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Abstract. In this paper we describe how a combi-
nation of the classical “universal” E-unification
and “rigid”E-unification, called “mixed” E-uni-
fication, can be used to efficiently handle equality
in universal formula semantic tableaux, that are
an extension of free variable tableaux.

1 Introduction

One of the main goals of Automated Deduc-
tion is to efficiently handle first-order logic with
equality. In this paper we describe how “mixed”E-unification [2], a combination of the classical
“universal”E-unification and “rigid”E-unificati-
on [8], can be used to efficiently handle equality
in universal formula semantic tableaux [4], that
are an extension of free variable tableaux [7].

Constructing a tableau for a first-order for-
mula � can be considered a search for a model
of �. Therefore, as part of the tableau calculus,
methods have to be employed for: (i) adding for-
mulae that are valid in a model M of � to the
tableau branch that corresponds to M (i.e., that
is a partial definition of M), and (ii) recognizing
formulae or sets of formulae that are unsatisfiable;
these formulae close branches on which they oc-
cur.

In canonical models1, on the one hand, addi-
tional formulae are valid and, thus, have to be
added to a branch: If P (a) and a � b are true in a
canonical model M, thenM is a model of P (b),
too. On the other hand, there are additional in-
consistencies: :(a � a) is false in all canonical
models.

1 A modelM = hD;Ii (with domain D and interpre-
tation I) is called normal iff I(�) is the identity re-
lation on D (the binary predicate symbol � denotes
equality such that no confusion with the meta-level
equality predicate = can arise). A model is called
canonical iff, moreover, for every d 2 D there is a
term t such that I(t) = d.

Accordingly, there are two techniques for hand-
ling equality in semantic tableaux: The first and
more straightforward method is to define additio-
nal tableau rules for expanding branches by all the
formulae valid in the canonical models they (par-
tially) define; then very simple additional closure
rules can be used [11, 13, 7]. The second possibi-
lity is to use a more complicated notion of closed
tableaux:E-unification is used to decide whether
a tableau branch is unsatisfiable in canonical mo-
dels and, therefore, closed. Then, no additional
expansion rules are needed.

The common problem of all the methods for
handling equality, that are based on additional
tableau expansion rules, is that there are virtually
no restrictions on the “application” of equalities.
This leads to a very large search space; even very
simple problems cannot be solved in reasonable
time.

It is difficult to employ more elaborate and ef-
ficient methods for handling equality in semantic
tableaux, such as completion-based approaches,
because it is nearly impossible to transform these
methods into (sufficiently) simple tableau expan-
sion rules.2

Contrary to that, arbitrary algorithms can be
used, if the handling of equality is reduced to sol-
ving E-unification problems. In [4] it has been
shown that methods based on E-unification are
much more efficient than that based on additio-
nal rules—even if the comparatively inefficient
algorithm from [4] is used to solve E-unification
problems.

In the next section, we present the different
versions of E-unification that are important for
adding equality to semantic tableaux. Section 3

2 R. J. Browne [6] describes a completion-based me-
thod for handling equality, that uses additional ex-
pansion rules. It is, however, only applicable to the
ground version of tableaux and cannot be extended
to free variable tableaux.



gives a short introduction into universal formula
tableaux. In Section 4 we describe the E-unifi-
cation problems that are extracted from tableaux
and have to be solved; and, finally, in Section 5
different methods for solving these E-unification
problems and their efficient implementation are
discussed.

We use the standard notions of free and bound
variable, (grounding) substitution, model, logical
consequence (denoted by j=), satisfiability and
tautology. All occurring substitutions have a fi-
nite domain; thus, a substitution � with domainfx1; : : : ; xng is denoted by fx1=t1; : : : ; xn=tng,
i.e. �(xi) = ti (1 � i � n). The restriction of �
to a set V of variables is denoted by �jV .

2 Universal, Rigid and MixedE-Unification

The intention of defining different versions ofE-
unification is to allow equalities to be used diffe-
rently in a proof: in the universal case the equali-
ties can be “applied” several times with different
instantiationsfor the variables they contain; in the
rigid case they can be “applied” more than once
but with only one instantiation for each variable
they contain; in the mixed case there are both
types of variables. To distinguish the different ty-
pes of variables syntactically, equalities can be
explicitly quantified:

Definition 1. A mixed E-unification problemhE; s; ti
consists of a finite set E of equalities of the form(8x1) � � � (8xn)(l � r) and terms s and t.3

A substitution � is a solution to the problem,
iff E� j= (s� � t�) ;
where the free variables in E� are “held rigid”,
i.e. treated as constants.

A mixedE-unification problem hE; s; ti is cal-
led purely universal if there are no free variables
in E, and purely rigid if there are no bound va-
riables in E.

The major differences between this definition
and that generally given in the (extensive) litera-
ture on (universal) E-unification are:

3 Without making a real restriction, we require the
sets of bound and free variables in the problem to be
disjoint.

1. The equalities in E are explicitly quantified
(instead of considering all the variables in E
to be implicitly universally quantified).

2. In difference to the “normal” notion of lo-
gical consequence, free variables in E� are
“held rigid”.

3. The substitution � is applied not only to the
terms s und t but as well to the set E.

Example 1. All substitutions are solutions to the
purely universal problemhf(8x)(f(x) � x)g; g(f(a); f(b)); g(a; b)i :
The (very similar) purely rigid problemhf(f(x) � x)g; g(f(a); f(b)); g(a; b)i
has no solution.fy=bg is a solution to the mixed problemhf(8x)(f(x; y) � f(y; x))g; f(a; b); f(b; a)i ;

since the variable x is quantified, it does not have
to be instantiated by the unifier.

For handling equality in semantic tableaux, se-
veral E-unification problems have to be solved
simultaneously (one for each branch):

Definition 2. A finite setfhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1)
of mixed E-unification problems is called simul-
taneousE-unification problem.

A substitution � is a solution to the simulta-
neous problem iff it is a solution to every compo-
nent hEk; sk; tki (1 � k � n).

Since purely universalE-unification is already
undecidable, (simultaneous) mixed E-unification
is—in general—undecidable as well. Is is, howe-
ver, possible to enumerate a complete set of most
general unifiers. (Simultaneous) purely rigid E-
unification is decidable [8, 10].4

4 Purely rigid E-unification is NP-complete [8]; si-
multaneous purely rigid E-unification is DEXPTI-
ME-complete [10].



3 Universal Formula Tableaux

We use the signed version of semantic tableaux,
i.e., the formulae in tableaux are prefixed with
one of the signs T (true) and F (false). There is
no restriction on where equalities can occur in
formulae.

There is a tableau rule for each combination
of sign and logical connective (resp. quantifier);
thus, to every signed formula that is not a literal
exactly one rule can be applied. We do not list
all the rules but only the schemata: �-rules (con-
junctive type rules), �-rules (disjunctive), 
-rules
(universally quantified), and �-rules (existentially
quantified):5��1�2

��1 �2



1(y)y is a free variable.��1(f(x1; : : : ; xn))f is a new Skolem function symbol, andx1; : : : ; xn are the free variables in �.

Using free variable quantifier rules [7, 5] is cru-
cial for efficient implementation—even more if
equality has to be handled. When 
-rules are ap-
plied, a new free variable is substituted for the
quantified variable, instead of replacing it by a
ground term, that has to be “guessed” (as in the
ground version of semantic tableaux [15]). Free
variables can later be instantiated “on demand”,
when a tableau branch is closed (with or without
using equality).

To prove a formula G to be a tautology, we
apply the above rules starting from the initial ta-
bleau that consists of the single formula FG. A
proof is found, if all branches of the constructed
tableau are closed simultaneously. We identify a
branch with the set of the formulae it contains.

Free variable semantic tableaux can be fur-
ther improved by using the concept of univer-
sal formulae [4]: Often, 
-formulae—in particu-
lar equalities—have to be used multiply in a ta-
bleau proof, with different instantiations for the
free variables they contain. A typical example is
the associativity axiom(8x)(8y)(8z)((x � y) � z � x � (y � z))

5 For example, if � = T (F ^G) then �1 = T F and�2 = T G; if � = F (F ^G) then �1 = F F and�2 = F G; if
 = T (8x)F (x) then 
1(t) = T F (t);
if � = F (8x)F (x) then �1(t) = F F (t).

from group theory. Usually, it has to be applied
several times with different substitutions for x, y
and z to prove even very simple theorems from
group theory. Therefore, in semantic tableaux the
-rule has to be applied repeatedly to generate
several instances of the axiom each with different
free variables substituted for x, y and z. This,
however, enlarges the search space for a proof.

This problem can at least partly be avoided by
recognizing formulae (including equalities) that
are “universal”, i.e. that can be used multiply in a
tableau proof with different substitutions for the
variables they contain (without affecting sound-
ness):

Definition 3. Let � be a signed formula on some
tableau branch B and F� the “unsigned version”
of �, i.e., if � = TG for some G then F� = G,
else if � = FG then F� = :G.� is universal with respect to the variable x iff
the following holds for every normal model M
and every grounding substitution �:

If M j= B�; then M j= ((8x)F�))� :
A method � for recognizing universal formu-

lae assigns to a tableau branch B and a signed
formula � a set � (B; �) of variables such that:
if x 2 � (B; �)
then

1. � 2 B,
2. � is universal w.r.t. x.

An important class of universal formulae can
be recognized easily (and the method is easy to
implement):

Example 2. �1 is a method for recognizing uni-
versal formulae where �1(B; �) contains exactly
the variables x such that the formula � 2 B has
been added to B

1. by applying a 
-rule, and x is the free va-
riable that has been introduced; or

2. by applying an �-, �- or 
-rule to a for-
mula �0 where x 2 �1(B; �0), i.e., �0 is uni-
versal w.r.t. x.

A formula G(x) is recognized as being universal
w.r.t. x by this method, if new instances G(x0),G(x00); : : : can be added to the branch without
affecting other branches or generating new ones.



A free variable tableau T (without universal
formulae) is closed if there is a single substi-
tution � such that each branch of T� contains
complementary formulae. Once formulae are re-
cognized as being universal, this knowledge can
be taken advantage of to make it easier to find such
a substitution �: instantiations of variables w.r.t.
which the formulae used to close a branch are uni-
versal are not taken into consideration. Soundness
is not affected if this notion of closed tableau is
used [4]; completeness is not affected anyway.

The following is a formal definition of closed
universal formula tableaux without equality; in
which way this definition has to be changed to
handle equality is described in the next section.

Definition 4. Let � be a method for recogni-
zing universal formulae. A free variable tableau T
with branches B1; : : : ; Bk is closed iff there are

1. a grounding substitution �, and
2. for 1 � i � k

(a) formulae �i;  i 2 Bi,
(b) grounding substitutions �i,

such that

1. �i�i and  i�i are complementary6;
2. �i differs from � only on the set U of va-

riables with respect to which both �i and  i
are universal, i.e.�ij(VarnU) = �j(VarnU) ;
where U = � (Bi; �i) \ � (Bi;  i) :

4 Extracting E-Unification
Problems from Tableaux

The equality theory defined by a tableau branch B
consists of the equalities on B; they are (expli-
citly) quantified w.r.t. to the variables w.r.t. which
they can be recognized as being universal:

Definition 5. Let B be a tableau branch and � a
method for recognizing universal formulae (Defi-
nition 3). Then the setE(B) of equalities consists
of the equalities(8x1) � � � (8xn)(s � t)
such that

6 Signed formulae are called complementary iff they
are of the form T G and F G

1. T (s � t) is formula on B,
2. fx1; : : : ; xng = � (B;T (s � t)).
There are unification problems for each inequa-

lity on a branch B and each pair of atoms that
potentiallyclose B, i.e., atoms with the same pre-
dicate sign and complementary truth value signs:

Definition 6. Let B be a tableau branch and � a
method for recognizing universal formulae. Then
the set P(B) of unification problems consists ex-
actly of the sets of term pairs:fhs1�; t1�i; : : : ; hsn�; tn�ig
for each pairT P (s1; : : : ; sn);FP (t1; : : : ; tn) 2 B
of (potentially closing) atoms such that P 6= �,
and fhs�; t�ig
for each inequalityF (s � t) 2 B :
The substitution� = fx1=y1; : : : ; xm=ymg rena-
mes all the variables x1; : : : ; xm in� (B;T P (s1; : : : ; sn)) \ � (B;F P (t1; : : : ; tn))
(resp. in � (A;F (s � t))); y1; : : : ; ym are new
variables.

If one of the problems in the set P(B) of unifi-
cation problems of a branch B has a solution �
(w.r.t. the equalities E(B)), B� is unsatisfiable
in canonical models; therefore the branch B is
closed under the substitution �. The pair of poten-
tially closing atoms corresponding to the solved
unification problem has been proven to actually
be complementary; or the corresponding inequa-
lity has been proven to be inconsistent (provided
the unifier is applied to the tableau).

The following is a formal definition of the si-
multaneous mixed E-unification problems that
have to be solved to close a tableau:

Definition 7. A universal formula tableau T with
branches B1; : : : ; Bk is closed iff in the sets of
unification problems P(Bi) there are elementsfhsi1; ti1i; : : : ; hsini; tiniig 2 P(Bi)(1 � i � k) such that there is a solution to the
simultaneous mixed E-unification problemf hE(B1); s11; t11i; : : : ; hE(B1); s1n1; t1n1i;

...
...

...hE(Bk); sk1; tk1i; : : : ; hE(Bk); sknk ; tknki g
(see Definitions 5 and 6).



Actually, it is not necessary to split pairsT P (s1; : : : ; sn) and F P (t1; : : : ; tn)
of potentially complementary atoms into n term
pairs hs1; t1i; : : : ; hsn; tni
that have to be unified. Instead the single problemhP (s1; : : : ; sn); P (t1; : : : ; tn)i
could be used. That, however, is inefficient, be-
cause the n simpler problems can be solved inde-
pendently.

(1) T (8x)((g(x) � f(x)) _ :(x � a))
(2) T (8x)(g(f(x)) � x)

(3) T (b � c)
(4) T P (g(g(a)); b)

(5) T :P (a; c)
(6) F P (a; c)

(7) T (g(f(x1)) � x1)
(8) T ((g(x2) � f(x2)) _ :(x2 � a))

(9) T (g(x2) � f(x2))!! aa
(10) T :(x2 � a)
(11) F (x2 � a)

Fig. 1. A free variable tableau for the given formu-
lae (1) to (5). By applying the standard free vari-
able tableau rules, formula (6) is derived from (5),
(7) from (2), (8) from (1), (9) and (10) from (8), and
(11) from (10). Formula (7) is recognized as being
universal w.r.t. x by the method from Example 2.

Example 3. As an example we use the tableau
from Figure 1. Its left branch is denoted by B1

and its right branch by B2. If the method for re-
cognizing universal formulae from Example 2 is
used, E(B2) contains the equalitiesb � c and (8x)(g(f(x)) � x) :E(B1) contains in addition the equalityg(x2) � f(x2) :

Both P(B1) and P(B2) contain the setfhg(g(a)); ai; hb; cig :P(B2) contains in addition the setfhx2; aig :
The tableau is closed (Definition 7), because the
substitution � = fx2=ag is a solution to the si-
multaneous mixed E-unification problemfhE(B1); g(g(a)); ai;hE(B1); b; ci;hE(B2); x2; aig :
5 Solving the E-Unification
Problems Extracted from Tableaux

To solve the E-unification problems that are ex-
tracted from tableaux, arbitrary algorithms can be
used.

The problems extracted from ground tableaux
consist solely of ground terms. There are very
efficient methods for solving these ground E-
unification problems, that are based on computing
the equivalence classes of the terms to be unified
(w.r.t. to the relation defined by the equalities on
the branch) [14, 12].

Algorithms based on computing equivalence
classes can be used as well to solve mixed E-
unification problems and, thus, to add equality to
universal formula tableaux [4].

However, for solving non-ground problems, it
is much better to use completion-based methods.
Unfortunately, the Unfailing Knuth-Bendix-Al-
gorithm with narrowing, that is generally con-
sidered to be the best algorithm for universalE-unification, cannot be used to solve rigid or
mixed problems. Completion-based methods for
rigidE-unification have been described in [8, 9];
these, however, are non-deterministic and unsui-
ted for implementation, since the “guess” that is
part of the algorithm is highly complex.

Recently, deterministic completion-based me-
thods have been introduced, both for purely rigidE-unification [1] and mixed E-unification [2].7

7 The method described in [2] has been implemented

as part of the tableau-based theorem prover 3TAP [3].
The implementation is written in Quintus Prolog.
Besides the possibility to prove theorems from pre-
dicate logic with equality, the E-unification module
can be used “stand alone” to solve simultaneous
mixed E-unification problems. Upon request, the
source code is available from the author.



Besides being completion-based, there are seve-
ral reasons why these methods are well suited
for adding equality to free variable semantic ta-
bleaux: Firstly, the terms to be unified do not
become part of the completion (in contrary to the
method in [8]); this is important because the E-
unificationproblems in Definition 7 that share the
same set of equalities can, thus, be solved using
a single completion. Secondly, simultaneous E-
unification problems are solved by searching for
common specializations of solutions to its com-
ponents; this is of advantage, because the diffe-
rent E-unification problems consist of the same
components.

Using algorithms based on solving simulta-
neous rigidE-unification problems, all branches
of a tableau are closed simultaneously. Another
possibility, that is easier to implement, is to close
the branches one after the other; the first sub-
stitution found to close a branch Bi is applied
to the whole tableau. If, later on, it is not pos-
sible to close a branch Bj (j > i), backtracking
is initiated to compute further closing substituti-
ons for Bi. This method leads to a correct and
complete calculus, provided the search for fur-
ther substitutions closing a branch is limited. To
preserve completeness the limit has to be incre-
mented if no proof is found.

It is, however, more efficient to handle all (or
several) branches of a tableau in parallel. Then,
the information contained in the branches can be
used simultaneously. Backtracking can be avoi-
ded and the search space can be restricted. For
example, it is often possible to recognize branches
for which only one closing substitution exists;
these substitutions can be applied immediately,
before other branches are closed.

If a completion-based method is used to solve
the E-unification problems extracted from a ta-
bleau, it is advantageous to combine the com-
pletion process and the expansion of the tableau.
Thus, if a �-rule is applied, the (partial) comple-
tion that has been computed up to that point can
be shared by the new subbranches and has only
to be computed once.

On the other hand, the handling of equality is
much easier to implement if it is separated from
the expansion of tableaux [4, 7]: First, the (classi-
cal) tableau expansion rules are applied until the
tableau is exhausted (observing a limit for 
-rule
applications). Then, the E-unification problems
are extracted and solved (resp. the equality ex-
pansion rules are applied).
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