,
the calculus needs not to know about operator priorities etc., and we can use
notions like “immediate sub-expression” in the definition of our rules.

Many formulas in the rules are of the form ((p)¢)V, where U is a sequence of
state updates. Note, that the parentheses cannot be omitted, as the program p
is to be executed in the updated state.

The rules of our calculus operate on the first active command p of a pro-
gram mpw. The non-active prefix 7 consists of an arbitrary sequence of open-
ing braces “{”, labels, beginnings “try{” of try-catch blocks, and beginnings
“call(...){” of method invocation blocks. The prefix is needed to keep track
of the blocks that the (first) active command is part of, such that the commands
throw, return, break, and continue that abruptly change the control flow can

" Method invocation is handled by syntactically replacing the method call by the im-
plementation of the method. In case of dynamic binding, where the implementation
that is to be used depends on the actual type that the value of an object variable
has in the current state, method invocation leads to a case distinction in the proof,
i.e., the proof tree branches.

& The complete rule set of our calculus for Java CARD DL can be found in a technical
report that—at the date of submission of this paper—is in the process of being
published. It will be publicly available before TACAS 2001; and I am happy to
provide a draft of the report for the referees if they wish to have it.



be handled appropriatly.® The postfix w denotes the “rest” of the program, i.e.,
everything except the non-active prefix and the part of the program that the
rule operates on. For example, if a rule is applied to the following JAvA block
operating on its first active command i=0;, then the non-active prefix = and the
“rest” w are the marked parts of the block:

1:{try{ i=0; j=0; }finally{ k=0; }}

—— N v

™ w

Rules for Assignment and Expression Evaluation. Since assignments are
the basic state changing statements of JAVA, the rule for assignments is one of
the basic and most important rules of the calculus:'®

[t isdef(o.a”) It isdef(eapr’) I b ((x w)g)”* )"
't ((r 0.a = expr; w)¢)U

(R1)

Rule (R1) is not always applicable; it can only be used if the expression expr is
a logical term. Otherwise, other rules have to be applied first to evaluate expr
(as that evaluation may have side effects). An example is the following rule for
evaluating expressions with the ++ prefix operator:

I+ isdef (vY) I' b ((r e=e+1; v=e; w)p)”
I'F ((mv=++e; w)g)"

(R2)

where v and e are logical terms.

There are also rules for decomposing complex expressions that are not a
logical term and whose evaluation, thus, potentially has side effects. An example
is the following rule:

I + isdef (vY) I'' - ((m z1=e1; zo=es; v=zTi+To; w)¢)U
F'F ((tv=ei+es; wo)¥

(R3)

where v is a logical term, and z; and z, are new local variables. This rule
has to be applied in case the expression e +e5 is not a term; for example, the
expression (++i) + (++i) has to be decomposed because the evaluation of its
sub-expressions changes the state.

The premisses of the form I' + isdef(v) in the above rules ensure that the
expression v is defined in the state, i.e., its evaluation does not lead to a null
pointer exception being thrown. That, for example, happens if v = 0.a and the
value of 0 is null. Other rules are available for handling this particular situation.

 In DL versions for simple artificial programming languages, where no prefixes are
needed, any formula of the form (p ¢)¢ can be replaced by (p){g)®. In our calculus,
splitting of (rpqw)¢ into (7p)(qw)¢ is not possible (unless the prefix 7 is empty)
because 7p is not a valid program; and the formula (rpw)(rqw)¢ cannot be used
either because its semantics is in general different from that of (rpqw)¢.

10" A similar rule is defined for the case where the left side of the assignment is a local
variable.



Rules for Update Simplification. In many cases, formulas and terms with
an update can be simplified. For example, if x is a local variable, the term xv<¢
can be replaced by x in case x # v and by e in case x = v. Another rule allows
to replace a term of the form (f(0))"° by f(0"<¢) if the function f does not
depend on the state.

When no further simplification of a formula ¢(o'. a?-2*¢) is possible, because
the terms o and o' may be aliases for the same object, the following branching
rule has to be applied:

I'o=0 F ¢(e) I =(o=0) F ¢(d.a)
I+ (Zﬁ(OI.aO'M_e)

(R4)

where o0 and o' are terms of the same object type and a is an instance attribute,
i.e., it is not declared static.

Rules for Creating Objects. The new statement is treated by the calculus as if
it were a method implemented as follows (this implementation accesses the fields
that are implicitly defined for all classes and array types, see the explanation in
Section 3):

public static Cls new() {
if (lastCreatedObj == null)
lastCreated0bj = first0Obj;
else
lastCreatedObj = lastCreatedObj.next0Obj;
lastCreatedObj.created = true;
return lastCreatedObj;
}

Note, that this is a simplified version where object initialisation is not considered.

Rules for Loops. The following rule “unwinds” while loops. Its application
is the prerequisite for symbolically executing the loop body. Similar rules are
defined for for and do-while loops. These “unwind” rules allow to handle while
loops if used together with induction schemata for the primitive and the user
defined types (see below). Section 6 contains an example for the verification of
a while loop.

I'b ((r V:{if(e) 1”:{p'} 1:vhile(c){p}} w)¢)"
Ik ((r L:while(e){p} w)g)”

(R5)

where 1’ and 1" are new labels, and p' is the result of (simultaneously) replacing
in p (a) every break (with no label) that has the while loop as its target by
break 1, and (b) every continue (with no label) that has the while loop as
its target by break 1”.!!

1 The target of a break or continue statement with no label is the loop that imme-
diately encloses it.



In the “unwound” instance p’ of the loop body p, the new label 1’ is the new
target for break statements and 1" is the new target for continue statements.
This results in the desired behaviour: break abruptly terminates the whole loop,
while continue abruptly terminates the current instance of the loop body.

Rule R5 only applies to unlabelled while loops, i.e., in case 7 is not of the
form 7' 1 :; another rule is defined for labelled while loops.

From the general while rule (R5), the following simpler rules can be derived.
The two rules are applicable if (a) the loop condition is a logical term ¢ (and,
thus, its evaluation does not have side effects), and (b) the loop body p does
not contain any break or continue statements.

I'Foisdef(cV) Tk ¥ =true I + ((r p while(c)p w)g)”
I' b ((r while (¢) p w)g)”

I+ isdef(cY) I ¢V = false I+ ((r we)V
I' b ((r while (¢) p w)o)”

Induction Rules. Induction schemata are available for the primitive type byte
and all abstract types that are declared to be generated by constructors. The
following rules are the induction schemata for byte and for an abstract type list
generated by cons and nil:

I + ¢(0) I' = (Vz:byte)(y(z) = ¥(z + 1))
I' F (Vx :byte)y(x)
I + 4(nil) I' + (VI :list)(Vo: 0bject)(y(l) — (cons(o,1)))
T+ (V: list)y(l)

(RY)

(R9)

Rules for Conditionals. Two rules are available for handling if-then-else
statements: One rule for the case where the condition evaluates to true and one
for the case where the condition evaluates to false:

I'boisdef(cV) Tk ¥ =true T F ((rp wyo)
T F ((r if(c) p else q w)g)'

I+ isdef(cY) I+ Y =false I'F ((r q we)
I'F ((r if(c) p else g w)p)”

(R10)

(R11)

These rules are only applicable if the condition ¢ is a logical term. Otherwise,
rules for the decomposition and evaluation of ¢ have to be applied first.

Similar rules are defined for if-then without else and for the switch state-
ment.



Rules for Handling Exceptions. The following rules allow to handle try-
catch-finally blocks and the throw statement. These are restricted versions of
the actual rules, they apply to the case where there is exactly one catch clause
and one finally clause. And again, these rules are only applicable if both the
exception exc that is thrown and the variable e that it is bound by the catch
clause are logical terms. If they are more complex expressions, they first have to
be decomposed and evaluated by applying other rules.

I + isdef (excY) I + instanceof (excV, T) I+ isdef(eY)
I' b ((r try{e=exc; q}finally{r} w)¢)" (R12)
I' + ((x try{throw exc; pl}catch(T e){q}finally{r} w)p)”
I+ isdef (excY) I + —instanceof (excV, T)

I'+ ((r r; throw exc; w)g)” (R13)
I' b ((x try{throw exc; p}catch(T e){q}finally{r} w)p)”

Ik ((n r we)
I' b ((r try{}catch(T e){q}finally{r} w)¢p)”

(R14)

Rule (R12) applies if an exception ezc is thrown that is an instance of ex-
ception class T, i.e., the exception is caught; otherwise, if the exception is not
caught, rule (R13) applies. Rule (R14) applies if the try block is empty and,
thus, terminates normally.

Rules for the break Statement. The following rule handles break statements:

Tk ((x w))”
I+ ((ml:{r’ break l; w'}w)¢)

o4 (R15)

where w1 : {7’ is a non-active prefix and {7’ break 1; w'} is a block, i.e., the
two braces in the conclusion of the rule are the opening and the closing brace of
the same block.

Note, that according to the JAVA language specification, a label 1 is not
allowed to occur within a block that is itself labelled with 1. This ensures that
the label 1 occurs only once in the prefix 71 : {7’

Similar rules are defined for break statements without label and for the
continue statement.

6 Example

As an example, we use the calculus presented in the previous section to prove
that, if the while loop

while (true) {
if (i==10) break;
else it++;

}



is started in a state in which the value of the program variable i of type byte
is between 0 and 10, then it terminates normally in a state in which the value
of i is 10. That is, we prove that the sequence

0<iAi<10 F (pwhie)i =10 (1)

is valid, where pynile is an abbreviation for the above while loop. Instead of
proving (1) directly, we first use the induction rule (R8) to derive the sequence

F (Yn)((0 < n AN <10) = ((pwnie)i = 10)*7H07") (2)

as a lemma (the logical variable n is of type byte). It basically expresses the
same as (1), the difference is that its form allows it to be proved by induction
on n. The introduction of this lemma is the only step in the proof where an
intuition for what the JAVA CARD program pynile actually does is needed and
where a verification tools would require user interaction.

Due to space restrictions, we only show the proof for the induction base
n = 0; the proof for the induction step is omitted. The proof obligation for the
induction base is

F (0<0A0<10) = ((Pwhite)i = 10)1°77) (3)
which simplifies to

F ((pwnite)i = 10)77°
An application of the rule for while loops (R5) results in the new proof obligation

F ((11:{if (true) 12:{if (i==10) break 11; else i++;}
pwhile}>i = 10)1(_10

Now, the rule for conditionals with a condition that evaluates to true (R10) can
be applied. This results in three new proof obligations:

F isdef (truett!?) (4)
F true* !0 = true (5)
F ((11:{12:{if (i==10) break 11; else i++;} puynie})i = 10)*"°

(6)

Sequences (4) and (5) can easily be shown to be valid. To prove sequence (6),
we apply rule (R10) again and derive the proof obligations

- isdef ((i==10)"""7) )
F (i==10)i‘_10 = true (8)
F ((11:{12:{break 11; else i++;} pyhile})i = 10)ie10 (9)

Sequence (7) can easily be shown to be valid, as well as sequence (8), which can
be simplified to + (10==10) = true.



To prove (9) to be valid, the rule for break statements (R15) has to be
applied. The result is F (i = 10)*'%. This simplifies to + 10 = 10 and can
thus be shown to be valid.

After the lemma (2) has been proved by induction, it can be used to prove
the original proof obligation (1). First, we use a quantifier rule to instantiate n
with 10 — i. The result is

F(0<10—iA10— i< 10) = ((pwhite)i = 10)* 107104
which can be simplified to
F(0<iAi<10) = (pwhie)i=10)""" (10)

And, since (10) is derivable, the original proof obligation (1) is derivable as well,
because the trivial update i < i can be omitted.

7 Conclusion

Extensions and Future Work. We are currently implementing an interactive
prover for our calculus as part of the KeY project. Such an implementation is a
prerequisite for applying the calculus to more complex examples.

Further work is to prove soundness and relative completeness of the calculus
w.r.t. a formal semantics. And we plan to extend the calculus with the concept
of parameters (or meta-variables) that can be instantiated with logical terms
“on demand” during the proof using unification. Meta-variables are the most
important technique for automated deduction in classical logic, and this promises
to make the automated proof search in JAvA CARD DL much more efficient as
well.

Related Work. There are many projects dealing with formal methods in soft-
ware engineering including several ones aimed at JAVA as a target language.
Work on the verification of Java programs includes [19,13,11,17,21]. The main
difference of all these approaches to our work is that they use a Hoare logic
instead of full DL, i.e., formulas and programs remain separated.

In [19], states are represented as terms of an abstract data type, whereas
in our approach the states correspond to “worlds” in the models. They are not
represented as terms but described with formulas. This allows to use the full
expressiveness of DL to formalise the properties of a state.

Another important difference to other approaches is that abrupt termination,
in particular exception handling, is either not treated at all or is treated in a
completely different way (e.g. [11] where the reason for abrupt termination is
made a part of the states, which leads to a more complex notion of states and
of method return values).



Acknowledgements

I thank B. Sasse for working out the details of some of the rules of the calculus,
and W. Ahrendt, T. Baar, M. Giese, E. Habermalz, R. Hihnle, W. Menzel, and
P. H. Schmitt for many fruitful discussions and comments on earlier versions of
this paper.

References

1.

10.

11.

12.

13.

14.

W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hiahnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M.
Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga,
Spain, LNCS 1919. Springer, 2000.

J. Alves-Foss, editor. Formal Syntaz and Semantics of Java. LNCS 1523. Springer,
1999.

K. R. Apt. Ten years of Hoare logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 1981.

. T. Baar. Experiences with the UML/OCL-approach to precise software modeling;:

A report from practice. Available at i12www.ira.uka.de/ key, 2000.

E. Borger and W. Schulte. A programmer friendly modular definition of the se-
mantics of Java. In Alves-Foss [2], pages 353-404.

C. Calcagno, S. Ishtiaq, and P. W. O’Hearn. Semantic analysis of pointer aliasing,
allocation and disposal in Hoare logic. In Proceedings, International Conference
on Principles and Practice of Declarative Programming, Montreal, Canada. ACM,
2000.

E. Clarke and J. M. Wing. Formal methods: State of the art and future directions.
ACM Computing Surveys, 28(4):626-643, 1996.

D. L. Dill and J. Rushby. Acceptance of formal methods: Lessons from hardware
design. IEEE Computer, 29(4):23-24, 1996. Part of: Hossein Saiedian (ed.). An
Invitation to Formal Methods. Pages 16-30.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Addison Wesley, second edition, 2000.

M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Methods. Prentice
Hall, 1995.

M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt
termination. In Proceedings, Fundamental Approaches to Software Engineering
(FASE), Berlin, Germany, LNCS 1783. Springer, 2000.

D. Hutter, B. Langenstein, C. Sengler, J. H. Siekmann, and W. Stephan. Deduction
in the Verification Support Environment (VSE). In M.-C. Gaudel and J. Woodcock,
editors, Proceedings, International Sympoium of Formal Methods Europe (FME),
Ozford, UK, LNCS 1051. Springer, 1996.

B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews.
Reasoning about Java classes (preliminary report). In Proceedings, Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 329-340.
ACM Press, 1998.

D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 14, pages 789-840. Elsevier, Amsterdam, 1990.



15.

16.

17.

18.

19.

20.

21.

J. Martin and J. J. Odell. Object-Oriented Methods: A Foundation, UML Edition.
Prentice-Hall, 1997.

T. Nipkow and D. von Oheimb. Machine-checking the Java specification: Proving
type safety. In Alves-Foss [2], pages 119-156.

T. Nipkow, D. von Oheimb, and C. Pusch. pJava: Embedding a programming
language in a theorem prover. In F. L. Bauer and R. Steinbriiggen, editors, Foun-
dations of Secure Computation. I0S Press, 2000. To appear.

Object Management Group, Inc., Framingham/MA, USA, www.omg.org. OMG
Unified Modeling Language Specification, Version 1.3, June 1999.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. D. Swierstra, editor, Proceedings, Programming Languages and Systems (ESOP),
Amsterdam, The Netherlands, LNCS 1576, pages 162-176. Springer, 1999.

W. Reif. The KIV-approach to software verification. In M. Broy and S. Jahnichen,
editors, KORSO: Methods, Languages, and Tools for the Construction of Correct
Software — Final Report, LNCS 1009. Springer, 1995.

D. von Oheimb. Axiomatic semantics for Java™. In S. Drossopoulou, S. Eisen-
bach, B. Jacobs, G. T. Leavens, P. Miiller, and A. Poetzsch-Heffter, editors, Pro-
ceedings, Formal Techniques for Java Programs, Workshop at ECOOP’00, Cannes,
France, 2000.



