
The Tableau-based Theorem Prover 3TAPVersion 4.0Bernhard Beckert, Reiner H�ahnle, Peter Oel, Martin SulzmannUniversity of KarlsruheInstitute for Logic, Complexity and Deduction SystemsAm Fasanengarten 5, 76128 Karlsruhe, Germanyfbeckert,haehnle,oel,sulzg@ira.uka.dehttp://i12www.ira.uka.de/~threetap/Overview3TAP is a tableau-based theorem prover for many-valued �rst-order logics withsorts (in the two-valued version with equality); it is implemented in Prolog.This paper gives an overview of the system with a special focus on the newfeatures of 3TAP Version 4.0, including: e�cient completion-based equality rea-soning, methods for handling redundant axiom sets, utilization of pragmaticinformation contained in axioms to rearrange the search space, and a graphicaluser interface for controlling 3TAP and visualizing its output.3TAP has been developed at the University of Karlsruhe. In 1989 the projectstarted in cooperation with the Institute for Knowledge Based Systems of IBMGermany. Since 1992 the system is maintained and improved as part of a newproject at the University of Karlsruhe funded by the Deutsche Forschungsge-meinschaft (DFG).Supported Logic(s): Speci�cation, Syntax, and Semantics3TAP is able to handle full �rst-order logics with any �nite number of truth val-ues. Hierarchical (tree-shaped) sorts attached to terms are supported. In thetwo-valued case, special handling of the equality predicate is provided. Cur-rently, versions for classical �rst-order logic, for a certain three-valued �rst-orderlogic [18] and for a seven-valued propositional logic [11] are speci�ed. It is pos-sible either to prove a theorem or to try to check the consistency of the axioms.The user speci�es the input as a set of axioms and theorems contained in aknowledge base �le; the formulae do not have to be in any normal form. \if-then"and \if-then-else" connectives can occur in the input to rearrange the searchspace such as to re
ect their particular pragmatics, that di�ers from materialimplication. Furthermore, an ordering on constant and function symbols can bespeci�ed in the knowledge base.Problems from the TPTP problem library [20] can be directly loaded. Theyare automatically converted into 3TAP format.



The Calculus3TAP 's calculus is based on free variable semantic tableaux [8, 15] (with Skolemfunctions). Using free variable quanti�er rules is crucial for e�cient implemen-tation|even more if equality has to be handled. They reduce the number ofpossibilities to proceed at each step in the construction of a tableau proof andthus the size of the search space. When universal quanti�er rules are applied, anew free variable is substituted for the quanti�ed variable, instead of replacingit by a ground term, that has to be \guessed". Free variables can later be instan-tiated \on demand", when a tableau branch is closed or an equality is appliedto expand a branch.For replacing an existentially quanti�ed variable by a Skolem term, 3TAPuses the following rule: The term needs not contain all the free variables on thecurrent branch; rather it su�ces to include just the free variables occurring inthe quanti�ed formula (this has been proven to be sound in [12]). In addition,the same function symbol is used for skolemizing formulae that are identical upto variable renaming [3]. This more subtle rule for existential quanti�ers leadsto an easier implementation and can yield shorter proofs.To avoid unnecessary instantiations, two kinds of free variables are distin-guished, namely universal and rigid variables. Informally speaking, a variable isconsidered to be universal in a formula �, if a copy of � could be deduced andadded to the current branch without causing any branching of the tableau. Otherfree variables are considered to be rigid. Free variables marked as universal donot become instantiated when used in a branch closure or equality application.This feature allows 3TAP to �nd shorter proofs.A na��ve approach to theorem proving in many-valued logic would build aseparate tableau for each non-designated truth value in order to refute a formula.3TAP uses the concept of truth value sets-as-signs introduced in [9] (see [6, 10]for details). As a consequence, 3TAP needs to build merely one tableau even inthe many-valued case.Another feature of 3TAP is the generation of local lemmata [7, 13]: If a tableaurule generates branch extensions with common models, then lemmata can beadded to extensions in order to make them logically disjoint. In the two-valuedcase only disjunctive rules (\�-rules" in Smullyan's [19] terminology) are of thistype. Its extensions �1 and �2 resulting from an application to, say, �1 _ �2 havethe models satisfying both �1 and �2 in common. Thus, if a local lemma :�1is added, the result are logically disjoint extensions �1 and �2 ^ :�1 (anotherpossibility is to add :�2 to the �rst extension).3TAP uses a depth-�rst strategy to search for proofs; it proceeds by closingindividual branches of a tableau one after the other. When a substitution is foundthat closes a branch, it is applied (to the whole tableau), and then the provertries to close the next branch. If, later on, a branch cannot be closed (observing alimit on the number of copies of universally quanti�ed formulae that may be usedon each branch or a limit on the length of branches), backtracking is initiatedand other closing substitutions are searched for. Di�erent closing substitutionsfor a single branch are the only choice points in 3TAP 's proof procedure; all



other indeterminisms in semantic tableaux, like choosing the next formula to beexpanded, are resolved using fair (deterministic) heuristics and strategies.1Equality HandlingA special background reasoner is used for handling equality in 3TAP : Mixed E-uni�cation problems are extracted from tableau branches and passed on to thebackground reasoner, that employs the completion-based method from [1] tosolve mixed E-uni�cation problems and, thus, to close tableau branches.The equality reasoner can be invoked multiply during the construction of asingle tableau branch. After a futile try to �nd a uni�er, the data computedby the background reasoner is reused for later calls, in particular it is reusedfor di�erent extensions of the branch. We call this feature of 3TAP incrementalequality reasoning [4].Search Space RestrictionsOne possibility to restrict the search space is to avoid putting redundant axiomson the tableau in the �rst place. This is particularly useful with huge axiom-atizations where only a small subset of the axioms is actually needed to provea given theorem. Only formulae that potentially take part in closing a tableaubranch are fetched from the knowledge base.To decide which axioms are redundant and which might be needed to close abranch, 3TAP employs a method that is an extension of the well known techniqueof computing links (connections) between atomic subformulae: whether a formulais linked to an atom on the branch depends on the equalities both on the branchand in the knowledge base; in addition, sorts have to be taken into concern.Another method for restricting the search space is pruning tableau branches:If a tableau rule application generates several subbranches and in the followingone of the subbranches can be closed without using any formula created by thatrule application, then the other subbranches could be closed the same way andcan, thus, be pruned (removed). This technique is essentially what has beencalled condensing in [14], although we control it di�erently.User InteractionApart from commands given in the Prolog shell, 3TAP can be controlled via agraphical user interface (GUI) based on X-Windows. The GUI allows the user to1 The minimalistic tableau-based theorem prover leanTAP [5], that consists of only15 lines of Prolog code, is an implementation of the same basic search strategy.leanTAP is, due to the elimination of all overhaed, quite e�cient, and easy to un-derstand. On the other hand, it is missing most of the extensions of the calculusand additional features built into 3TAP , like equality handling, powerful heuristicsfor rearranging the search space, a graphical user interface, etc.



load and compile (pre-process) knowledge bases, to change all parameters andswitches, to specify the theorem to be proven, and to start the prover. Duringthe proof search the tableau tree is displayed and continually updated. The usercan de�ne spy points to stop the prover, for example, whenever a branch is closedor after a certain number of tableau rule applications. When the prover stops,the user can navigate through the tableau to inspect the (partial) proof that hasbeen constructed.Integration of Automated and Tactical Theorem ProvingThe aim of integrating tactical and automated theorem provers is pursued ina joint project with a research group in tactical theorem proving for formalsoftware veri�cation. A system that integrates the respective latest versions of3TAP and the Karlsruhe Interactive Veri�er (KIV) [16, 17] has been built. Here,3TAP is used to prove problems from two-valued �rst-order logic with equality,that have been generated by KIV. The main issues that have to be dealt with inthese problems are their redundancy and their size (up to one thousand axioms).Some of 3TAP 's features such as sorts, orderings, incremental completion-basedequality reasoning, if-then connectives, and restricted formula fetching have beendeveloped to cope with such problems.Availability3TAP is implemented in SICStus Prolog with a small part of portable C. Partsof 3TAP 's compiler module are written using the Unix tools Lex and Yacc (resp.Flex and Bison). The design is as modular as possible; therefore, it is not toodi�cult to port 3TAP to other architectures and to add new features.3TAP is available via the World Wide Web and via anonymous ftp. To obtainfurther information or to download the source code and the user's manual [2], usethe 3TAP home page http://i12www.ira.uka.de/~threetap/. Alternatively,connect via anonymous ftp to sonja.ira.uka.de (129.13.31.3) and change tothe directory pub/threetap.References1. Bernhard Beckert. A completion-based method for mixed universal and rigidE-uni�cation. In A. Bundy, editor, Proceedings, 12th International Conferenceon Automated Deduction (CADE), Nancy, France, LNCS 814, pages 678{692.Springer, 1994.2. Bernhard Beckert, Reiner H�ahnle, Karla Gei�, Peter Oel, Christian Pape, and Mar-tin Sulzmann. The many-valued tableau-based theorem prover 3TAP , version 4.0.Interner Bericht 3/96, Universit�at Karlsruhe, Fakult�at f�ur Informatik, 1996.3. Bernhard Beckert, Reiner H�ahnle, and Peter H. Schmitt. The even more liberalized�-rule in free variable semantic tableaux. In Georg Gottlob, Alexander Leitsch, andDaniele Mundici, editors, Proceedings, 3rd Kurt G�odel Colloquium (KGC), Brno,Czech Republic, LNCS 713, pages 108{119. Springer, 1993.
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