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Abstract. In this paper we describe how a combination
of the classical “universal” E-unification and “rigid”E-
unification, called “mixed”E-unification, can be used to
efficiently handle equality in universal formula semantic
tableaux, that are an extension of free variable tableaux.

1 Introduction

In this paper we describe how “mixed”E-unification [2],
a combination of the classical “universal” E-unification
and “rigid” E-unification [8], can be used to efficiently
handle equality in universal formula semantic tableaux
[4], that are an extension of free variable tableaux [7].

There are two techniques for handling equality in
semantic tableaux: The first and more straightforward
method is to define additional tableau rules for expan-
ding branches by all the formulae valid in the canonical
models1 they (partially) define; then very simple addi-
tional closure rules can be used [11, 12, 7]. The second
possibility is to use a more complicated notion of clo-
sed tableaux: E-unification is used to decide whether a
tableau branch is unsatisfiable in canonical models and,
therefore, closed. Then, no additional expansion rules
are needed.

The common problem of all the methods for handling
equality, that are based on additional tableau expansion
rules, is that there are virtually no restrictions on the
“application” of equalities. This leads to a very large
search space; even very simple problems cannot be sol-
ved in reasonable time. Unfortunately, it is difficult to
transform completion-based methods into (sufficiently)
simple tableau expansion rules.2

1 A modelM= hD;Ii (with domain D and interpretation I)
is called normal iffI(�) is the identity relation on D (the bi-
nary predicate symbol � denotes equality such that no con-
fusion with the meta-level equality predicate = can arise).
A model is called canonical iff, moreover, for every d 2 D
there is a term t such that I(t) = d.

2 R. J. Browne [6] describes a completion-based method for
handling equality, that uses additional expansion rules. It is,

Contrary to that, arbitrary algorithms can be used,
if the handling of equality is reduced to solving E-
unification problems. In [4] it has been shown that me-
thods based on E-unification are much more efficient
than that based on additional rules—even if the compa-
ratively inefficient algorithm from [4] is used to solveE-unification problems.

In the next section, we present the different versions ofE-unification that are important for adding equality to se-
mantic tableaux. Section 3 gives a short introductioninto
universal formula tableaux. In Section 4 we describe theE-unification problems that are extracted from tableaux
and have to be solved; and, finally, in Section 5 different
methods for solving these E-unification problems and
their efficient implementation are discussed.

2 Mixed E-Unification

The intention of defining different versions of E-unifi-
cation is to allow equalities to be used differently in a
proof: in the universal case the equalities can be “ap-
plied” several times with different instantiations for the
variables they contain; in the rigid case they can be “ap-
plied” more than once but with only one instantiation for
each variable they contain; in the mixed case there are
both types of variables. To distinguish the different ty-
pes of variables syntactically, equalities can be explicitly
quantified:

Definition 1. A mixed E-unification problemhE; s; ti
consists of a finite set E of equalities of the form(8x1) � � � (8xn)(l � r)
and terms s and t.3

however, only applicable to the ground version of tableaux
and cannot be extended to free variable tableaux.

3 Without making a real restriction, we require the sets of
bound and free variables in the problem to be disjoint.



A substitution � is a solution to the problem, iff4E� j=� (s� � t�) :
The major differences between this definition and that

generally given in the (extensive) literature on (universal)E-unification are:

1. The equalities in E are explicitly quantified (instead
of considering all the variables in E to be implicitly
universally quantified).

2. Instead of the “normal” notion of logical conse-
quence, the strong consequence relation is used,
i.e., free variables in E� are “held rigid”.

3. The substitution � is applied not only to the termss und t but as well to the set E.

Example 1. All substitutions are solutions to the purely
universal problemhf(8x)(f(x) � x)g; g(f(a); f(b)); g(a; b)i :
The (very similar) purely rigid problemhf(f(x) � x)g; g(f(a); f(b)); g(a; b)i
has no solution.fy=bg is a solution to the mixed problemhf(8x)(f(x; y) � f(y; x))g; f(a; b); f(b; a)i ;

since the variable x is quantified, it does not have to be
instantiated by the unifier.

For handling equality in semantic tableaux, several E-
unification problems have to be solved simultaneously
(one for each branch):

Definition 2. A finite setfhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1)
of mixed E-unification problems is called simultaneousE-unification problem.

A substitution � is a solution to the simultaneous pro-
blem iff it is a solution to every component hEk; sk; tki(1 � k � n).

Since purely universal E-unification is already unde-
cidable, (simultaneous) mixedE-unification is—in gene-
ral—undecidable as well. Is is, however, possible to enu-
merate a complete set of most general unifiers. (Simulta-
neous) purely rigid E-unification is decidable [8, 10].5

4 j=� denotes the strong consequence relation, i.e., F j=� G iff
for all interpretations I and for all variable assignments �:
if valI;� (F ) = true then valI;�(G) = true.

5 Purely rigidE-unification is NP-complete [8]; simultaneous
purely rigid E-unification is DEXPTIME-complete [10].

3 Universal Formula Tableaux

We use the signed version of semantic tableaux, i.e., the
formulae in tableaux are prefixed with one of the signsT (true) and F (false). There is no restriction on where
equalities can occur in formulae.

There is a tableau rule for each combination of sign
and logical connective (resp. quantifier); thus, to every
signed formula that is not a literal exactly one rule can be
applied. We do not list all the rules but only the schemata:�-rules (conjunctive type rules), �-rules (disjunctive), 
-
rules (universally quantified), and �-rules (existentially
quantified):6��1�2

��1 �2



1(y)y is a free variable.��1(f(x1; : : : ; xn))f is a new Skolem function symbol, andx1; : : : ; xn are the free variables in �.

Using free variable quantifier rules [7, 5] is crucial
for efficient implementation—even more if equality has
to be handled. When 
-rules are applied, a new free
variable is substituted for the quantified variable, instead
of replacing it by a ground term, that has to be “guessed”
(as in the ground version of semantic tableaux [13]). Free
variables can later be instantiated “on demand”, when a
tableau branch is closed (with or without using equality).

To prove a formula G to be a tautology, we apply the
above rules starting from the initial tableau that con-
sists of the single formula FG. A proof is found, if all
branches of the constructed tableau are closed simulta-
neously. We identifya branch with the set of the formulae
it contains.

Free variable semantic tableaux can be further im-
proved by using the concept of universal formulae [4]:
Often, 
-formulae—in particular equalities—have to be
used multiply in a tableau proof, with different instan-
tiations for the free variables they contain. A typical
example is the associativity axiom from group theory.
Usually, it has to be applied several times to prove even
very simple theorems from group theory. Therefore, in
semantic tableaux the 
-rule has to be applied repeatedly
to generate several instances of the axiom each with dif-
ferent free variables. This, however, enlarges the search
space for a proof.

6 For example, if � = T (F ^G) then �1 = T F and�2 = T G; if � = F (F ^G) then �1 = F F and�2 = F G; if 
 = T (8x)F (x) then 
1(t) = T F (t); if� = F (8x)F (x) then �1(t) = F F (t).



This problem can at least partly be avoided by recogni-
zing formulae (including equalities) that are “universal”,
i.e. that can be used multiply in a tableau proof with diffe-
rent substitutions for the variables they contain (without
affecting soundness):

Definition 3. Let � be a signed formula on some tableau
branch B and F� the “unsigned version” of �, i.e., if� = T G for some G then F� = G, else if � = FG thenF� = :G.� is universal with respect to the variable x iff:B j=� (8x)F� :

A method � for recognizing universal formulae as-
signs to a tableau branch B and a signed formula � a set� (B; �) of variables such that:
if x 2 � (B; �)
then

1. � 2 B,
2. � is universal w.r.t. x.

An important class of universal formulae can be reco-
gnized easily (and the method is easy to implement):

Example 2. �1 is a method for recognizing universal for-
mulae where �1(B; �) contains exactly the variables x
such that the formula � 2 B has been added to B

1. by applying a 
-rule, and x is the free variable that
has been introduced; or

2. by applying an�-, �- or
-rule to a formula �0 wherex 2 �1(B; �0), i.e., �0 is universal w.r.t. x.

A formula �(x) is recognized as being universal w.r.t. x
by this method, if new instances �(x0), �(x00); : : : can be
added to the branch without affecting other branches or
generating new ones.

A free variable tableau T (without universal formu-
lae) is closed if there is a single substitution � such that
each branch of T� contains complementary formulae.
Once formulae are recognized as being universal, this
knowledge can be taken advantage of to make it easier
to find such a substitution �: instantiations of variables
w.r.t. which the formulae used to close a branch are uni-
versal are not taken into consideration. Soundness is not
affected if this notion of closed tableau is used [4]; com-
pleteness is not affected anyway.

The following is a formal definition of closed uni-
versal formula tableaux without equality; in which way
this definition has to be changed to handle equality is
described in the next section.

Definition 4. Let � be a method for recognizing univer-
sal formulae. A free variable tableau T with branchesB1; : : : ; Bk is closed iff there are

1. a grounding substitution �, and
2. for 1 � i � k

(a) formulae �i;  i 2 Bi,
(b) grounding substitutions �i,

such that

1. �i�i and  i�i are complementary7;
2. �i differs from � only on the set U of variables with

respect to which both �i and  i are universal, i.e.8�ij(VarnU) = �j(VarnU) ;
where U = � (Bi; �i) \ � (Bi;  i) :

4 Extracting E-Unification Problems
from Tableaux

The equality theory defined by a tableau branch B con-
sists of the equalities on B; they are (explicitly) quanti-
fied w.r.t. to the variables w.r.t. which they can be reco-
gnized as being universal:

Definition 5. Let B be a tableau branch and � a method
for recognizing universal formulae (Definition 3). Then
the set E(B) of equalities consists of the equalities(8x1) � � � (8xn)(s � t)
such that

1. T (s � t) is formula on B,
2. fx1; : : : ; xng = � (B;T (s � t)).
There are unificationproblems for each inequalityon a

branch B and each pair of atoms that potentially close B,
i.e., atoms with the same predicate sign and complemen-
tary truth value signs:

Definition 6. Let B be a tableau branch and � a method
for recognizing universal formulae. Then the set P(B)
of unification problems consists exactly of the sets of
term pairs: fhs1�; t1�i; : : : ; hsn�; tn�ig

7 Signed formulae are called complementary iff they are of
the form T G and F G

8 �jV denotes the restriction of a substitution � to a set V of
variables.



for each pairT P (s1; : : : ; sn);F P (t1; : : : ; tn) 2 B
of (potentially closing) atoms such that P 6= �, andfhs�; t�ig
for each inequality F (s � t) 2 B :
The substitution � = fx1=y1; : : : ; xm=ymg renames all
the variables x1; : : : ; xm in� (B;T P (s1; : : : ; sn)) \ � (B;F P (t1; : : : ; tn))
(resp. in � (A;F (s � t))); y1; : : : ; ym are new variables.

If one of the problems in the set P(B) of unification
problems of a branch B has a solution � (w.r.t. the equa-
lities E(B)), B� is unsatisfiable in canonical models;
therefore the branch B is closed under the substitution �.
The pair of potentially closing atoms corresponding to
the solved unification problem has been proven to ac-
tually be complementary; or the corresponding inequa-
lity has been proven to be inconsistent (provided the
unifier is applied to the tableau).

The following is a formal definition of the simulta-
neous mixedE-unification problems that have to be sol-
ved to close a tableau:

Definition 7. A universal formula tableau T with bran-
ches B1; : : : ; Bk is closed iff in the sets of unification
problems P(Bi) there are elementsfhsi1; ti1i; : : : ; hsini ; tiniig 2 P(Bi)(1 � i � k) such that there is a solution to the simulta-
neous mixed E-unification problemf hE(B1); s11; t11i; : : : ; hE(B1); s1n1; t1n1i;

...
...

...hE(Bk); sk1; tk1i; : : : ; hE(Bk); sknk; tknki g
(see Definitions 5 and 6).

Using algorithms based on solving simultaneous rigidE-unification problems, all branches of a tableau are
closed simultaneously. Another possibility, that is easier
to implement, is to close the branches one after the other;
the first substitutionfound to close a branch Bi is applied
to the whole tableau. If, later on, it is not possible to close
a branch Bj (j > i), backtracking is initiated to compute
further closing substitutions for Bi. This method leads
to a correct and complete calculus, provided the search
for further substitutions closing a branch is fair.

(1) T (8x)((g(x) � f(x)) _ :(x � a))
(2) T (8x)(g(f(x)) � x)

(3) T (b � c)
(4) T P (g(g(a)); b)

(5) T :P (a; c)
(6) F P (a; c)

(7) T (g(f(x1)) � x1)
(8) T ((g(x2) � f(x2)) _ :(x2 � a))

(9) T (g(x2) � f(x2))!! aa
(10) T :(x2 � a)
(11) F (x2 � a)

Fig. 1. A free variable tableau for the given formulae (1)
to (5). By applying the standard free variable tableau rules,
formula (6) is derived from (5), (7) from (2), (8) from (1),
(9) and (10) from (8), and (11) from (10). Formula (7) is rec-
ognized as being universal w.r.t. x by the method from Exam-
ple 2.

Example 3. As an example we use the tableau from Fi-
gure 1. Its left branch is denoted by B1 and its right
branch by B2 . If the method for recognizing universal
formulae from Example 2 is used, E(B2) contains the
equalities b � c and (8x)(g(f(x)) � x) :E(B1) contains in addition the equalityg(x2) � f(x2) :
Both P(B1) and P(B2) contain the setfhg(g(a)); ai; hb; cig :P(B2) contains in addition the setfhx2; aig :
The tableau is closed (Definition 7), because the sub-
stitution � = fx2=ag is a solution to the simultaneous
mixed E-unification problemfhE(B1); g(g(a)); ai;hE(B1); b; ci;hE(B2); x2; aig :



5 Conclusion

The handling of equality by solving E-unification pro-
blems can be combined with virtually all refinements of
tableau, such as regularity, links, lemma generation, etc.

In addition, arbitrary algorithms can be used to solve
the mixedE-unification problems that are extracted from
tableaux. One possibility to do this, is to compute the
equivalence classes of the terms to be unified (w.r.t. to
the relation defined by the equalities on the branch) [4].

It is, however, much better to use completion-based
methods. Unfortunately, the Unfailing Knuth-Bendix-
Algorithm with narrowing, that is generally considered to
be the best algorithm for universal E-unification, cannot
be used to solve rigid or mixed problems. Completion-
based methods for rigidE-unification have been descri-
bed in [8, 9]; these, however, are non-deterministic and
unsuited for implementation, since the “guess” that is
part of the algorithm is highly complex.

Deterministic completion-based methods have been
introduced recently, both for purely rigid E-unification
[1] and mixedE-unification [2].9 Besides being comple-
tion-based, there are several reasons why these methods
are well suited for adding equality to free variable se-
mantic tableaux: Firstly, the terms to be unified do not
become part of the completion (in contrary to the method
in [8]); this is important because the E-unification pro-
blems in Definition 7 that share the same set of equalities
can, thus, be solved using a single completion. Secondly,
simultaneous E-unification problems are solved by se-
arching for common specializations of solutions to its
components; this is of advantage, because the differentE-unification problems consist of the same components.

If a completion-based method is used to solve theE-unification problems extracted from a tableau, it is
advantageous to combine the completion process and
the expansion of the tableau. Thus, if a �-rule is applied,
the (partial) completion that has been computed up to
that point can be shared by the new subbranches and
has only to be computed once. The question, whether
handling equality usingE-unification is really superior to
other methods, will remain open until this improvement
is added to one of the existing implementations (or a new
one).

9 The method described in [2] has been implemented as part

of the tableau-based theorem prover 3TAP [3]. The imple-
mentation is written in Prolog. Besides the possibility to
prove theorems from predicate logic with equality, the E-
unification module can be used “stand alone” to solve si-
multaneous mixed E-unification problems. Upon request,
the source code is available from the author.
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