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Abstract

We analyse the problem of constructing a deterministic
proof procedure for free variable clausal tableaux that per-
forms depth-first proof search without backtracking; and
we present a solution based on a fairness strategy. That
strategy usesweight orderingsand a notion oftableau sub-
sumptionto avoid proof cycles and it employsreconstruc-
tion stepsto handle the destructiveness of free variable cal-
culi.

1 Introduction

In this paper, we analyse the problem of constructing a
deterministic proof procedure for free variable tableau cal-
culi that performs depth-first proof search and is complete
without backtracking. As an example, we present a solution
for first-order clausal tableaux that is based on a fairness
strategy. That strategy usesweight orderingsand a notion
of tableau subsumptionto avoid proof cycles and it employs
reconstruction stepsto handle the destructiveness of clausal
tableaux.

First-order clausal tableaux areproof-confluent, i.e., ev-
ery tableau for an unsatisfiable clause set can be completed
to a proof. They are, however, adestructivecalculus be-
cause all occurrences of a (free) variable in a tableau have
to be instantiated by the same term and, thus, a rule appli-
cation can make another rule application impossible.

The proof search space can be visualised as a search tree
where each possible choice of the next rule application to
a tableauxT creates a node with as many successor nodes
asT has different successor tableaux (Fig. 1). Since we use
a proof-confluent calculus, all path are either infinite or end
in a node that is labelled with a proof, i.e., a closed tableau.

There are two main concepts for proof search:breadth
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Figure 1. A proof search tree.

first anddepth-firstsearch. Depth-first search requires that
either there are no paths in the search tree that do not contain
proofs or it is possible to avoid such paths using fairness
strategies for the construction of tableaux.

As fairness strategies that allow depth-first search are
difficult to construct for first-order clausal tableaux, most
automated deduction systems use breadth-first search. It al-
lows to find shorter proofs than depth-first search because
all paths of the search tree are considered whereas, using
depth-first search, paths in the search tree that contain short
proofs may be missed; fairness strategies only guarantee
that some proof is found but it may not be the shortest one.
However, the length of found proofs is not of great impor-
tance in automated deduction (the only advantage of short
proofs is that their construction requires less rule applica-
tions and are thus easier to find); and breadth-first search
is “expensive” as compared to depth-first search because
neighbouring paths in the search tree contain many simi-
lar or even identical tableaux that using breadth-first search
all have to be considered.

For all (practical) completion modes, i.e., (monotonic)
functionsm fromN to sets of tableaux such that

Si2Nm(i)
includes all constructible tableaux, the sizejm(i)j of the
search tree grows exponentially ini. Even for smalli, it
is usually not possible to store all tableaux inm(i) in the
memory of a machine. Therefore, most implementations
usedepth-first iterative deepening(DFID). The initial, par-
tial search space consisting of all the tableaux inM(i) =Sj�im(j) for somei 2 N is searched for proofs in a depth-
first manner using backtracking, and if it turns out not to
contain a proof, theni is increased (for example, the proof
procedure described in [4] is of this type). Then, however,
the tableaux inM(i) are not available for the construction
of the tableaux inM(i + 1); they have to be constructed
again from scratch, which, however, merely causes poly-
nomial overhead as compared to a breadth-first search at
the “right” level i becauseM(i+ 1) is exponentially larger
thanM(i). Although DFID search leads to acceptable per-
formance of tableau-based automated theorem provers, it
should be stressed that it is only a compromise used when
no completeness preserving fairness strategy for depth-first
search is available.

The advantage of depth-first proof search is that the in-
formation represented by the constructed tableaux increases
at each proof step; no information is lost since there is no
backtracking. In addition, considering similar tableaux or
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sequences of tableaux in different paths of the search tree is
avoided.

Figure 2 shows how the different search strategies tra-
verse the search space. The coloured part has to be searched
before a proof is found. The form of the search space visu-
alises its exponential growth.

In the case ofnon-destructiveand proof-confluent ta-
bleau calculi—such as the ground version of first-order ta-
bleaux that does not use free variables—it is relatively easy
to use depth-first proof search; it suffices to systematically
add all possible conclusions until all branches of the con-
structed tableau are either fully expanded or closed. The sit-
uation is much more complicated in free variable clausal ta-
bleau calculi, which aredestructive(even if they are proof-
confluent). Applying a substitution may destroy literals on
a tableau that are needed for the proof, such that they have
to be deduced again.

Up to now there was no practical solution to the problem
of constructing a deterministic proof procedure for free vari-
able clauses tableaux that performs depth-first search and
is complete, i.e., that never fails to find a proof if there is
one. Such procedures were only known for the special case
where tableaux are expanded without instantiating variables
and only a single substitution is finally applied that is known
to allow to close all branches simultaneously. Solving a
similar problem, Baumgartner et al. [1] recently described
a depth-first proof procedure for aconnection calculus.

We propose in this paper a deterministic search strategy
that is based upon:� A tableau subsumptionrelation to detect “cycles” in

the search (i.e., to make sure that it is not possible
to deduce the same literals or sub-tableaux again and
again).� Weight orderingsthat assign each literal a “weight” in
such a way that there are only finitely many different
literals (up to variable renaming) of a certain weight;
thus, if literals with lesser weight are deduced first,
then sooner or later each possible conclusion is added
to all branches containing its premiss.� Reconstruction stepsto handle the destructiveness of
free variable clausal tableaux. Immediately after a rule
application that destroys literals, the construction steps
that are needed to recreate the destroyed sub-tableaux
are executed.

The main difficulty is to define a tableau subsumption
relation that on the one hand is restrictive enough to avoid
cycles in the proof construction and on the other hand is not
too restrictive such that completeness is preserved.

Our fairness strategy considers the whole tableau tree
(and not only a single branch) both for the subsumption
check and for choosing a conclusion of minimal weight; a
procedure based on this strategy may extend any branch of
a tableau at any time. Note that this does not imply a large
memory consumption; at least it is not worse than that of
proof strategies where a “current” branch is extended until
it is closed before other branches are considered and where
DFID-based breadth-first search is used to ensure complete-

ness, as in that case all closed branches have to be stored for
backtracking.

As said above, nopractical deterministic proof proce-
dures for free variable clausal tableaux were known up to
now. There is trivially a (non-practical) deterministic proof
procedure for all proof-confluent calculi, namely a proce-
dure performing abreadth-firstsearch in the background.
“Practical” means that the computational complexity of de-
ciding what the next rule application should be in each sit-
uation has to be reasonably low. In addition, the number of
construction steps that are necessary to find a proof has to
be reasonably small as compared to the number of neces-
sary steps when a breadth-first search strategy is used.

If the fairness strategy we present in the following sec-
tions is used, then the complexity of deciding what the next
expansion step should be is in the worst case quadratic in
the size of the tableau to be expanded and its possible suc-
cessor tableaux. In the average case the complexity is much
lower as only those parts of a tableau have to be considered
that are affected by one of the possible tableau rule appli-
cations. The size of the proofs that are found (and thus the
number of construction steps) is at most that of the proofs
constructed using DFID in the worst case (i.e., if coinciden-
tally all paths in the search tree not containing a proof are
considered first).

The structure of the paper is as follows: In Section 2, we
describe the calculus of clausal tableaux. After introducing
our notion of tableau subsumption in Section 3 and that of
weight orderings in Section 4, our method for constructing
deterministic proof procedures for free variable clausal ta-
bleaux is presented in Section 5.

Due to space restrictions, all proofs are omitted; they can
be found in [2].

2 First-order Clausal Tableaux

The notions offreeandbound variable, term, atom, lit-
eral, andsubstitutionare defined as usual. We usex; y; z
etc. to denote quantified variables andX;Y; Z etc. to de-
note free variables. The logical constants> (true) and?
(false) are considered to be literals (but not atoms). The
complement of a literalL is denoted withL. A variable
renamingis a substitution that replaces all variables by dis-
tinct variables that are “new” w.r.t. the context.

A clauseC is a first-order formula of the form(8x1) � � � (8xn)(L1 _ � � � _ Lr)
where theLi are literals andx1; : : : ; xn are all variables
occurring inL1; : : : :Lr. A new instanceof C is a formula(L1 _ � � � _ Lr)� where� is a variable renaming.

We use theweakconnectedness condition where a clause
used for expansion must have a link into the branch being
expanded (the strong connectedness condition, where the
clause must be linked to the leaf of the branch, is not used
as it destroys proof confluence).

A clausal tableaufor a setS of clauses is built by a se-
quence of applications of the following construction rules.
Each rule has a premiss (a set of literals) and a conclusion
(consisting of a set of literals and a substitution).
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Breadth-first search
Depth-first search with
iterative deepening

Depth-first search with
fairness strategy

Figure 2. Comparison of proof search strategies.

Initialisation: If L1 _ : : : _ Lr is a new instance of a clau-
se inS, then the tree is a tableau forS that consists
of the root node> andr sub-branches with the single
nodesL1; : : : ; Lr. (In this case, the premiss is empty
and the conclusion ishfL1; : : : ; Lrg; idi.)

Expansion: If T is a tableau forS, B is a branch ofT ,L is a literal onB, L1 _ � � � _ Lr is a new instance
of a clause inS, andL;Lj are unifiable (for some1 � j � r), then a tableauT 0 is a tableau forS if ob-
tained by extendingB with r nodesL1; : : : ; Lr. (In
this case, the premiss isfLg and the conclusion ishfL1; : : : ; Lrg; idi,)

Closure: If T is a tableau forS, B is a branch ofT , L;L0
are literals onB, andL;L0 are unifiable with MGU�,
thenT 0 is a tableau forS if obtained by appending?
to B and applying� to each node ofT . (In this case,
the premiss isfL;L0g and the conclusion ishf?g; �i.)

Note, that a branch is closed by adding the special literal?;
therefore, branch closure can be considered to be a special
kind of branch expansion.

A tableauT is closedif all its branches are closed, i.e.,
contain?. A tableau proof for (the unsatisfiability of) a
clause setS is a tableau forS that is closed.

Clausal tableaux as defined above are a complete and
proof-confluent calculus.

We use a slightly non-standard definition of the notion of
successor tableau: A tableauT 0 is asuccessor tableauof a
tableauT if it is constructed fromT by oneor more“iden-
tical” rule applications, i.e., there are (1) different branchesB1; : : : ; Bn (n � 1) of T , (2) premisses�i on theBi that
are identical up to variable renaming, (3) a (single) conclu-
sionhC; �i such that�i� = �j� (1 � i; j � n), andT 0 is
constructed fromT by extending each of the branchesBi
with the literals inC and applying the substitution� to T .

3 Tableau Subsumption Relation

Assume that a sequenceT1; : : : ; Tn of tableaux has al-
ready been constructed. A rule application toTn is forbid-
den if the successor tableauTn+1 is subsumedby one of the
predecessor tableauxTj—in particular, ifTn+1 is subsumed
by Tn. In that case, the sequenceTj ; : : : ; Tn+1 constitutes
a cycle in the proof search becauseTn+1 does not contain
any information that is not already inTj .

We define a tableauTj to subsume a tableauTn+1 iff
each branch ofTj subsumes one of the branches ofTn+1.
Intuitively, the tableauTn+1 is in that case redundant be-
cause, if closed sub-tableaux can be constructed below all
branches ofTn+1, it is possible to construct closed sub-
tableaux below all branches ofTj as each of them subsumes
a branch ofTn+1.

When does a tableaubranchsubsume another branch?
A first approximate answer to that question is: A branchB
subsumes a branchB0 if B contains a variant of each literal
occurring onB0. That, however, is an over-simplification;
three additional aspects have to be taken into concern.

First additional aspect. For a branchB to subsume a
branchB0, it is in generalnotsufficient if the branchB con-
tainsonevariant of each literalL occurring inB0, namely in
caseB0 contains two variants ofL that are all both needed
to close the branch. However, since the premiss for a single
rule application contains at most two literals, it is sufficient
if B contains a variant of each set of (at most) two liter-
als occurring onB0. This implies that at most two variants
of each literal onB0 are needed onB (where however, as
described below, literals may have to be considered to be
effectively different although they are variants of each other
on first sight).

Example 1.If the literals:p(X), p(f(X)), :p(X 0), andp(f(X 0)) occur onB0 whereas the branchB only contains
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:p(X) andp(f(X)) (andB andB0 are otherwise identi-
cal), thenB contains a variant of each literal onB0. Never-
theless, the transition fromB toB0 is definitely not a cycle
in proof search because—contrary toB—the branchB0 can
be closed.

Second additional aspect. The second important aspect
is that not only the literals onB andB0 have to be consid-
ered but alsoassociatedliterals on other branches that have
free variables in common withB andB0.
Definition 1. LiteralsL andL0 areassociatedif there is a
variable occurring in bothL andL0. The set of all literals
in a tableauT that are associated with a literalL, exclud-
ing L itself, is denoted withAsso
(T; L). Accordingly, if� is a set of literals, thenAsso
(T;�) is the variable set�SL2�Asso
(T; L)� n�.

Associated literals play a role because the ordering of
tableau rule applications used by a deterministic proof pro-
cedure as described in Section 5 has to take all literals into
account that are generated by an application. So, ifL(X)
is a premiss for a certain tableau rule application that leads
to the instantiation ofX with a termt and there is a lit-
eralL0(X) on the tableau, then that application will gener-
ate the new literalL0(t); and the form ofL0(t)—and thus
the form of the associated literalL0(X)—affects the choice
of the application.

Third additional aspect. As said above, a tableauT sub-
sumes a tableauT 0 if for each branchB in T there is a
branchB0 in T 0 such thatB subsumesB0. That includes the
possibility that two different branchesB1 andB2 of T are
assigned the same branchB0. In that case there is for each
set�0 (of at most two literals onB0) a literal set�1 onB1
and a literal set�2 onB2 that are variants of�0. The basic
idea behind the definition of our subsumption relation im-
plies that every possible rule application on branchB0 with
the premiss�0 can as well be applied—simultaneously—on
the branches subsumingB0 with the premisses�1 resp.�2.
That, however, requires the two variable renamings con-
structing�0 from�1 resp.�2 to be compatible. The same
holds ifB0 is assigned to more than two branche inT .

Formal definition of the subsumption relation. We now
formally define our tableau subsumption relation. It is tran-
sitive und reflexive.

Definition 2. Let T andT 0 be tableaux that do not have
any variables in common. The tableauT subsumesthe ta-
bleauT 0 if

i. each branchB of T can be assigned a branchB0 of T 0
ii. and then—for each pairB;B0 respectively—each set�0 of at most two literals onB0 can be assigned a set� of literalsB and a variable renaming�

such that:

1. The following holds for each of the�, �0 and�:

(a) �� = �0;
(b) for each of the literalsL in Asso
(T;�) there

is (at least) one literalL0 in Asso
(T 0;�0) such
thatL� andL0 are identical up the renaming of
variablesnot occurring in�� resp.�0.

2. If a branchB0 of T 0 is assigned to different branchesB1; : : : ; Bs of T (s � 2), then, for all�0 on B0, the
variable renamings�1; : : : ; �s assigned to�0 in con-
nection withB1; : : : ; Bs are compatible in the follow-
ing way: there is a substitution� such that the restric-
tion of� to the variables occurring in� [ Asso
(T;�)
is identical to�i (1 � i � s).

Now, letT andT 0 be tableaux that have variables in com-
mon; and let� be a variable renaming such thatT undT 0�
donothave any variables in common. Then,T subsumesT 0
iff T subsumesT 0�.

If a tableauT subsumes a tableauT 0, then each branchB
of T is assigned a branchB0 of T 0. In that case, we say
thatB subsumesB0.

Completeness of clausal tableaux is preserved if the ta-
bleau subsumption relation is used for restricting the search
space: Given a partial proofT0; : : : ; Ti it is forbidden to de-
rive a successor tableauTi+1 from Ti that is subsumed by
any of the tableauT0; : : : ; Ti. On the other hand, this re-
striction is strong enough to ensure that every sequence of
tableaux built accordingly, i.e., every tableau sequence not
containing a tableau that is subsumed by one of its predeces-
sors, has the following property: If the sequence is infinite,
then it contains infinitely many different literals or, equiva-
lently, if the sequence only contains finitely many different
literals (up to the renaming of variables) then it is finite.

To check whether a tableauT subsumes one of its suc-
cessor tableauxT 0 and, thus, whether the rule application
derivingT 0 from T is allowed, it is sufficient to only con-
sider those parts of the tableaux that are affected, i.e., the
expanded branch and the formulae on the tableaux that are
associated with it. The check does not involve unifiability
tests because free variables may only be renamed but not
instantiated with terms.

Example 2.Let� = fp(X)g and�0 = fp(X 0)g; moreover
let Asso
(T;�) consist ofq(X;Y1) andq(X;Y2). Then,
Condition 1 (a) in Definition 2 is, for example, satisfied
if Asso
(T 0;�0) = fq(X 0; Y 0)g. But it is neither satisfied
if Asso
(T 0;�0) = ; nor if Asso
(T 0;�0) = fq(Y 0; X 0)g
(because to makeq(X 0; Y1) andq(Y 0; X 0) identical would
require to rename the variableX 0 that occurs in�0.
Example 3.The tableauT1 in Figure 3 subsumes each of
the tableauT 01, T 02, T 03. The tableauT2 subsumes onlyT 01.
Example 4.Neither of the two tableaux in Figure 4 sub-
sumes the other one. The tableauT1 on the left does not
subsume the tableauT2 on the right because the (single)
branch ofT2 contains an additional literal; and, although a
variant of each literal set onT1 occurs onT2, the tableauT2
does not subsumeT1 since forr(X 0) 2 Asso
(T2; q(X 0))
there is no corresponding element inAsso
(T1; q(X)) and,
thus, Condition 1 (a) in Definition 2 is not satisfied.
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>p(X1)p(X2) >p(X1) >p(Y1) >p(Y1)p(Y2) >p(Y1)p(Y2)p(Y3)T1 T2 T 01 T 02 T 03
Figure 3. The tableaux from Example 3.>pq(X) >pq(X 0)r(X 0)
Figure 4. The tableaux from Example 4.>:p(a):q(b)p(X) q(Y ) >:p(a):q(b)p(X 0) q(X 0)
Figure 5. The tableaux from Example 5.

Example 5.The tableauT1 in Figure 5 on the left subsumes
the tableauT2 on the right. ButT2 doesnot subsumeT1
because the literalsp(X 0) andq(X 0) in T2 are associated,
whereas the corresponding literals inT1 arenot associated.

Indeed, a transition fromT2 to T1 does not constitute a
cycle in proof search because the tableauT1 can be closed
whereasT2 cannot be closed.

Example 6.The tableauT in Figure 6 on the upper left does
notsubsume the tableauT 0 on the right. That would only be
possible if the branchesB1; B2 of T would bothsubsume
the single branch ofT 0. Both B1 andB2 contain a vari-
ant p(X;Y ) resp.p(Y;X) of the (single) literalp(U; V )
on the branch ofT 0. But the required variable renamingsfX 7! U; Y 7! V g and fX 7! V; Y 7! Ug are not com-
patible, which violates Condition 1 (a) in the definition of
the subsumption relation (Def. 2).

This problem does not occur with the tableau shown in
Figure 6 on the lower left. It subsumesT 0 because the
two required variable renamingsfX1 7! U; Y1 7! V g andfX2 7! U; Y2 7! V g are compatible.

Example 7.Consider the tableauT1 shown on the left in
Figure 7. The rule application that derives the conclusionhf?g; idi from the premissf:p; pg can be used to close
both of its branches. Closing the tableau requires two con-
secutive applications. However, the intermediate tableau
that results from closing the left branch (in the middle of
Figure 7) is subsumed byT1 because both branches ofT1
subsume the right (not yet expanded) branch ofT2. Thus,
this first rule application is not allowed. The tableauT3,
however, that results from closing both branches (shown in
the right in Figure 7) is neither subsumed byT2 nor byT1.

>p(X;Y ) p(Y;X)>p(X1; Y1) p(X2; Y2) >p(U; V )
Figure 6. Tableaux from Example 6.>:pp p >:pp? p >:pp? p?

does not subsume

subsumes does not

subsume

Figure 7. Tableau from Example 7.

Indeed, since both rule applications use the same premiss
and conclusion,T3 is by definition a successor tableau ofT1
(without considering the intermediate step), and derivingT3
from T1 is an allowed rule application.

Example 8.An important type of tableau construction steps
that generate a tableauT 0 subsumed by it predecessorT and
that are, therefore, forbidden, is the following: Assume that
a branchB1 of T is extended using a conclusionhC; �i,
and a branchB02� in the resulting tableauT 0 is subsumed
by all branchesB of T affected by the rule application, i.e.,
the branchB1 (which is extended) and all other branches
containing variables that are instantiated by�. This is in
particular the case ifB02� is “contained” in an initial sub-
branchR0 of T that ends above the first occurrence of any
free variable in the domain of�.

As an example consider the tableauT shown in Fig-
ure 8 on the left, and assume that its branchB1 is closed
using the premiss consisting of the two literalsp(a) andp(X) to derive the conclusionhf?g; fX 7! agi. The right
branchB02� of the resulting tableauT 0 (shown in Figure 8
on the right) whose nodes are labelled with the literalsp(a)
and twiceq(a) is “contained” in the sub-branchR0 of T
whose nodes are labelled withp(a) andq(a); andR0 ends
above the first occurrence ofX in T which is the only vari-
able instantiated by�. Intuitively, the application is useless
because any closed sub-tableau that can be constructed be-
low B02� can be constructed as well below bothB1 andB2.

A forbidden rule application as described above is irreg-
ular according to the definition of regularity that is usually
given in the literature (e.g. [3]) since the branchB02� con-
tains the same branch extension multiply.

4 Weight Orderings

Weight orderings are the second important concept (be-
sides the concept of tableau subsumption) on which our fair-
ness strategy is based. The properties an ordering on literals
for ensuring fairness must have are: (1) It is a well-ordering
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>:p(a)p(a)? q(a)p(X)B1 q(X)B2
R0 >:p(a)p(a)? q(a)p(a)? q(a)B02�

R0
Figure 8. Tableaux from Example 8.

on the set of literals (up to renaming of free variables), i.e.,
it is well-founded and there are only finitely many literals
that are incomparable to a given literal. (2) Proper instances
of a literalL have a higher weight thanL. (3) Literals that
are identical up to variable renaming have the same weight.
Intuitively, these are typical properties of orderings on liter-
als that are defined by assigning a “weight” to the symbols
of a signature (which is why we call themweightorderings).

A weight ordering is extended tosetsof literals by com-
paring themaximalweight of the literals they contain. This
extension is a well-ordering as well, provided the sets that
are compared are only allowed to contain a certain number
of variants of each literal.

5 Deterministic Proof Procedures for Clausal
Tableaux

In this section, we define a (class of) complete determin-
istic proof procedure(s) for clausal tableaux; this proof pro-
cedure can be used to perform depth-first search for proofs
without backtracking. It is constructed using the notions
of subsumption and weight orderings as described in Sec-
tions 3 and 4.

To ensure that a deterministic proof procedure is com-
plete, i.e., a proof is found if there is one, we demand that
the constructed sequence of tableaux satisfies the following
two conditions: (1) The creation of a tableau that is sub-
sumed by one of its predecessors is forbidden. (2) At each
step, from all possible rule applications not violating Con-
dition (1), an application is chosen that creates a successor
tableau in which the maximal weight of literals is as small as
possible (i.e., successor tableaux are compared accordingto
the maximal weight of the literals they contain). If several
rule applications satisfy these conditions, arbitrary heuris-
tics may be employed to choose one of them; for exam-
ple, rule applications creating less new sub-branches may
be preferred.

Note that conclusions are not necessarily added to a ta-
bleau branch in the order defined by the maximal weight of
their literals because a literalL can only be added if the nec-
essary premiss� is present on the branch; and the weight of
the literals in� may be higher than that ofL. Also, when
a conclusion is added, is controlled by its literal with the
highest weight such that literals with a lower weight that
can only be added as part of a conclusion containing other
literals of higher weight are added to the tableau later.

To comply with the condition thatall rule applications
adding literals of less weight have to be executed before lit-

T0 : : : Tj : : : Tn Tn+1
Proof

Proof

forbidden

subsumed byT0 : : : Tj : : : Tn Tn+1
Proof

Proof Proof

forbidden

subsumed by

subs. by

Figure 9. Proof search with a destructive col-
culus (top) and a non-destructive calculus
(bottom).

erals of higher weight are added to a tableau, it may be nec-
essary to expand branches that are already closed. That is
not always redundant, because closed branches still contain
useful information and can influence other branches by the
substitutions that are applied when they are expanded (the
first substitution that is applied to close a branch is not nec-
essarily the “right one” that allows to complete the proof).
If a closed branch has no free variables in common with
other branches, it needs not be further expanded.

Unfortunately, the restriction of the search space as de-
scribed above is difficult to implement; it requires to com-
pare a tableauTn+1 with all its predecessorsT1; : : : ; Tn and
not only with the tableauTn from which it is derived. Such
a subsumption check is prohibitively expensive w.r.t. both
space and time. Moreover, if a subsumption is encoun-
tered, i.e., ifTn+1 is subsumed by one of the predeces-
sor tableauxTj , then other successor tableaux ofTj (be-
sidesTj+1) have to be considered, which in a certain sense
amounts to backtracking. The reason for this is the fol-
lowing: A tableauTn+1 that is subsumed by a tableauTj
does not have to be considered for proof search because all
the proofs that may be constructed fromTn+1 can be con-
structed fromTj . Now, if j = n, then we can just exclude
the successor tableauTn+1 and be sure that if there is a
proof derivable fromTn+1 then it is derivable fromTn with-
out consideringTn+1. If, however,j 6= n, then the tableau
proof that is known to be derivable fromTn+1 and thus
from Tj may not involveTn but require to procceed with
an alternative successor tableauT 0j+1 different fromTj+1.
This situation is shown schematically in Figure 9 (top).

All these problems stem from the fact that a tableauTj is
not necessarily subsumed by its successor tableauTj+1 be-
cause the clausal tableau calculus is destructive and literals
occurring inTj may not occur inTj+1 any more. How-
ever, if we make the calculusweakly non-destructivein the
sense that a tableau is always subsumed by all its successor
tableaux, then we have the situation shown in Figure 9 (bot-
tom). Now, the tableauTj is subsumed by the tableauTn
ensuring that every proof that can be constructed fromTn+1
can as well be constructed fromTn—without derivingTn+1
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as an intermediate result. In a certain sense, a (weakly) non-
destructive calculus is proof-confluent w.r.t. the restricted
search space (where no tableaux subsumed by a predeces-
sor are allowed).

To make clausal tableaux weakly non-destructive, i.e.,
to make sure that a tableauTi+1 always subsumes its pre-
decessor tableauTi, we impose the following additional
restriction on the proof construction: Immediately after a
tableau construction step destroying literals, the construc-
tion steps that are needed to recreate the destroyed literals
must be executed. In the worst case, a new copy of the
sub-tableau that was affected by the variable instantiation
is created and appended to all sub-branches that have been
affected. The result is a tableauT+i+1 that subsumes bothTi andTi+1 and all the tableaux that occur as intermediate
results during the reconstruction.

Example 9.Consider the clause setS consisting of the clau-
ses(8x)(p(x) _ q(x)), (8x)(:q(x) _ r(x)), and s1 _ s2.
Figure 10 (a) shows a tableauTi for S. The left branch ofTi
is closed using the conclusionhf?g; fX 7! agi. The result
is the tableauTi+1 in Figure 10 (b), in which all literals con-
taining the free variableX have been destroyed. They are
reconstructed by appending a copy of the sub-tableauR(X)
that consists of all literals inTi in whichX occurs to all the
branches inTi+1 from which literals are missing; the result-
ing tableauT+i+1 (shown in Figure 10 (c)) subsumes bothTi
andTi+1.

If a deterministic proof procedure executes a reconstruc-
tion step after each tableau rule application, then a sequenceT+1 ; T+2 ; : : : of tableaux is constructed whereT+i+1 is de-
rived fromT+i by executing a construction step (that does
not lead to a tableau subsumed by its predecessor) and then
reconstructing the destroyed literals. To ensure that sucha
sequence meets all conditions, it is sufficient to test whether
the immediate successor tableauTi+1 of T+i is subsumed
by T+i . The earlier predecessors do not have to be con-
sidered as they are all subsumed byT+i . Theorem 3 below
states completeness of such a proof procedure; it is the main
theorem of this paper.

Theorem 3. If a clause setS is unsatisfiable, then every
sequence(T+i )i�1 of tableaux forS that is constructed as
described below contains a closed tableauT+n (n 2 N ).

The tableauT+1 is an initial tableau forS. And for alli > 1 the following holds:

1. Ti+1 is a successor tableau ofT+i (see Sect. 2) such
that (a) T+i does not subsumeTi+1 and (b) there is
no successor tableauT 0i+1 of T+i that satisfies Con-
dition (a) and has a smaller maximal literals weight
thanTi+1 (w.r.t. an arbitrary but fixed weight order-
ing).

2. LethCi; �ii be the conclusion (derived from some pre-
miss onT+i ) that is used to constructTi+1; and letRi be the minimal sub-tableau ofTi+1 that contains
all occurrences of the variables instantiated by�i. The
tableauT+i+1 is constructed fromTi+1 by (repeatedly)
executing all rule applications that are necessary to
generateRi; Ri is appended to all branches that go

>:p(a)p(X) q(X):q(X)? r(X)s1 s2
(a)

>:p(a)p(a)? q(a):q(a)? r(a)s1 s2
(b)>:p(a)p(a)?R(X1) q(a):q(a)?R(X2) r(a)s1R(X3) s2R(X4)

(c)

whereR(X) =p(X) q(X):q(X)? r(X)s1 s2
Figure 10. A tableau reconstruction step (Ex-
ample 9).

through the sub-tableau ofTi+1 corresponding toRi
(which results from applying�i toRi).

Example 10.As an example for the proof construction as
described in this section, Figure 11 shows a tableau proof
for the clause set consisting of the clauses:p(a), :p(b),:q(b), (8x)(p(x) _ q(x)). The proof construction starts
with adding the unit literals to the initial tableau; the re-
sult is the tableauT1. At this point only one rule applica-
tion is possible, which results in the tableauT2. Then there
are several possibilities to proceed; the left branch ofT2
can be closed instantiatingX1 with eithera or b and the
right branch can be closed instantiatingX1 with b. We as-
sume that according to the weight ordering,p(a) �w p(b)
and q(a) �w q(b). Consequently, the “bad” instantiationfX1 7! ag is preferred and the tableauT3 is constructed,
because the maximal weight of its literals is less than that of
the literals in the alternative tableaux. Since the variableX1
is instantiated, a reconstruction step is required; the result of
that step is the tableauT4. Now there are again several pos-
sibilities. If the weight of literals were the only criterion,
then the tableauT 05 would have to be derived fromT4, re-
peating the useless instantiation of a variable witha. How-
ever, derivingT 05 form T4 is not allowed asT 05 is subsumed
by T4 (it is easy to check that each branch ofT4 subsumes
one of the branches ofT 05). Therefore, the tableauT5 is
derived instead ofT 05; and the variableX3 is instantiated
with b instead ofa. Again, a reconstruction step is required,
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which results in the tableauT6. From T6 the closed ta-
bleauT7 can easily be constructed.

A proof procedure as described in Theorem 3 constructs
a sequenceT+1 ; T+2 ; : : : of tableaux such that no tableau is
subsumed by any of its predecessors and all tableaux are
subsumed by their successors. Such a procedure simulates
(in a certain sense) a depth-first iterative deepening search
(as described in the introduction). The weight of the literals
that can occur in the tableaux increases stepwise. If some
(unrestricted) tableau proof exists that does not contain lit-
erals of weight bigger thanwmax, then there is a closed ta-
bleauT+n that is the last in the constructed sequence not
containing literals of weight bigger than somew+max 2 N .
It subsumes all tableaux that can be constructed from lit-
eralsL of weight w(L) � wmax. The big advantage of
this simulated DFID over classical DFID search based on
backtracking is that the tableauT+n is a very compact rep-
resentation of the search space. All the information that
is contained in tableaux whose literals are of weight less
thanwmax is present in the single structureT+n ; and all the
tableaux in the search space that are identical or in some
way symmetrical to each other are represented by only one
sub-tableau ofT+n . Since no backtracking occurs, no in-
formation that has been derived is ever lost. There may be
parts of the tableauT+n that represent redundant information
and are therefore useless (i.e., non-closed sub-tableau that
should not have been created); but these are not harmful as
they can be removed using thepruningtechnique (see [3]).

The deterministic proof procedures for clausal tableaux
described in this paper is compatible with all search space
restrictions with which the calculus remains proof-confluent
such as, for example, selection functions [5, 6].
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ample 10.

8


