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Abstract. Inthispaper we describe how a combi-
nation of the classical “universa” F-unification
and “rigid” F-unification, called “mixed” F-uni-
fication, can be used to efficiently handle equality
in universal formula semantic tableaux, that are
an extension of free variable tableaux.

1 Introduction

One of the main goas of Automated Deduc-
tionis to efficiently handle first-order logic with
equality. In this paper we describe how “mixed”
F-unification [2], a combination of the classical
“universal” F-unificationand“rigid” F-unificati-
on [8], can be used to efficiently handle equality
in universal formula semantic tableaux [4], that
are an extension of free variable tableaux [7].

Constructing a tableau for a first-order for-
mula ¢ can be considered a search for a model
of ¢. Therefore, as part of the tableau calculus,
methods have to be employed for: (i) adding for-
mulae that are valid in a modd M of ¢ to the
tableau branch that correspondsto M (i.e., that
isapartia definition of M), and (ii) recognizing
formulaeor setsof formulaethat areunsatisfiable;
these formul ae close branches on which they oc-
cur.

In canonical models, on the one hand, addi-
tiona formulae are vaid and, thus, have to be
added toabranch: If P(a) and a =~ b aretrueina
canonical model M, then M isamodel of P(b),
too. On the other hand, there are additional in-
consistencies: ~(a = «) isfalsein al canonical
models.

! Amodel M = (D, T) (withdomain D andinterpre-
tation 7) iscalled normal iff Z(=) istheidentity re-
lation on D (the binary predicate symbol ~ denotes
equality such that no confusion with the meta-level
equality predicate = can arise). A model is called
canonical iff, moreover, for every d € D thereis a
term ¢ suchthat Z(¢) = d.

Accordingly, therearetwo techniquesfor hand-
ling equality in semantic tableaux: The first and
more strai ghtforward method is to define additio-
nal tableau rulesfor expanding branchesby all the
formulae valid in the canonical modelsthey (par-
tially) define; then very simple additional closure
rulescan beused [11, 13, 7]. The second possibi-
lity isto use amore complicated notion of closed
tableaux: F-unificationisused to decide whether
atableau branch is unsatisfiablein canonical mo-
dels and, therefore, closed. Then, no additional
expansion rules are needed.

The common problem of al the methods for
handling equality, that are based on additional
tableau expansion rules, isthat there are virtualy
no restrictions on the “application” of equalities.
Thisleadsto avery large search space; even very
simple problems cannot be solved in reasonable
time.

It is difficult to employ more elaborate and ef-
ficient methods for handling equality in semantic
tableaux, such as completion-based approaches,
becauseit isnearly impossibleto transform these
methods into (sufficiently) simple tableau expan-
sionrules?

Contrary to that, arbitrary agorithms can be
used, if the handling of equality isreduced to sol-
ving F-unification problems. In [4] it has been
shown that methods based on F-unification are
much more efficient than that based on additio-
nal rules—even if the comparatively inefficient
algorithm from [4] isused to solve F-unification
problems.

In the next section, we present the different
versions of F-unification that are important for
adding equality to semantic tableaux. Section 3

2 R. J. Browne [6] describes a completion-based me-
thod for handling equality, that uses additional ex-
pansion rules. It is, however, only applicable to the
ground version of tableaux and cannot be extended
to free variable tableaux.



gives a short introduction into universal formula
tableaux. In Section 4 we describe the F-unifi-
cation problems that are extracted from tableaux
and have to be solved; and, findly, in Section 5
different methods for solving these F-unification
problems and their efficient implementation are
discussed.

We use the standard notions of free and bound
variable, (grounding) substitution, model, logical
consequence (denoted by =), satisfiability and
tautology. All occurring substitutions have a fi-
nite domain; thus, a substitution « with domain
{r1,...,z,}isdenoted by {z1/t1,..., %0 /tn},
i.e. o(x;) =1; (1 <i<n). Therestriction of o
toaset V' of variablesis denoted by oy .

2 Universal, Rigid and Mixed
E-Unification

Theintention of defining different versions of F-
unificationisto alow equalitiesto be used diffe-
rently in aproof: in the universa case the equali-
ties can be “applied” severa times with different
instantiationsfor the variablesthey contain; inthe
rigid case they can be “applied” more than once
but with only one instantiation for each variable
they contain; in the mixed case there are both
typesof variables. To distinguishthe different ty-
pes of variables syntactically, equalities can be
explicitly quantified:

Definition 1. A mixed F-unification problem
(F,s,1)

consistsof afiniteset 7 of equalitiesof theform
(Vx1) - - (Y, )(I = ) and terms s and ¢.3

A subgtitution o is a solution to the problem,

iff

Fo | (so = to) |
where the free variables in Ko are “held rigid”,
i.e. treated as constants.

A mixed F-unification problem (' s, ) iscal-
led purely universal if there are no free variables
in ¥, and purely rigid if there are no bound va
riablesin F.

The major differences between this definition
and that generdly given in the (extensive) litera-
tureon (universal) F-unification are:

3 Without making a real restriction, we require the
sets of bound and free variablesin the problem to be
disjoint.

1. The equdlitiesin F are explicitly quantified
(instead of considering al thevariablesin £
to beimplicitly universally quantified).

2. In difference to the “norma” notion of lo-
gica consequence, freevariablesin Fo are
“held rigid”.

3. The substitution & is applied not only to the
terms s und ¢ but aswell tothe set F.

Examplel. All substitutionsare solutionsto the
purely universal problem

{(F)(F(x) ~ 2}, gl Fla), F(B)), gla.b) -

The (very similar) purely rigid problem

{(f(w) = 2)}, g(f(a), f(b)), g(a,b))

has no solution.
{y/b} isasolutionto the mixed problem

{va)(f(z,y) = f(y,2)}, fla,b), f(b,a)) ;

sincethevariable = isquantified, it does not have
to beinstantiated by the unifier.

For handling equality in semantic tableaux, se-
veral F-unification problems have to be solved
simultaneously (one for each branch):

Definition 2. A finite set

(B, s1,42), - o By snitn)t (0> 1)

of mixed F-unification problemsis called simul-
taneous £ -unification problem.

A substitution + is a solution to the simulta
neous problem iff it isa solutionto every compo-
nent <F]k7 S]mfk> (1 < k < 77)

Since purely universal -unification isalready
undecidable, (simultaneous) mixed F-unification
is—in genera—undecidableas well. Isis, howe-
ver, possible to enumerate a compl ete set of most
general unifiers. (Simultaneous) purely rigid F-
unification is decidable [8, 10].*

* Purely rigid E-unification is NP-complete [8]; si-
multaneous purely rigid F-unification is DEXPTI-
ME-complete [10].



3 Universal Formula Tableaux

We use the signed version of semantic tableaux,
i.e, the formulae in tableaux are prefixed with
oneof thesigns T (true) and F (false). Thereis
no restriction on where equdities can occur in
formulae.

There is a tableau rule for each combination
of sign and logica connective (resp. quantifier);
thus, to every signed formulathat is not aliteral
exactly one rule can be applied. We do not list
all therules but only the schemata: «~-rules (con-
junctivetyperules), 3-rules (digunctive), y-rules
(universally quantified), and §-rules (existentially
quantified):®

o p 7
o1 B1| 52 71(y)
o2 y isafreevariable.
b
61(.1:('7717 RN Tﬂ))
f isanew Skolem function symbol, and
r1,...,r, aethefreevariablesin §.

Usingfreevariablequantifier rules [7, 5] iscru-
cia for efficient implementation—even more if
equality has to be handled. When ~-rules are ap-
plied, a new free variable is substituted for the
quantified variable, instead of replacing it by a
ground term, that has to be “guessed” (asin the
ground version of semantic tableaux [15]). Free
variables can later be instantiated “on demand”,
when atableau branch is closed (with or without
using equality).

To prove a formula (7 to be a tautology, we
apply the above rules starting from the initial ta-
bleau that consists of the single formula F ;. A
proof isfound, if all branches of the constructed
tableau are closed simultaneously. We identify a
branch with the set of the formulaeit contains.

Free variable semantic tableaux can be fur-
ther improved by using the concept of univer-
sal formulae [4]: Often, v-formulae—in particu-
lar equalities—have to be used multiply in a ta
bleau proof, with different instantiations for the
free variables they contain. A typica exampleis
the associativity axiom

(V) (P (V) (2 ) -z m - (3 2))

® For example,if o = T (F A G) thenay =T Fand
a=TG; if B=F(FAG) then 1 =F F and
B2 =F Gify =T (Vo) F(x) thenya(t) = T F(1);
it § = F (¥n) F(x) then 1(t) = F F(1).

from group theory. Usually, it has to be applied
severa times with different substitutionsfor =, y
and z to prove even very simple theorems from
group theory. Therefore, in semantic tableaux the
~-rule has to be applied repeatedly to generate
several instances of the axiom each with different
free variables substituted for =, y and z. This,
however, enlarges the search space for a proof.

This problem can at |east partly be avoided by
recognizing formulae (including equalities) that
are“universa”, i.e. that can be used multiply ina
tableau proof with different substitutionsfor the
variables they contain (without affecting sound-
ness):

Definition 3. Let ¢ beasigned formulaon some
tableau branch B and F; the “unsigned version”
of ¢, i.e,if ¢ =T for some & then Fy = (5,
dseif ¢ = FG then Fy = -G

¢ isuniversal with respect to thevariable z iff
the following holds for every normal model M
and every grounding substitution o

If M [ Beo, then M E (V2)Fy))o .

A method 7" for recognizing universal formu-
lae assigns to a tableau branch B and a signed
formula ¢ aset 7(B, ¢) of variables such that:
if

r € T(B,¢)

then

1 ¢€B,
2. ¢ isuniversa w.rt. z.

An important class of universal formulae can
be recognized easily (and the method is easy to
implement):

Example2. 73 isamethod for recognizing uni-
versal formulae where 74 ( B, ¢) contains exactly
the variables » such that the formula ¢ € B has
been added to B

1. by applying a y-rule, and =z is the free va-
riable that has been introduced; or

2. by applying an «-, - or y-rule to a for-
mula ¢’ wherex € T1(B, ¢'),i.e, ¢’ isuni-
versal w.rt. .

A formula (7(«) isrecognized as being universal
w.r.t. » by this method, if new instances G(z’),
G(x"),... can be added to the branch without
affecting other branches or generating new ones.



A free variable tableau 7' (without universal
formulag) is closed if there is a single substi-
tution o such that each branch of 7= contains
complementary formulae. Once formulae are re-
cognized as being universal, this knowledge can
betaken advantage of to makeit easier tofind such
asubgtitution o instantiations of variables w.r.t.
whichtheformul ae used to close abranch are uni-
versal are not takeninto consideration. Soundness
is not affected if this notion of closed tableau is
used [4]; completenessis not affected anyway.

The following is a formal definition of closed
universal formula tableaux without eguality; in
which way this definition has to be changed to
handle equality is described in the next section.

Definition4. Let 7 be a method for recogni-
zinguniversal formulae. A freevariabletableau T
with branches By, . . ., By isclosed iff there are

1. agrounding substitution -, and
2. forl<i<k

(& formulae ¢;,v; € By,

(b) grounding substitutions o;,

such that

1. ¢;0; and v, o; are complementary®;

2. o; differs from o only on the set I/ of va-
riableswith respect to which both ¢, and v;
areuniversa, i.e.

Ti|(Va\l7) = O|(Var\lJ)
where

U="(B;,¢;) NT(B;,¢;) .

4 Extracting E-Unification
Problems from Tableaux

Theequality theory defined by atableau branch B
consists of the equalities on B; they are (expli-
citly) quantified w.r.t. to the variablesw.r.t. which
they can be recognized as being universal:

Definition 5. Let B beatableau branchand 7" a
method for recognizing universal formulae (Defi-
nition 3). Thentheset F( B) of equalitiesconsists
of the equalities

(Va1) - (Van ) (s = 1)

such that

6 Signed formulae are called complementary iff they
areof thefoom T G and F &

1. T (s=t)isformulaon B,
2. {x1,..., 2, } =T(B, T (s t)).

Thereare unification problemsfor eachinequa
lity on a branch B and each pair of atoms that
potentialy close B, i.e., aaomswiththe same pre-
dicate sign and complementary truth value signs:

Definition 6. Let B be atableau branch and 7" a
method for recognizing universal formulae. Then
the set () of unification problems consists ex-
actly of the sets of term pairs:

{{sav, tw), ... (snr tov)}

for each pair
T P(S]_7 .. .,Sn), F P(f,]_7 .. .,fn) cB
of (potentialy closing) atoms such that P # =,
and
{(sv. 1)}
for each inequality
F(s~1)e B .
The subgtitutiony = {z1/y1, . .., Zm/ym | rena
mes all thevariablesz,, ..., z,, in
T(B, T P(s1,...,8:))NT(B,F P(t1,...,1))
(resp. in (A, F (s = 1))); v1,---,Ym &€ NEW
variables.

If one of the problems in the set P(B) of unifi-
cation problems of a branch B has a solution «
(w.rt. the equaities £( B)), Bo is unsatisfiable
in canonical models; therefore the branch B is
closed under thesubstitution «. Thepair of poten-
tially closing atoms corresponding to the solved
unification problem has been proven to actually
be complementary; or the corresponding inequa-
lity has been proven to be inconsistent (provided
the unifier is applied to the tableau).

The following is a formal definition of the si-
multaneous mixed F-unification problems that
have to be solved to close a tableau:

Definition 7. A universal formulatableau 7" with
branches Bi, ..., B is closed iff in the sets of
unification problems P( B;) there are eements

{{(si1, 1), - -, (Sin, o tin, )} € P(B;)

(1< i < k) such that there is a solution to the
simultaneous mixed F-unification problem

{ (F(B1),s11,111), -, (F(B1), 5101, 11n1),

<E(Bk)7sklvtk1>v R <F](Bk)7sknk7tk”k> }
(see Definitions 5 and 6).



Actudly, it is not necessary to split pairs

TP(S]_,...,SH) and F P(f,l,...,f,n)

of potentially complementary atoms into n term
pairs

<Sl7 7L’:|.>7 st <Sn ’ f”)
that have to be unified. Instead the single problem

<P(517 sy Sn)v P(tL .- -77L/n,)>

could be used. That, however, is inefficient, be-
causethen simpler problemscan be solved inde-
pendently.

Fig.1. A free variable tableau for the given formu-
lae (1) to (5). By applying the standard free vari-
able tableau rules, formula (6) is derived from (5),
(7) from (2), (8) from (1), (9) and (20) from (8), and
(12) from (10). Formula (7) is recognized as being
universal w.r.t. » by the method from Example 2.

Example3. As an example we use the tableau
from Figure 1. Its left branch is denoted by B
and itsright branch by B,. If the method for re-
cognizing universal formulae from Example 2 is
used, £( B2) containsthe equalities

bac and (Va)(g(f(x)) ~ ) .
FZ(B1) containsin addition the equality

g(z2) &= f(x2) .

Both P(B1) and P( B,) contain the set

{{9(g(a)), a), (b,e)} -
P(B2) containsin addition the set

{(w2,a)} .

Thetableau is closed (Definition 7), because the
subgtitution o = {x»/a} is a solution to the si-
multaneous mixed F-unification problem

{F(B1), 9(g(a)), a),
<E(Bl)7b7 (3>7

(F(B2), 72, ay} .

5 Solving the E-Unification
Problems Extracted from Tableaux

To solve the F-unification problems that are ex-
tracted fromtableaux, arbitrary a gorithmscan be
used.

The problems extracted from ground tableaux
consist soldly of ground terms. There are very
efficient methods for solving these ground F-
unification problems, that are based on computing
the equivalence classes of the terms to be unified
(w.r.t. to therelation defined by the equalitieson
the branch) [14, 12].

Algorithms based on computing equivalence
classes can be used as well to solve mixed F-
unification problems and, thus, to add equality to
universal formulatableaux [4].

However, for solving non-ground problems, it
is much better to use compl etion-based methods.
Unfortunately, the Unfailing Knuth-Bendix-Al-
gorithm with narrowing, that is generally con-
sidered to be the best agorithm for universal
F-unification, cannot be used to solve rigid or
mixed problems. Compl etion-based methods for
rigid F-unification have been described in [8, 9];
these, however, are non-deterministic and unsui-
ted for implementation, since the “guess’ that is
part of the algorithm is highly complex.

Recently, deterministic completion-based me-
thods have been introduced, both for purely rigid
F-unification [1] and mixed F-unification [2].”

" The method described in [2] has been implemented
as part of the tableau-based theorem prover 37’4P [3].
The implementation is written in Quintus Prolog.
Besides the possibility to prove theorems from pre-
dicatelogic with equality, the F-unification module
can be used “stand alone” to solve simultaneous
mixed F-unification problems. Upon request, the
source codeis available from the author.



Besides being compl etion-based, there are seve-
ral reasons why these methods are well suited
for adding equdlity to free variable semantic ta-
bleaux: Firstly, the terms to be unified do not
become part of the completion (in contrary to the
method in [8]); thisis important because the F-
unification problemsin Definition 7 that sharethe
same set of equalities can, thus, be solved using
a single completion. Secondly, simultaneous F:-
unification problems are solved by searching for
common specializations of solutionsto its com-
ponents; this is of advantage, because the diffe-
rent £-unification problems consist of the same
components.

Using algorithms based on solving simulta-
neous rigid £ -unification problems, all branches
of a tableau are closed simultaneoudly. Another
possibility, that iseasier to implement, isto close
the branches one after the other; the first sub-
stitution found to close a branch B; is applied
to the whole tableau. If, later on, it is not pos-
sibleto close a branch B; (j > #), backtracking
isinitiated to compute further closing substituti-
ons for B;. This method leads to a correct and
complete calculus, provided the search for fur-
ther substitutions closing a branch is limited. To
preserve completeness the limit has to be incre-
mented if no proof isfound.

It is, however, more efficient to handle al (or
severa) branches of atableau in parald. Then,
theinformation contained in the branches can be
used simultaneously. Backtracking can be avoi-
ded and the search space can be restricted. For
exampl e, itisoften possibleto recognize branches
for which only one closing substitution exists;
these substitutions can be applied immediately,
before other branches are closed.

If a completion-based method is used to solve
the F-unification problems extracted from ata-
bleau, it is advantageous to combine the com-
pletion process and the expansion of the tableau.
Thus, if a g-ruleis applied, the (partial) comple-
tion that has been computed up to that point can
be shared by the new subbranches and has only
to be computed once.

On the other hand, the handling of equality is
much easier to implement if it is separated from
the expansion of tableaux [4, 7]: Firgt, the (classi-
cal) tableau expansion rules are applied until the
tableau is exhausted (observing alimit for v-rule
applications). Then, the F-unification problems
are extracted and solved (resp. the equality ex-
pansion rules are applied).
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