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Abstract first anddepth-firstsearch. Depth-first search requires that

either there are no paths in the search tree that do not contai

We analyse the problem of constructing a deterministic proofs or it is possible to avoid such paths using fairness
proof procedure for free variable clausal tableaux thatper strategies for the construction of tableaux.

forms depth-first proof search without backtracking; and  As fairmess strategies that allow depth-first search are
we present a solution based on a faimess strategy. Thatgjfficult to construct for first-order clausal tableaux, mos
strategy usewveight orderingsind a notion oftableau sub-  automated deduction systems use breadth-first search. It al

sumptionto avoid proof cycles and it employsconstruc-  |ows to find shorter proofs than depth-first search because
tion stepgo handle the destructiveness of free variable cal- g paths of the search tree are considered whereas, using
culi. depth-first search, paths in the search tree that contaim sho

proofs may be missed; fairness strategies only guarantee

that some proof is found but it may not be the shortest one.
1 Introduction However, the length of found proofs is not of great impor-
tance in automated deduction (the only advantage of short
proofs is that their construction requires less rule applic
tions and are thus easier to find); and breadth-first search
is “expensive” as compared to depth-first search because
neighbouring paths in the search tree contain many simi-
lar or even identical tableaux that using breadth-firstear
all have to be considered.

In this paper, we analyse the problem of constructing a
deterministic proof procedure for free variable tableald ca
culi that performs depth-first proof search and is complete
without backtracking. As an example, we present a solution
for first-order clausal tableaux that is based on a fairness
strategy. That strategy usegight orderingsand a notion

of tableau subsumpticio avoid proof cycles and it employs For all (practical) completion modes, i.e., (monotonic)
reconstruction step® handle the destructiveness of clausal functionsm from Nto sets of tableaux such thghc (i)
tableaux. includes all constructible tableaux, the size(i)| of the

First-order clausal tableaux apeoof-confluenti.e., ev- ~ S€arch tree grows exponentially in Even for smalli, it
ery tableau for an unsatisfiable clause set can be completed® Usually not possible to store all tableauxir(i) in the
to a proof. They are, however,destructivecalculus be- memory of a machine. Therefore, most implementations

cause all occurrences of a (free) variable in a tableau have/'sedepth-firstiterative deepenir{@FID). The initial, par-

to be instantiated by the same term and, thus, a rule appli-ial Séarch space consisting of all the tableauxii) =

cation can make another rule application impossible. Ujgz' m(j) for somei € Niis searched for proofsin a depth-

The proof search space can be visualised as a search treférSt manner using backtracking, and if it tums out not to

where each possible choice of the next rule application to contain a proof, thens increased (for example, the proof

a tableaux” creates a node with as many successor node§rocedure described in [4] is of this type). Then, however,

asT has different successor tableaux (Fig. 1). Since we useine tableaux inM (7) are not available for the construction

a proof-confluent calculus, all path are either infinite a en of the tableaux i (i + 1); they have to be constructed

in a node that is labelled with a proof, i.e., a closed tahleau again from scratch, which, however, merely causes poly-
There are two main concepts for proof searbreadth nomial overhead as compared to a breadth-first search at

the “right” leveli becausé/ (i + 1) is exponentially larger
thanM (). Although DFID search leads to acceptable per-
formance of tableau-based automated theorem provers, it
should be stressed that it is only a compromise used when
no completeness preserving fairness strategy for degsth-fir
search is available.

The advantage of depth-first proof search is that the in-
formation represented by the constructed tableaux ineseas
at each proof step; no information is lost since there is no

Figure 1. A proof search tree. backtracking. In addition, considering similar tableaux o




sequences of tableaux in different paths of the searchdree i ness, as in that case all closed branches have to be stored for
avoided. backtracking.

Figure 2 shows how the different search strategies tra- As said above, n@ractical deterministic proof proce-
verse the search space. The coloured part has to be searchellires for free variable clausal tableaux were known up to
before a proof is found. The form of the search space visu-now. There is trivially a (non-practical) deterministicopf
alises its exponential growth. procedure for all proof-confluent calculi, namely a proce-

In the case ofhon-destructiveand proof-confluent ta-  dure performing éreadth-firstsearch in the background.
bleau calculi—such as the ground version of first-order ta- “Practical” means that the computational complexity of de-
bleaux that does not use free variables—it is relatively eas ciding what the next rule application should be in each sit-
to use depth-first proof search; it suffices to systematicall uation has to be reasonably low. In addition, the number of
add all possible conclusions until all branches of the con- construction steps that are necessary to find a proof has to
structed tableau are either fully expanded or closed. The si be reasonably small as compared to the number of neces-
uation is much more complicated in free variable clausal ta- sary steps when a breadth-first search strategy is used.
bleau calculi, which ardestructivg(even if they are proof- If the fairness strategy we present in the following sec-
confluent). Applying a substitution may destroy literals on tions is used, then the complexity of deciding what the next
a tableau that are needed for the proof, such that they havexpansion step should be is in the worst case quadratic in
to be deduced again. the size of the tableau to be expanded and its possible suc-

Up to now there was no practical solution to the problem cessor tableaux. In the average case the complexity is much
of constructing a deterministic proof procedure for freg-va  lower as only those parts of a tableau have to be considered
able clauses tableaux that performs depth-first search andhat are affected by one of the possible tableau rule appli-
is complete, i.e., that never fails to find a proof if there is cations. The size of the proofs that are found (and thus the
one. Such procedures were only known for the special casenumber of construction steps) is at most that of the proofs
where tableaux are expanded without instantiating vaegabl constructed using DFID in the worst case (i.e., if coinciden
and only a single substitution is finally applied that is kmow tally all paths in the search tree not containing a proof are
to allow to close all branches simultaneously. Solving a considered first).
similar problem, Baumgartner et al. [1] recently described ~ The structure of the paper is as follows: In Section 2, we

a depth-first proof procedure forcennection calculus describe the calculus of clausal tableaux. After introdgci
We propose in this paper a deterministic search strategyour notion of tableau subsumption in Section 3 and that of
that is based upon: weight orderings in Section 4, our method for constructing

deterministic proof procedures for free variable clauaal t
¢ A tableau subsumptiorelation to detect “cycles” in  bleaux is presented in Section 5.
the search (i.e., to make sure that it is not possible  Due to space restrictions, all proofs are omitted; they can
to deduce the same literals or sub-tableaux again andbe found in [2].
again).
¢ Weight orderingshat assign each literal a “weight” in 2 First-order Clausal Tableaux
such a way that there are only finitely many different
literals (up to variable renaming) of a certain weight; ~ The notions ofree andbound variableterm, atom lit-
thus, if literals with lesser weight are deduced first, eral, andsubstitutionare defined as usual. We usey, z
then sooner or later each possible conclusion is addecetc. to denote quantified variables aRdY’, Z etc. to de-
to all branches containing its premiss. note free variables. The logical constaftgtrue) and.L
(false) are considered to be literals (but not atoms). The
¢ Reconstruction step® handle the destructiveness of complement of a literall is denoted withL. A variable
free variable clausal tableaux. Immediately after a rule renamingis a substitution that replaces all variables by dis-
application that destroys literals, the constructionstep tinct variables that are “new” w.r.t. the context.
that are needed to recreate the destroyed sub-tableaux A clauseC is a first-order formula of the form
are executed.
(Vxy) - (Vao)(L1 V-V L)
The main difficulty is to define a tableau subsumption

relation that on the one hand is restrictive enough to avoidwhere theL; are literals andry, ..., z, are all variables
cycles in the proof construction and on the other hand is notoccurring inL4, .. ..L,.. A new instancef C is a formula
too restrictive such that completeness is preserved. (L1 V-V L,)o whereg is a variable renaming.

Our fairness strategy considers the whole tableau tree We use thaveakconnectedness condition where a clause
(and not only a single branch) both for the subsumption used for expansion must have a link into the branch being
check and for choosing a conclusion of minimal weight; a expanded (the strong connectedness condition, where the
procedure based on this strategy may extend any branch o€lause must be linked to the leaf of the branch, is not used
a tableau at any time. Note that this does not imply a largeas it destroys proof confluence).
memory consumption; at least it is not worse than that of A clausal tableador a setS of clauses is built by a se-
proof strategies where a “current” branch is extended until quence of applications of the following construction rules
it is closed before other branches are considered and wher&ach rule has a premiss (a set of literals) and a conclusion
DFID-based breadth-first search is used to ensure completefconsisting of a set of literals and a substitution).
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Figure 2. Comparison of proof search strategies.

Initialisation: If L; V...V L, is anew instance of a clau-
se in S, then the tree is a tableau férthat consists
of the root noder andr sub-branches with the single

nodesLy, ..., L,.. (In this case, the premiss is empty

and the conclusion i§{ L, ..., L,},id).)

Expansion: If T' is a tableau forS, B is a branch ofT,
L is a literal onB, L; V---V L, is a new instance
of a clause inS, and L, L; are unifiable (for some
1< j <r), then a tablead” is a tableau folS if ob-
tained by extendind? with » nodesLy,..., L,. (In
this case, the premiss isL} and the conclusion is

({Ly,...,Ly},id),)

Closure: If T is a tableau folS, B is a branch of’, L, '
are literals onB, andL, L are unifiable with MGUW,
thenT" is a tableau foiS if obtained by appendingd.
to B and applyingr to each node of'. (In this case,
the premissi§ L, L'} and the conclusioni§ L}, 0).)

Note, that a branch is closed by adding the special literal

therefore, branch closure can be considered to be a specia

kind of branch expansion.

A tableauT is closedif all its branches are closed, i.e.,

contain L. A tableau prooffor (the unsatisfiability of) a
clause sef is a tableau fofS that is closed.

3 Tableau Subsumption Relation

Assume that a sequenég, ..., T, of tableaux has al-
ready been constructed. A rule applicatioritpis forbid-
den if the successor tabledy, ; is subsumetby one of the
predecessor tablea¥—in particular, ifT}, 11 is subsumed
by T),. In that case, the sequents, ..., T, constitutes
a cycle in the proof search becauBg,; does not contain
any information that is not already ifj.

We define a tableaff; to subsume a tabledl, iff
each branch of’; subsumes one of the branchesIgf, ;.
Intuitively, the tableadl’,,; is in that case redundant be-
cause, if closed sub-tableaux can be constructed below all
branches ofl, 1, it is possible to construct closed sub-
tableaux below all branches 8§ as each of them subsumes
a branch off},44.

When does a tabledoaranchsubsume another branch?
A first approximate answer to that question is: A brafth
subsumes a brand®' if B contains a variant of each literal
occurring onB’. That, however, is an over-simplification;
tpree additional aspects have to be taken into concern.

First additional aspect. For a branchB to subsume a
branchB’, itis in generahotsulfficient if the branchB con-
tainsonevariant of each literal occurring inB’, namely in
caseB’ contains two variants of that are all both needed

Clausal tableaux as defined above are a complete anqo close the branch. However, since the premiss for a single

proof-confluent calculus.

We use a slightly non-standard definition of the notion of

successor tableau: A table@tis asuccessor tableaof a
tableaur if it is constructed froni” by oneor more“iden-
tical” rule applications, i.e., there are (1) differentibches
Bi,...,B, (n>1)of T, (2) premisse$l; on theB; that

are identical up to variable renaming, (3) a (single) conclu

sion(C, o) such thafll;oc =II;0 (1 <4,j < n), andT’ is
constructed fron¥" by extending each of the branchBs
with the literals inC’' and applying the substitutionto 7.

rule application contains at most two literals, it is su#iti

if B contains a variant of each set of (at most) two liter-
als occurring onB’. This implies that at most two variants
of each literal onB’ are needed o®? (where however, as
described below, literals may have to be considered to be
effectively different although they are variants of eadfent

on first sight).

Example 1.If the literals —p(X), p(f(X)), -p(X'), and
p(f(X")) occur onB' whereas the branch only contains



-p(X) andp(f(X)) (and B and B’ are otherwise identi-
cal), thenB contains a variant of each literal &1. Never-
theless, the transition fro to B’ is definitely not a cycle
in proof search because—contraryBe-the branchB’ can
be closed.

Second additional aspect. The second important aspect
is that not only the literals o and B’ have to be consid-
ered but alsassociatediterals on other branches that have
free variables in common witB andB’.

Definition 1. Literals L and L’ areassociatedf there is a
variable occurring in bott, andZ.'. The set of all literals
in a tableaul” that are associated with a literd| exclud-
ing L itself, is denoted withdssoc(T', L). Accordingly, if
® is a set of literals, themlssoc(T, ®) is the variable set

(Ureq Assoc(T, L)) \ &.

Associated literals play a role because the ordering of
tableau rule applications used by a deterministic proof pro

(a) &7 = ¥';

(b) for each of the literald. in Assoc(T, ®) there
is (at least) one literal’ in Assoc(T’, ®') such
that L7 and L' are identical up the renaming of
variablesnot occurring in®z resp.®’.

2. If a branchB’ of T is assigned to different branches
,...,Bs of T (s > 2), then, for all®’ on B’, the

variable renamingsy, ..., w, assigned t@d’ in con-

nection withBy, ..., B, are compatible in the follow-

ing way: there is a substitution such that the restric-

tion of 7 to the variables occurring il U Assoc(T, @)

is identical torr; (1 <i < s).

Now, letT andT" be tableaux that have variables in com-
mon; and lefp be a variable renaming such taund 7’ p
donothave any variables in common. Thé@hsubsume3g”
iff T subsumedp.

If atableaul’ subsumes a tabledUu, then each branch
of T is assigned a brancB’ of T". In that case, we say

cedure as described in Section 5 has to take all literals intothat B subsumes3’.

account that are generated by an application. SH{K)

is a premiss for a certain tableau rule application thatdead
to the instantiation ofX with a term¢ and there is a lit-
eral L'(X) on the tableau, then that application will gener-
ate the new literall’(¢); and the form ofL’(¢)—and thus
the form of the associated literal (X )—affects the choice
of the application.

Third additional aspect. As said above, a tabledusub-
sumes a tableafl” if for each branchB in T there is a
branchB’ in T" such thatB subsume®’. Thatincludes the
possibility that two different branchds, and B, of T' are
assigned the same branBh. In that case there is for each
setd’ (of at most two literals orB’) a literal set®; on B;
and a literal se» on B, that are variants od’. The basic
idea behind the definition of our subsumption relation im-
plies that every possible rule application on bra@twith

the premis®’ can as well be applied—simultaneously—on
the branches subsumitgj with the premisse®; resp.®,.
That, however, requires the two variable renamings con-
structing®’ from ®; resp.®, to be compatible. The same
holds if B’ is assigned to more than two branchdin

Formal definition of the subsumption relation. We now
formally define our tableau subsumption relation. It is ran
sitive und reflexive.

Definition2. Let T andT" be tableaux that do not have
any variables in common. The table&dusubsumethe ta-
bleauT” if

i. each branctB of T can be assigned a bransh of 7'

ii. and then—for each paiB, B’ respectively—each set

&' of at most two literals orB’ can be assigned a set
® of literals B and a variable renaming

such that:

1. The following holds for each of thé, &' andr:

Completeness of clausal tableaux is preserved if the ta-
bleau subsumption relation is used for restricting thectear
space: Given a partial pro@, . . ., T; it is forbidden to de-
rive a successor tabledy,, from T; that is subsumed by
any of the tableady, ..., T;. On the other hand, this re-
striction is strong enough to ensure that every sequence of
tableaux built accordingly, i.e., every tableau sequerate n
containing a tableau that is subsumed by one of its predeces-
sors, has the following property: If the sequence is infinite
then it contains infinitely many different literals or, egat
lently, if the sequence only contains finitely many differen
literals (up to the renaming of variables) then it is finite.

To check whether a tabledl subsumes one of its suc-
cessor tableauX” and, thus, whether the rule application
derivingT' from T is allowed, it is sufficient to only con-
sider those parts of the tableaux that are affected, i.e., th
expanded branch and the formulae on the tableaux that are
associated with it. The check does not involve unifiability
tests because free variables may only be renamed but not
instantiated with terms.

Example2.Let® = {p(X)} and®’ = {p(X')}; moreover
let Assoc(T, ®) consist ofg(X,Y;) andq(X,Y2). Then,
Condition 1 (a) in Definition 2 is, for example, satisfied
if Assoc(T',®") = {q(X',Y")}. Butitis neither satisfied
if Assoc(T',®') = 0 nor if Assoc(T',®') = {q(Y', X")}
(because to makg X', Y1) andq(Y’, X') identical would
require to rename the variahl' that occurs ind’.

Example 3.The tableadl'; in Figure 3 subsumes each of
the tableady, T3, T;. The tablead’s subsumes onl§.

Example 4.Neither of the two tableaux in Figure 4 sub-
sumes the other one. The tabléBuon the left does not
subsume the tabledli, on the right because the (single)
branch ofT, contains an additional literal; and, although a
variant of each literal set ofy, occurs orl, the tablead’,
does not subsumg, since forr(X') € Assoc(Ty, q(X"))
there is no corresponding element4drsoc(T}, ¢(X)) and,
thus, Condition 1 (a) in Definition 2 is not satisfied.
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Figure 6. Tableaux from Example 6.
Figure 3. The tableaux from Example 3.
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!
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Figure 4. The tableaux from Example 4. does not subsume
'i’ 'i’ Figure 7. Tableau from Example 7.
—p(a) —p(a)
ﬂqI(b) ﬂqI(b) Indeed, since both rule applications use the same premiss
/X VRN and conclusionT3 is by definition a successor tableaulgf
p(X)  q(Y) p(X")  q(X) (without considering the intermediate step), and deriding

: from T is an allowed rule application.
Figure 5. The tableaux from Example 5.

Example 8.An important type of tableau construction steps
Example 5.The tablead’ in Figure 5 on the left subsumes  tqat generate a tabledt subsumed by it predecesgband
the tableaul’, on the right. Butl: doesnot subsumel; that are, therefore, forbidden, is the following: Assumet th
because the literals(X') andq(X') in T; are associated, g pranchB, of T is extended using a conclusidfy, o),
whereas the corresponding literalslinarenotassociated.  gnd a branctBLo in the resulting tableal” is subsumed

Indeed, a transition frorf; to 71 does not constitute a  py gl branchesB of T affected by the rule application, i.e.,
cycle in proof search because the tabl@awcan be closed  the branchB; (which is extended) and all other branches
whereadl; cannot be closed. containing variables that are instantiateddy This is in
particular the case iB}o is “contained” in an initial sub-
branchR, of T that ends above the first occurrence of any
free variable in the domain ef.

As an example consider the table@zushown in Fig-
ure 8 on the left, and assume that its bradghis closed
using the premiss consisting of the two literalg:) and
p(X) to derive the conclusiof{ L}, {X — a}). The right
branchB)o of the resulting tableafi’ (shown in Figure 8
on the right) whose nodes are labelled with the literéis
and twiceq(a) is “contained” in the sub-brancR, of T
whose nodes are labelled witla) andg(a); and Ry ends
above the first occurrence &f in 7" which is the only vari-
able instantiated by. Intuitively, the application is useless
because any closed sub-tableau that can be constructed be-
low Bjo can be constructed as well below b@h andBs.

A forbidden rule application as described above is irreg-

Example 7.Consider the tableai; shown on the left in  ular according to the definition of regularity that is usyall
Figure 7. The rule application that derives the conclusion given in the literature (e.g. [3]) since the branBho con-
({1}, id) from the premiss{—p, p} can be used to close tains the same branch extension multiply.

both of its branches. Closing the tableau requires two con-

secutive applications. However, the intermediate tableau ] )

that results from closing the left branch (in the middle of 4 Weight Orderings

Figure 7) is subsumed ¥, because both branches Bf

Example 6.The tablead” in Figure 6 on the upper left does
notsubsume the tabledU on the right. That would only be
possible if the brancheB,, B> of T' would both subsume
the single branch of’. Both B; and B, contain a vari-
antp(X,Y) resp.p(Y, X) of the (single) literalp(U, V)
on the branch off’. But the required variable renamings
{X—»U,Y—»V}and{X —» V,Y — U} are not com-
patible, which violates Condition 1 (a) in the definition of
the subsumption relation (Def. 2).

This problem does not occur with the tableau shown in
Figure 6 on the lower left. It subsumé&s because the
two required variable renamings\; — U, Y; — V'} and
{Xy— U, Yy » V} are compatible.

subsume the right (not yet expanded) branctiof Thus, Weight orderings are the second important concept (be-
this first rule application is not allowed. The table@y sides the concept of tableau subsumption) on which our fair-
however, that results from closing both branches (shown inness strategy is based. The properties an ordering oriditera
the right in Figure 7) is neither subsumed’Bynor by T} . for ensuring fairness must have are: (1) It is a well-ordgrin
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on the set of literals (up to renaming of free variables), i.e . subs. by S/ Proof
it is well-founded and there are only finitely many literals S-- T ’d’b’ -
that are incomparable to a given literal. (2) Proper instanc subsumed by
of a literal L have a higher weight thah. (3) Literals that Figure 9. Proof search with a destructive col-
are identical up to variable renaming have the same weight. culus (top) and a non-destructive calculus
Intuitively, these are typical properties of orderings iber} (bottom).

als that are defined by assigning a “weight” to the symbols
of a signature (which is why we call themeightorderings).
A weight ordering is extended setsof literals by com-
paring themaximalweight of the literals they contain. This erals of higher weight are added to a tableau, it may be nec-
extension is a well-ordering as well, provided the sets thatessary to expand branches that are already closed. That is

are compared are only allowed to contain a certain numberot always redundant, because closed branches still contai
of variants of each literal. useful information and can influence other branches by the

substitutions that are applied when they are expanded (the
C first substitution that is applied to close a branch is not nec
5 Deterministic Proof Procedures for Clausal essarily the “right one” that allows to complete the proof).
Tableaux If a closed branch has no free variables in common with
other branches, it needs not be further expanded.

In this section, we define a (class of) complete determin-  Unfortunately, the restriction of the search space as de-
istic proof procedure(s) for clausal tableaux; this prowfp  scribed above is difficult to implement; it requires to com-
cedure can be used to perform depth-first search for proofgpare a tableatl,, ; with all its predecessofg, . .., T,, and
without backtracking. It is constructed using the notions not only with the tablead’, from which it is derived. Such
of subsumption and weight orderings as described in Sec-a subsumption check is prohibitively expensive w.r.t. both
tions 3 and 4. space and time. Moreover, if a subsumption is encoun-

To ensure that a deterministic proof procedure is com- tered, i.e., if7,; is subsumed by one of the predeces-
plete, i.e., a proof is found if there is one, we demand that sor tableaux;, then other successor tableauxf (be-
the constructed sequence of tableaux satisfies the folgpwin sidesT};1 ) have to be considered, which in a certain sense
two conditions: (1) The creation of a tableau that is sub- amounts to backtracking. The reason for this is the fol-
sumed by one of its predecessors is forbidden. (2) At eachlowing: A tableauT,,; that is subsumed by a tabledi
step, from all possible rule applications not violating €on does not have to be considered for proof search because all
dition (1), an application is chosen that creates a successothe proofs that may be constructed frdf,; can be con-
tableau in which the maximal weight of literals is as small as structed fronil’;. Now, if j = n, then we can just exclude
possible (i.e., successor tableaux are compared accdading the successor tabledl},; and be sure that if there is a
the maximal weight of the literals they contain). If several proofderivable fronT,,; thenitis derivable fronT;, with-
rule applications satisfy these conditions, arbitraryrleeu  out considerind’, ;. If, however,j # n, then the tableau
tics may be employed to choose one of them; for exam- proof that is known to be derivable froffi,, and thus
ple, rule applications creating less new sub-branches mayfrom T; may not involveT’, but require to procceed with
be preferred. an alternative successor tablél%url different fromT} 4.

Note that conclusions are not necessarily added to a ta-This situation is shown schematically in Figure 9 (top).
bleau branch in the order defined by the maximal weight of  All these problems stem from the fact that a tabl&ais
their literals because a literalcan only be added if the nec-  not necessarily subsumed by its successor talfieaube-
essary premisH is present on the branch; and the weight of cause the clausal tableau calculus is destructive andlbter
the literals inIT may be higher than that di. Also, when  occurring in7; may not occur inT;j4; any more. How-

a conclusion is added, is controlled by its literal with the ever, if we make the calculugeakly non-destructivia the
highest weight such that literals with a lower weight that sense that a tableau is always subsumed by all its successor
can only be added as part of a conclusion containing othertableaux, then we have the situation shown in Figure 9 (bot-
literals of higher weight are added to the tableau later. tom). Now, the tablead’; is subsumed by the tabledt,

To comply with the condition thaall rule applications  ensuring that every proof that can be constructed ffomy
adding literals of less weight have to be executed before lit can as well be constructed frdfy—without derivingT}, ;|



as an intermediate result. In a certain sense, a (weakly) non T T

destructive calculus is proof-confluent w.r.t. the resédc -p(a) -p(a)
search space (where no tableaux subsumed by a predeces- 7 N\ VRN
sor are allowed). p(X) /Q(X)\ p(a) /fl(a)\

To make clausal tableaux weakly non-destructive, i.e., -q(X) r(X) l —q(a) r(a)
to make sure that a tabledly,; always subsumes its pre- | / \ I / \
decessor tableafli;, we impose the following additional L s % LSt 82
restriction on the proof construction: Immediately after a (@) (b)
tableau construction step destroying literals, the comstr -

tion steps that are needed to recreate the destroyedditeral |
must be executed. In the worst case, a new copy of the —-p(a)

sub-tableau that was affected by the variable instantiatio ~ ~
is created and appended to all sub-branches that have been p(a) q(a)
) " | — ~
affected. The result is a tabled, ; that subsumes both 1 —q(a) r(a)
T; andT;, and all the tableaux that occur as intermediate I PN
results during the reconstruction. L A u2
Example 9.Consider the clause s8tconsisting of the clau- R(Xs) R(Xs) R(X2)
ses(Vz)(p(x) V q(x)), (Vz)(—g(z) Vr(z)), ands; V ss.
Figure 10 (a) shows a tabledufor S. The left branch of; (©)
is closed using the conclusidfi_L}, {X — a}). The result
is the tablead’; ., in Figure 10 (b), in which all literals con- whereR(X) =
taining the free variabl& have been destroyed. They are .
reconstructed by appending a copy of the sub-tahi&@u) N\
that consists of all literals iff; in which X occurs to all the p(X) /q(X)\
branches iT;; from which literals are missing; the result- -q(X) r(X)
ing tableaul;'; ; (shown in Figure 10 (c)) subsumes bath l .91/ \.92

andTH_l .
Figure 10. A tableau reconstruction step (Ex-

If a deterministic proof procedure executes a reconstruc- ample 9).

tion step after each tableau rule application, then a sexuen

T, Ty, ... of tableaux is constructed whef&!, is de-

rived from ;" by executing a construction step (that does

not lead to a tableau subsumed by its predecessor) and then  through the sub-tableau df;,, corresponding tak;

reconstructing the destroyed literals. To ensure that such (which results from applying; to R;).

sequence meets all conditions, it is sufficient to test wéreth

the immediate successor tableBy ; of 7;" is subsumed Example 10.As an example for the proof construction as

by Ti+' The earlier predecessors do not have to be con-described in this section, Figure 11 shows a tableau proof

sidered as they are all subsumedZy. Theorem 3 below ~ for the clause set consisting of the clausgga), —p(b),

states completeness of such a proof procedure; it is the mairmg(b), (Vz)(p(z) V q(z)). The proof construction starts

theorem of this paper. with adding the unit literals to the initial tableau; the re-
. o sult is the tablead? . At this point only one rule applica-

Theorem3. If a clause setS is unsatisfiable, then every iionis possible, which results in the tableBu Then there

sequencéT;");>1 of tableaux forS that is constructed as  are several possibilities to proceed: the left branchof

described below+c<_3ntain_s_g closed tablégfi (n € N). can be closed instantiating; with eithera or b and the
~ The tableau’” is an initial tableau forS. And for all - right branch can be closed instantiatifg with b. We as-
i > 1the following holds: sume that according to the weight orderipgq) <., p(b)

1. Ti,1 is a successor tableau @+ (see Sect. 2) such @nNda(a) <. ¢(b). Consequently, the "bad” instantiation
that () Tz'+ does not subsur;,, and (b) there is {X; — a}is preferred a_nd the_ tat_)ledfg is constructed,
no successor tableal, , of T; that satisfies Con- becquse th_e maximal We_lght of its Iltera!s is less thgn thato
dition (a) and has a szmaller maximal literals weight th I|teralls in the alternative t.ableaux.. Slncg the vagabl
than T}, (w.rt. an arbitrary but fixed weight order- is mstantlgted, areconstruction step is requ!red; thatreb
ing). tha_t_s_tep is the tabl_eaD;. Nc_)w there are again seve_ral pos-

sibilities. If the weight of literals were the only criterip

2. Let(C;, ;) be the conclusion (derived from some pre- then the tablead’, would have to be derived froffis, re-
miss onT;") that is used to construcE;;; and let peating the useless instantiation of a variable wittiow-

R; be the minimal sub-tableau @f, that contains ever, derivingl; form Ty is not allowed ag? is subsumed
all occurrences of the variables instantiatedfy The by T} (it is easy to check that each branchiofsubsumes
tableauT;fH is constructed fronT;; by (repeatedly)  one of the branches dF!). Therefore, the tablealll; is
executing all rule applications that are necessary to derived instead of}; and the variableX; is instantiated
generateR;; R; is appended to all branches that go with b instead ofz. Again, a reconstruction step is required,



which results in the tableal;. From Ty the closed ta-
bleauT’; can easily be constructed.

A proof procedure as described in Theorem 3 constructs
a sequenc@", Ty, ... of tableaux such that no tableau is | PN RN
subsumed by any of its predecessors and all tableaux are-p(a) p(X:) ¢(X1) pla) ¢
subsumed by their successors. Such a procedure simulates ! l

(in a certain sense) a depth-first iterative deepening bearc P |(b)
(as described in the introduction). The weight of the liwra  —q(b)
that can occur in the tableaux increases stepwise. If some T T, T,
(unrestricted) tableau proof exists that does not conitin |
erals of weight bigger tham.«, then there is a closed ta- T,
bleauT" that is the last in the constructed sequence not VRN
containing literals of weight bigger than somg,, . € N. p(a) q(a)
It subsumes all tableaux that can be constructed from lit- l p(X3§ ?(X3)
erals L of weight w(L) < wmax. The big advantage of /  \\
this simulated DFID over classical DFID search based on p(X2)  q(X>)
backtracking is that the tabledy is a very compact rep- T
resentation of the search space. All the information that
is contained in tableaux whose literals are of weight less T,
thanwnax is present in the single structufg™; and all the N
tableaux in the search space that are identical or in some p(a) q(a)
way symmetrical to e.ach other are reprgsented by only one l p(a)/ \q(a)
sub-tableau of/)F. Since no backtracking occurs, no in- /. |
formation that has been derived is ever lost. There may be p(X2) q(X2) L
parts of the tableaili; that represent redundantinformation T!
and are therefore useless (i.e., non-closed sub-tableau th
should not have been created); but these are not harmful as T
they can be removed using thauningtechnique (see [3]). N
The deterministic proof procedures for clausal tableaux p(a) q(a)
described in this paper is compatible with all search space J'_ p(b)/ \q(b)
restrictions with which the calculus remains proof-coriiue VAR |
such as, for example, selection functions [5, 6]. p(X2) ¢(Xa2) L
Ts
References
[1] P. Baumgartner, N. Eisinger, and U. Furbach. A Ty
confluent connection calculus. In H. Ganzinger, edi- O
tor, Proceedings, Conference on Automated Deduction p(a) /‘J(a ~
(CADE), Trento, Italy LNCS 1632, pages 329-343. Jl_ p(b) q(b)
Springer, 1999. 7\ |
. ) . p(X2)  q(X2) 1 p(X5)  q(Xs)
[2] B. Beckert.Integration und Uniformierung von Metho- VAR
den des tableaubasierten TheorembeweisBh® the- p(Xe)  a(Xa)
sis, Universitat Karlsruhe, Fakultat fir Informatikily Ts
1998.
[3] B. Beckert and R. Hahnle. Analytic tableaux. In _— L ~_
W. Bibel and P. H. Schmitt, editorsyutomated Deduc- pla) q(a)
tion — A Basis for Applicationsolume I: Foundations. I ~ ~
Kluwer, Dordrecht, 1998. /L\ p(lb) /Q(b)\
[4] M. Fitting. First-Order Logic and Automated Theorem p(X2)  q(X2) /L\ p()|(5) q()|(5)
Proving Springer, New York, second edition, 1996. p(Xs)  q(Xy) L 1
[5] R. Hahnle and S. Klingenbeck. A-ordered tableadix. Ty

of Logic and Computatiqr6(6):819-834, 1996. , ) ,
Figure 11. The tableau proof described in Ex-

[6] R. Hahnle and C. Pape. Ordered tableaux: Extensions ample 10.
and applications. IfProceedings, International Con-
ference on Theorem Proving with Analytic Tableaux
and Related Methods, PoatMousson, Francd.NCS
1227, pages 173-187. Springer, 1997.



