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Abstract. In this paper we describe how a combination
of the classical “universal” F-unificationand “rigid” F-
unification, called “mixed” F-unification, can be used to
efficiently handle equality in universal formulasemantic
tableaui, that are an extension of free variable tableaux.

1 Introduction

Inthispaper wedescribehow “mixed” F-unification [2],
a combination of the classical “universal” F-unification
and “rigid” F-unification [8], can be used to efficiently
handle equality in universal formula semantic tableaux
[4], that are an extension of free variable tableaux [7].

There are two techniques for handling equdity in
semantic tableaux: The first and more straightforward
method is to define additiona tableau rules for expan-
ding branches by all the formulae valid in the canonical
models' they (partialy) defing; then very simple addi-
tional closure rules can be used [11, 12, 7]. The second
possibility is to use a more complicated notion of clo-
sed tableaux: F-unificationis used to decide whether a
tableau branch is unsatisfiable in canonical models and,
therefore, closed. Then, no additiona expansion rules
are needed.

The common problem of al the methods for handling
equality, that are based on additiona tableau expansion
rules, is that there are virtualy no restrictions on the
“application” of equalities. This leads to a very large
search space; even very simple problems cannot be sol-
ved in reasonable time. Unfortunately, it is difficult to
transform compl etion-based methods into (sufficiently)
simple tableau expansion rules?

1 Amodel M = (D, T) (withdomain D andinterpretation 7)
iscalled normal iff Z(=) istheidentity relationon D (thebi-
nary predicate symbol ~ denotes equality suchthat no con-
fusion with the meta-level equality predicate = can arise).
A model is called canonical iff, moreover, for every d € D
thereisaterm ¢ suchthat Z(t) = d.

2R.J. Browne [6] describes a completion-based method for
handling equality, that uses additional expansionrules. It is,

Contrary to that, arbitrary algorithms can be used,
if the handling of equdity is reduced to solving F-
unification problems. In [4] it has been shown that me-
thods based on F-unification are much more efficient
than that based on additiona rules—even if the compa
ratively inefficient algorithm from [4] is used to solve
F-unification problems.

Inthe next section, we present the different versions of
F-unification that areimportant for adding equality to se-
manti c tabl eauix. Section 3 givesashort introductioninto
universal formulatableaux. In Section 4 we describe the
F-unification problems that are extracted from tableaux
and have to be solved; and, finaly, in Section 5 different
methods for solving these F-unification problems and
their efficient implementation are discussed.

2 Mixed E-Unification

The intention of defining different versions of F-unifi-
cation is to allow equalities to be used differently in a
proof: in the universal case the equalities can be “ap-
plied” several times with different instantiationsfor the
variablesthey contain; intherigid case they can be “ap-
plied” morethan once but with only oneinstantiationfor
each variable they contain; in the mixed case there are
both types of variables. To distinguish the different ty-
pes of variables syntactically, equaitiescan be explicitly
guantified:

Definition 1. A mixed F-unification problem
(F,s.1)
consistsof afiniteset ' of equalitiesof theform
(Vrg) -~ (V) (I 2 )

andterms s and .3

however, only applicable to the ground version of tableaux
and cannot be extended to free variable tableaux.

8 Without making a real restriction, we require the sets of
bound and free variables in the problem to be digjoint.



A substitution + is a solution to the problem, iff4

Fo B (so = ta) .

The mgjor differences between thisdefinition and that
generaly giveninthe(extensive) literatureon (universal)
F-unification are:

1. Theequalitiesin F areexplicitly quantified (instead
of considering al thevariablesin F tobeimplicitly
universally quantified).

2. Instead of the “norma” notion of logical conse-
guence, the strong conseguence relation is used,
i.e, freevariablesin Fo are“heldrigid”.

3. The substitution « is applied not only to the terms
sund# but aswell totheset .

Examplel. All substitutionsare solutionsto the purely
universal problem

() (f(x) & )}, g(f(a), F(B)). g(a,b)) -
The (very similar) purely rigid problem

{(f(w) = 2)}, g(f(a), f(b)), g(a,b))

has no solution.
{y/b} isasolution to the mixed problem

{vVa)(f(z,y) = f(y,2)}, fa,b), f(b,a)) ;

since the variable = is quantified, it does not have to be
instantiated by the unifier.

For handling equality in semantic tableaux, several F-
unification problems have to be solved simultaneously
(one for each branch):

Definition 2. A finiteset

{<E17 Sl7tl>7 st <En7 Sﬂw""n)}

of mixed F-unification problemsis called simultaneous
F-unification problem.

A substitution o isa solution to the simultaneous pro-
blem iff it is a solution to every component (Fy,, sg, t4)
(1<k<n).

(n> 1)

Since purely universal F-unification is aready unde-
cidable, (smultaneous) mixed F-unificationis—ingene-
ra—undecidableaswell. Isis, however, possibleto enu-
merate acompl ete set of most general unifiers. (Simulta:
neous) purely rigid F-unification is decidable [8, 10].5

4 |2 denotes the strong consequencerelation, i.e., F |2 G iff
for al interpretations 7 and for all variable assignments 3:
if valz s(F) = truethen val; 5(G) = true.

5 Purely rigid E-unification isNP-complete [8]; simultaneous
purely rigid £-unification is DEXPTIME-complete [10].

3 Universal Formula Tableaux

We use the signed version of semantic tableau, i.e., the
formulae in tableaux are prefixed with one of the signs
T (true) and F (false). Thereis no restriction on where
equalities can occur in formulae.

There is a tableau rule for each combination of sign
and logical connective (resp. quantifier); thus, to every
signed formulathat isnot aliteral exactly onerulecan be
applied. Wedo not list all therulesbut only the schemata:
a-rules(conjunctivetyperules), g-rules(digunctive), v-
rules (universally quantified), and é-rules (existentialy
quantified):®

o B Y
o1 FAEA 71(y)
o2 y isafreevariable.
b
61(.1:('7717 RN Tﬂ))
f isanew Skolem function symbol, and
r1,...,r, aethefreevariablesin .

Using free variable quantifier rules[7, 5] is crucia
for efficient implementation—even moreif equality has
to be handled. When ~-rules are applied, a new free
variableis substituted for the quantified variable, instead
of replacing it by agroundterm, that hasto be “ guessed”
(asintheground version of semantictableaux [13]). Free
variables can later be instantiated “on demand”, when a
tableau branchisclosed (with or without using equality).

To prove aformula (& to be a tautology, we apply the
above rules starting from the initial tableau that con-
sists of the single formulaF ;. A proof is found, if al
branches of the constructed tableau are closed simulta-
neously. Weidentify abranch withthe set of theformulae
it contains.

Free variable semantic tableaux can be further im-
proved by using the concept of universal formulae [4]:
Often, v-formulae—in particular equalities—have to be
used multiply in a tableau proof, with different instan-
tigtions for the free variables they contain. A typica
example is the associativity axiom from group theory.
Usually, it has to be applied several timesto prove even
very simple theorems from group theory. Therefore, in
semantic tableaux they-rule hasto be applied repeatedly
to generate several instances of the axiom each with dif-
ferent free variables. This, however, enlarges the search
space for a proof.

®For example, if =T (FAG) then a1 =TF and

a;=TG@; if 3=F(FAG) then pi=FF and
Ba=F @, if v=T(Ve)F(x) then y1(t) =T F(¢); if
§ = F (Va)F(x) then61(1) = F F(1).



Thisproblem can at |east partly beavoided by recogni-
zing formulae (including equalities) that are “ universal”,
i.e. that can be used multiply in atableau proof with diffe-
rent substitutionsfor the variables they contain (without
affecting soundness):

Definition 3. Let ¢ beasigned formulaon some tableau
branch B and F; the “unsigned version” of ¢, i.e, if
¢ =T (G forsome (G then Fy = (7, eseif ¢ = F (G then
Fy = —G.

¢ isuniversal with respect to the variable = iff:

R ':O (VT)F¢ .

A method 7 for recognizing universal formulae as-
signsto atableau branch B and asigned formula ¢ a set
T(B, ¢) of variables such that:
if

r €T(B,¢)

then

1 ¢€B,
2. ¢ isuniversa w.rt. z.

Animportant class of universal formulae can be reco-
gnized easily (and the method is easy to implement):

Example2. 73 isamethod for recognizing universal for-
mulae where 731 (B, ¢) contains exactly the variables
such that theformula¢ € B hasbeen added to B

1. by applying av-rule, and = isthe free variable that
has been introduced; or

2. by applyingana-, §- or y-ruletoaformula ¢’ where
r e Ni(B,¢"),i.e, ¢ isuniversal wirt. x.

A formula¢(x) isrecognized as being universal w.r.t. x
by thismethod, if new instances ¢(x'), ¢(x"), . . . can be
added to the branch without affecting other branches or
generating new ones.

A free variable tableau 7' (without universal formu-
lae) is closed if thereisasingle substitution o such that
each branch of 7o contains complementary formulae.
Once formulae are recognized as being universal, this
knowledge can be taken advantage of to make it easier
to find such a subgtitution o instantiations of variables
w.r.t. which the formul ae used to close a branch are uni-
versal are not taken into consideration. Soundnessis not
affected if thisnotion of closed tableau isused [4]; com-
pletenessis not affected anyway.

The following is a forma definition of closed uni-
versal formula tableaux without equality; in which way
this definition has to be changed to handle equdity is
described in the next section.

Definition4. Let 7" be amethod for recognizing univer-
sa formulae. A free variable tableau 7" with branches
Bi, ..., By isclosed iff there are

1. agrounding substitution -, and
2. forl<i<k

(& formulae ¢;,v; € By,

(b) grounding substitutions o,

such that

1. ¢;0; and +;o; are complementary”;
2. o, differsfrom o only ontheset 7 of variableswith
respect to which both ¢; and +; are universal, i.e®

Ti|(Va\U7) = T|(Va\l7)
where

U=7(B;,¢;)NT(B;,¢;) .

4 Extracting E-Unification Problems
from Tableaux

The equality theory defined by a tableau branch B con-
sistsof the equalitieson B; they are (explicitly) quanti-
fied w.r.t. to the variables w.r.t. which they can be reco-
gnized as being universd:

Definition 5. Let B beatableau branch and 7" amethod
for recognizing universal formulae (Definition 3). Then
theset //( B) of equalities consists of the equalities

(Va1) - (Vo) (s = 1)
such that

1. T (s=t)isformulaon B,
2. {x1,..., 2, =T(B, T (s & t)).

There are unification problemsfor each inequality ona
branch B and each pair of atomsthat potentially close B,
i.e., atomswith the same predicate sign and complemen-
tary truthvalue signs:

Definition 6. Let B beatableau branch and 7" amethod
for recognizing universal formulae. Then the set P(B)
of unification problems consists exactly of the sets of
term pairs:

{{sav, tw), ... (snr tov)}

7 Signed formulae are called complementary iff they are of
theform T G and F GG

8 7} denotes the restriction of a substitution o to aset V' of
variables.



for each pair

T P(S]_7 . ..,Sn), F P(f,]_7 . ..,f,n) eRB

of (potentially closing) atoms such that P #+ =, and
{{sv, 1)}
for each inequality
F(s=t)eB .

The substitution v = {21/ y1, . .
thevariables z, . .

T [Ym + renames al
Ty N

T(B, T P(s1, ...,

(resp. inT(A,F (s = 1))); y1, - - -

$0))NY(B,F P(ty, ... t,))

, Y ArEeNew variables,

If one of the problems in the set P( ) of unification
problemsof abranch B hasasolution + (w.r.t. the equa-
lities 77(R)), Be is unsatisfiable in canonical models;
thereforethebranch B isclosed under the substitution .
The pair of potentially closing atoms corresponding to
the solved unification problem has been proven to ac-
tually be complementary; or the corresponding inequa-
lity has been proven to be inconsistent (provided the
unifier is applied to the tableau).

The following is a forma definition of the simulta:
neous mixed F-unification problemsthat have to be sol-
ved to close atableau:

Definition 7. A universal formulatableau 7" with bran-
ches By, ..., By isclosed iff in the sets of unification
problems P ( B;) there are lements

{{si1, 1)y - - -y (Sing  tin,) } € P(B;)

(1 <i < k) such that there is a solution to the simulta-
neous mixed £-unification problem

{ (F(B1),s11,t11), ., (F(B1), 5101, t1n1),

<E(Bk)7sklvtk1>v R <F](Bk)7sknk7tk”k> }
(see Definitions 5 and 6).

Using agorithmshbased on solving simultaneousrigid
E-unification problems, all branches of a tableau are
closed simultaneoudly. Another possibility, that iseasier
toimplement, isto closethe branches one after the other;
thefirst substitutionfoundto closeabranch B; isapplied
tothewholetableau. If, later on, itisnot possibleto close
abranch B; (j > 1), backtrackingisinitiated to compute
further closing substitutions for B;. This method leads
to a correct and complete caculus, provided the search
for further substitutionsclosing a branch isfair.

(@) T (¥o)((g(x) = f(2)) v ~(r = a))
@) T () (o F(2) ~ )
€) T(lb ~ )
@ T Plafa(a)).)

|
(5) T—=P(a,c)

|
6) F P(a,c)

|
() T(g(f(w1)) = 71)
|
®) T((g(w2) = f(72)) V =(w2 = a))
/

\
) T (g(r2) = f(r2)) (10) T —(w2 =~ a)

|
(11) F(z2=a)

Fig.1. A free variable tableau for the given formulae (1)
to (5). By applying the standard free variable tableau rules,
formula (6) is derived from (5), (7) from (2), (8) from (1),
(9) and (10) from (8), and (11) from (10). Formula (7) isrec-
ognized as being universal w.r.t. » by the method from Exam-
ple 2.

Example3. As an example we use the tableau from Fi-
gure 1. Its left branch is denoted by B; and its right
branch by B,. If the method for recognizing universal
formulae from Example 2 is used, F/(B;) contains the
equaities

ba e and (Ya)(g(f(x) = x) .
FZ(B1) containsin addition the equality
g(x2) ~ f(x2) .
BothP(B1) and P(B;) contain the set
{{g(g(a)), a), (b,e)} -
P(B2) containsin addition the set
{(r2,a)} .
The tableau is closed (Definition 7), because the sub-

stitution & = {x2/a} is a solution to the simultaneous
mixed F-unification problem

{F(B1), g(g(a)), a),
<E(Bl)7b7 (3>7

(F(B2), 72, ay} .



5 Conclusion

The handling of equdity by solving F-unification pro-
blems can be combined with virtually al refinements of
tableau, such as regularity, links, lemma generation, etc.

In addition, arbitrary algorithms can be used to solve
themixed F-unification problemsthat are extracted from
tableaux. One possibility to do this, is to compute the
equivalence classes of the terms to be unified (w.r.t. to
the relation defined by the equalities on the branch) [4].

It is, however, much better to use completion-based
methods. Unfortunately, the Unfailing Knuth-Bendix-
Algorithmwith narrowing, that isgenerally consideredto
be the best algorithm for universal -unification, cannot
be used to solve rigid or mixed problems. Completion-
based methods for rigid £ -unification have been descri-
bed in [8, 9]; these, however, are non-deterministic and
unsuited for implementation, since the “guess’ that is
part of the algorithmis highly complex.

Deterministic completion-based methods have been
introduced recently, both for purely rigid F-unification
[1] and mixed £ -unification [2].° Besides being comple-
tion-based, there are severa reasons why these methods
are well suited for adding equality to free variable se-
mantic tableaux: Firstly, the terms to be unified do not
become part of the compl etion (in contrary to themethod
in [8]); thisis important because the 7-unification pro-
blemsin Definition 7 that sharethe same set of equalities
can, thus, be solved using asingle completion. Secondly,
simultaneous F-unification problems are solved by se-
arching for common specializations of solutions to its
components; this is of advantage, because the different
F-unification problems consist of the same components.

If a completion-based method is used to solve the
E-unification problems extracted from a tableau, it is
advantageous to combine the completion process and
the expansion of thetableau. Thus, if a3-ruleisapplied,
the (partial) completion that has been computed up to
that point can be shared by the new subbranches and
has only to be computed once. The question, whether
handling equality using F-unificationisreally superior to
other methods, will remain open until thisimprovement
isadded to one of the existing implementations (or anew
one).

% The method described in [2] has been implemented as part
of the tableau-based theorem prover 37’4P [3]. The imple-
mentation is written in Prolog. Besides the possibility to
prove theorems from predicate logic with equality, the F-
unification module can be used “stand alone” to solve si-
multaneous mixed F-unification problems. Upon request,
the source code is available from the author.
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