Semantic Tableaux with Equality

Bernhard Beckert
Institute for Logic, Complexity and Deduction Systems

University of Karlsruhe
Am Fasanengarten 5, 76128 Karlsruhe, Germany
beckert@ira.uka.de, http://il12.www.ira.uka.de/ beckert

November 16, 1995

Abstract

This paper tries to identify the basic problems encountered in handling equality in the
semantic tableau framework, and to describe the state of the art in solving these problems.
The two main paradigms for handling equality are compared: adding new tableau expansion
rules and using E-unification algorithms.

1 Introduction

One of the main goals of Automated Deduction is to efficiently handle first-order logic
with equality. Just adding the equality axioms to the data base leads to a huge search
space; even very simple theorems cannot be proven. The only solution is to make the
handling of equality part of the inference rules. Then, still, equality typically allows a
lot of different derivations. Methods have to be used for further restricting the search
space.

For resolution-based provers such methods—the most important being paramodu-
lation [24] and RUE-resolution [12]—have been known since the 1960s and have often
been implemented (although the problem of preventing the derivation of redundant
information remains to be solved).

At the same time methods for adding equality to Gentzen-type calculi, such as
semantic tableaux and the connection method, have been developed [17, 22]. These,
have not been used as often; in comparison to resolution with paramodulation they
are quite inefficient. But recently much more efficient methods have been developed,
and over the last years there has been a growing interest in handling equality in
semantic tableaux [23, 13, 7] and the connection method [14, 21].

This paper tries to identify the basic problems encountered in handling equality in
the semantic tableau framework, and to describe the state of the art in solving these
problems.

Which method is appropriate for handling equality depends heavily on the ver-
sion of semantic tableaux used, namely on the type of variables occurring in the
tableaux. Therefore, after giving some basic definitions, we describe the versions of

semantic tableaux that are important to distinguish in the next section. In Section 3
the two main paradigms for handling equality in semantic tableaux are presented:
(i) adding new tableau expansion rules and (ii) using F-unification algorithms; they
are described in detail in Sections 4 and 5. Finally, in Section 6 we draw some conclu-
sions. The reader should be familiar with the ground and the free variable versions
of semantic tableaux (an excellent introduction can be found in [13]).

2 Syntax and Semantics

2.1 Basic Definitions and Notations

Let us fix a first-order language £ which is built up from countable sets P of predicate
symbols, F of function symbols, C of constant symbols and V of object variables in
the usual manner (for each arity there are countably many function and predicate
symbols). We use the logical connectives A (conjunction), V (disjunction), D (impli-
cation) and — (negation), and the quantifier symbols V and 3. The binary predicate
symbol =~ € P denotes equality such that no confusion with the meta-level equal-
ity predicate = can arise. There is no restriction on where equalities can occur in
formulae.

Since in the tableau proofs it will be necessary to introduce Skolem terms, we
extend our first-order language £ to a language Lsk, by adding countably many
constant symbols and function symbols for each arity which do not appear already
in L.

We use the standard notions of free and bound variable, (grounding) substitution,
unifier, most general unifier (MGU), sentence, model, logical consequence (denoted
by), valuation, satisfiability and tautology. All occurring substitutions have a
finite domain; thus, a substitution ¢ with domain {z1,...,z,} can be denoted by
{z1/t1, .. xn/tn}, le. o(x;) =t; (1 <i<mn). The restriction of o to a set V of
variables is denoted by o)y .

A model M = (D,Z) (with domain D and interpretation 7) is called normal iff
(=) is the identity relation on D. A model is called canonical iff, moreover, for
every d € D there is a term ¢ in £ (resp. Lgko,) such that Z(¢) = d. In the sequel, we
restrict all considerations to canonical models. For first-order logic with equality they
are the analogue of Herbrand models: A sentence is satisfied by a normal model iff it
is satisfied by a canonical model.

The definitions of tautology, satisfiability and logical consequence are different for
first-order logic with and without equality. To avoid confusion, we use the following
notions:

Definition 1 A formula ¢ (a set of formulae ®) is E-satisfiable if there is a normal
model satisfying ¢ (resp. ®@), else it is E-unsatisfiable.

A sentence ¢ is an E-tautology if it is satisfied by all normal models.

A formula ¢ is an E-consequence of a set of formulae ¥, denoted ¥ = ¢, if ¢ is
satisfied by all normal models that satisfy W.

In addition to the normal (weak) consequence and E-consequence relations we use
the notion of strong (E-)consequence:

[o JaJoaf | B [[B]B] [2 [n@]
X A ove [o] ¥ (V2)o(x) T ot
~@Ve) [0] [~GAd) [-6]~¥ ~(Er)o(@) [~olt
RCEXDN | I 659 [~o] ¥

(
(
(
m— o1 & L6 | &
(
(

Table 1: Formula classes.

Q I} ~ 1)

ai P | P2 71(t) d1(c)

a2
where ¢ is any where ¢ is a new
ground term. (Skolem) constant.

Table 2: Tableau expansion rule schemata (ground version).

Definition 2 Let ¥ be a set of formulae and ¢ a formula; ¢ is a strong consequence
(strong E-consequence) of ¥, denoted U ° ¢ (resp. ¥ 2 ¢), if for all (normal) mod-
els (D,7) and for all variable assignments v: If valy , (v0) = true for all ¢ € U, then
valy g(p) = true.

Example 3 p(z) = (V2)p(x), but p(z) & (Vz)p(z).

2.2 The Ground Version of Semantic Tableaux

The ground version [27], i.e. the version without free variables, is the simplest and
basic version of semantic tableaux. Unfortunately, it is (with and without equality)
the least efficient as well. But, since all other versions are based upon it, we present
it first.

For our purposes it suffices to visualize tableaux as binary trees. The branches
of a tableau are implicitly disjunctively connected, and the formulae on a branch are
implicitly conjunctively connected. We identify a branch with the set of formulae it
contains.

To every formula that is not a literal exactly one tableau expansion rule can be
applied. Following Smullyan, formulae are divided into four classes with corresponding
rules, namely « (conjunctive propositional), 8 (disjunctive propositional), v (universal
quantification) and § (existential quantification). The formula classes are summarized
in Table 1, and Table 2 shows the expansion rule schemata for the ground version of
tableaux.

A tableau T is expanded by choosing a branch B of T' and a formula ¢ € B and
extending B by as many subbranches as the rule corresponding to ¢ has extensions;
the new subbranches contain the formulae in the extensions.

To prove a sentence ¢ to be a tautology, we apply the expansion rules starting
from the initial tableau that consists of the single node —¢. A proof is found, if all
branches of the constructed tableau are closed (contain complementary formulae):

o J] ¥ 1)

ai Bi | B 71 (y) S1(f(z1,. .0y 2n))
Q2 y is a free variable. f is a new Skolem function
symbol, and z1,...,z, are

the free variables in ¢.

Table 3: Tableau expansion rule schemata (free variable version).

Theorem 4 (Ground Version) A first-order sentence ¢ is a tautology if and only
if there is a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.

2. For 1 <i <n the tableau T; is constructed from 7;_; by applying one of the
tableau expansion rules from Table 2.

3. All branches of T}, are closed, i.e., contain complementary formulae ¢ and —¢.

The construction of a closed tableau is a highly indeterministic process, because
at each step one is free to choose a branch B of the tableau and a formula ¢ € B for
expansion. If ¢ is a y-formula, in addition, a term has to be chosen that is substituted
for the bound variable.

There are two ways for resolving the indeterminism (actual implementations usu-
ally employ a combination of both): (1) fair strategies can be used such that, for
example, each formula will finally be used to expand each branch on which it occurs.
(2) Backtracking can be used; if a branch cannot be closed (observing a limit on
its length), other possibilities are tried; for example, other terms are used in ~-rule
applications. If no proof is found, the limit has to be increased (iterative deepening).

2.3 Free Variable Semantic Tableaux

Using free variable quantifier rules [13] is crucial for efficient implementation—even
more if equality has to be handled. They reduce the number of possibilities to proceed
at each step in the construction of a tableau proof and thus the size of the search
space. When v-rules are applied, a new free variable is substituted for the quantified
variable, instead of replacing it by a ground term, that has to be “guessed”. Free
variables can later be instantiated “on demand”, when a tableau branch is closed or
an equality is applied to expand a branch.

To preserve correctness, the schema for §-rules has to be changed as well: the
Skolem terms introduced now contain the free variables occurring in the J-formula
(the free variable rule schemata are shown in Table 3).!

It is often difficult to find a substitution o that instantiates the variables in a
tableau T such that all branches of T" are closed when o is applied. The problem of
finding a closing substitution o can be simplified (as is usually done in practice) by

!The §-rules we use are more liberal than that proposed in [13] (there, all the free variables on
the branch have to be included in the Skolem term). Using the liberalized rules (they have been
proven to be sound in [16]) makes it easier to close branches. Even more liberalized §-rules have
been investigated in [8, 1].

closing the branches of T' one after the other: if a substitution is found that closes a
single branch B, it is applied (to the whole tableau) to close B before other branches
are handled. Thus, there is a second possibility besides expansion to derive a new
tableau from an old one: applying a closure rule, i.e., applying a (most general) closing
substitution to the tableau.

Theorem 5 (Free Variable Version) A first-order sentence ¢ is a tautology if and
only if there is a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.
2. For 1 < i < n the tableau T; is constructed from T;_1 by

(a) applying one of the tableau expansion rules from Table 3; or

(b) applying a substitution o that closes a branch B of T;_1, i.e., there are
formulae ¢, ~1) € B such that ¢ is an MGU of ¢ and ¢ (¢o and —o are
complementary).?

The branch Bo of T; = T;_10 is marked as being closed in T;.

3. All branches of T}, are marked as being closed.

Contrary to the ground version, the free variable y-rule is deterministic; but one
is still free (1) to choose a branch B of the tableau, (2) to expand or to close B, and
to choose (3a) a formula ¢ € B for expansion or (3b) a most general substitution that
closes B.

2.4 Semantic Tableaux with Universal Formulae

Free variable semantic tableaux can be further improved by using the concept of uni-
versal formulae [7]: y-formulae—in particular equalities—have often to be used multi-
ply in a tableau proof, with different instantiations for the free variables they contain.
A typical example is the associativity axiom (Vz)(Vy)(Vz)((z - y) -z =z - (y - 2)) from
group theory. Usually, it has to be applied several times with different substitutions
for x, y and z to prove even very simple theorems from group theory. Therefore,
in semantic tableaux the «-rule has to be applied repeatedly to generate several in-
stances of the axiom each with different free variables substituted for z, y and z.
This, however, has disadvantages: Firstly, if the number of ~-rule applications is lim-
ited (as is often done in implementations), the limit has to be chosen high enough to
generate a sufficient number of instances. Secondly, since it is difficult to decide how
many instances will be needed, unnecessary formulae will be added to the tableaux
enlarging the search space for a proof.

These problems can at least partly be avoided by recognizing formulae (including
equalities) that are “universal”, i.e. that can be used multiply in a tableau proof with
different substitutions for the variables they contain (without affecting soundness):

2The restriction to most general unifiers is not necessary, but leads to a much smaller search
space.

Definition 6 A formula ¢ on a tableau branch B is universal on B with respect to
the variable x if B E° (V)¢ (resp. B 2 (Vx)¢ in tableaux for first-order logic with
equality).

A method Y for recognizing universal formulae assigns to a tableau branch B and
a formula ¢ a set T(B, ¢) of variables such that: if x € T (B, ¢) then ¢ € B and ¢ is

universal w.r.t. x.

Since the satisfiability problem of first-order logic can be reduced to the problem
of recognizing universal formulae,? it is—in general—undecidable whether a formula
is universal. However, an important class of universal formulae can be recognized
easily (and the method is easy to implement):

Theorem 7 Y is a method for recognizing universal formulae where Y (B, ¢) contains
exactly the variables x such that the formula ¢ € B has been added to B

1. by applying a ~-rule, and x is the free variable that has been introduced; or
2. by applying an a-, é- or y-rule to a formula that is universal w.r.t. z.

A formula ¢(z) € B is recognized as being universal w.r.t. by this method, if new
instances ¢(z'), ¢(z"), ... can be added to the branch without affecting other branches
or generating new ones.

Once formulae are recognized as being universal, this knowledge can be taken
advantage of to make it easier to find a substitution o that closes a tableau branch
(or a whole tableau): instantiations of variables w.r.t. which the formulae used to close
a branch are universal are not taken into consideration. Soundness is not affected if
this notion of closed tableau is used (completeness is not affected anyway).

The closure rule is the only difference between tableaux with universal formulae
and classical free variable tableaux. Neither the expansion rules nor the way tableau
are constructed have to be changed:*

Theorem 8 (Universal Formula Version) Let T be a method for recognizing
universal formulae. A first-order sentence ¢ is a tautology if and only if there is
a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.
2. For 1 < i < n the tableau T; is constructed from T;_1 by

(a) applying one of the tableau expansion rules from Table 3; or

(b) applying a substitution o that closes a branch B of T;_1, i.e., there are
formulae ¢,) € B such that ¢ and v are unifiable with an MGU ¢’ and
o = 0'|»\v) is the restriction of ¢’ to the set U = T(B,$) N Y(B,) of
variables with respect to which both ¢ and v are universal.
The branch Bo of T; = T;_,0 is marked as being closed in Tj.?

3. All branches of T}, are marked as being closed.

3A sentence ¢ is unsatisfiable iff the formula ¢ A p(x) A =p(a) is universal w.r.t. x on a tableau
branch consisting only of that formula (z does not occur in ¢).

4The additional expansion rules for handling equality are different, too; see Section 4.

5As in classical free variable tableaux, the restriction to most general unifiers is not necessary,
but restricts the search space.

2.5 Other Versions of Semantic Tableaux

All results and methods described from here on can as well be adapted to other
versions of semantic tableaux for first-order logic (with equality); all of them can
be considered a variant or special case of the versions described above: calculi with
signed formulae, with different d-rules [13, 8, 1], with methods for restricting the search
space such as links or ordering restrictions, with lemma generation, etc. Difficulties
can arise with adaptations to tableau calculi for other logics, in particular if the notion
of equality itself is affected (e.g. if sorted terms are used).

3 The Two Paradigms for Adding Equality

Constructing a tableau for a formula ¢ can be considered a search for a model of ¢.
Therefore, methods have to be employed for:

1. adding formulae that are valid in a model M of ¢ to the tableau branch that
corresponds to M (i.e., that is a partial definition of M);

2. recognizing formulae or sets of formulae that are complementary; these formulae
close branches on which they occur.

For handling equality additional expansion and/or closure rules are needed, because
in canonical models, on the one hand, additional formulae are valid and, thus, have
to be added to a branch; on the other hand, there are additional inconsistencies.

Example 9 If a tableau branch B contains the formulae p(a) and a & b, then p(b) is
true in all canonical models of B.

—(a &~ a) is false in all canonical models; therefore all branches containing this
formula can be closed.

Equality reasoning is an instance of theory reasoning, where problems from a
certain domain (or theory) that is defined by a set of axioms, are handled separately by
a background reasoner. The background reasoner applies special purpose techniques
and makes use of knowledge about the theory.

Virtually all methods for handling equality can be regarded a special case of the
general method for theory reasoning in semantic tableaux:® A set ® of formulae (a
key) that is a subset of the formulae on a tableau branch B is transferred to the
background reasoner, which then searches for a refuter of ®. A refuter consists of
a substitution o and a set R = Ro of formulae (the residue) such that ® and the
negation R = {—¢ : ¢ € R} of R are complementary, i.e., all instances of ®o U R are
unsatisfiable in models of the theory (E-unsatisfiable in the case of equality reasoning).

From another point of view, the residue contains formulae that are valid in all
models of ®o, in particular in all models (partially) defined by the instance Bo D ®o
of the branch B.

There are two ways a refuters can be made use of, depending on whether the
residue R is empty or not:

SThe only exception are methods based on pre-processing the input formulae, e.g. STE-
modification [9]; they do not require the tableau calculus to be adopted to equality reasoning.

Partial theory reasoning (R = {p1,...,pn}, n > 1): Using the background reasoner
constitutes a tableau expansion rule: the branch B (resp. its instance Bo) may
be extended by n subbranches where B; = BU {p;} (1 <i < n); the substitu-
tion o has to be applied to the whole tableau.

Total theory reasoning (R =)): Using the background reasoner constitutes a closure
rule: the branch B is closed under o.

The general condition for expansion and closure rules for free variable tableaux to
be sound is, that a tableau branch B (or all its subbranches) can only be closed if all
ground instances of B are unsatisfiable. Thus, expansion rules have to preserve the
satisfiability of ground instances of the branch B being expanded. The (partial theory
reasoning) expansion rule is sound, because if a ground instance Bo is satisfiable then
at least one of the subbranches (Ba U {p;})7 is satisfiable; else (Bo U R)T and, thus,
(®o U R)T were satisfiable—in contradiction to ®o and R being complementary. The
(total theory reasoning) closure rule is sound, because R =) implies that all instances
of ®o C Bo are unsatisfiable.

To preserve completeness of the calculus the background reasoner has to be able to
compute a sufficiently complete subset (though not all) of the possible refuters. There
is a trade off between partial and total reasoning: On the one hand, if only empty
residues are allowed, more complex methods have to be employed to find refuters;
the background reasoner has to make more complex deductions that, using partial
reasoning, could be divided into several expansion steps followed by a simple closure
step. On the other hand, the restriction to total theory reasoning leads to a much
smaller search space, because there are less refuters for each key and the search is
more goal-directed.

Accordingly, there are two possibilities for handling equality in semantic tableaux:
The first and more straightforward method—corresponding to partial theory reason-
ing—is to define additional tableau expansion rules; then very simple additional
closure rules can be used. The second possibility—corresponding to total theory
reasoning—is to use a more complicated notion of closed branch: Different versions
of E-unification (depending on the version of semantic tableaux) are used to decide
whether (instances of) tableau branches are unsatisfiable in canonical models and,
therefore, closed. Then, no additional expansion rules are needed.

4 Additional Expansion Rules

4.1 Additional Expansion Rules for Ground Tableaux

The first methods for adding equality to the ground version of semantic tableaux have
been developed in the 1960s [17, 22]. R. C. Jeffrey introduced the additional tableau
expansion rule shown in Table 4 (i.e., a partial reasoning method): If a branch B
contains a formula ¢[t] and an equality t &~ s or s & ¢, that can be “applied” to ¢]t]
to derive a formula ¢[s],” then ¢[s] may be added to B.

In addition to the new expansion rules there is a new closure rule: A branch is
closed if it contains a formula of the form (¢ = ¢).

7¢[s] is constructed by substituting one occurrence of t in $[t] by s.

o[t] olt]
¢ls] ¢ls]
Table 4: Jeffrey’s additional expansion rules.
(1) a=~b (1) a=b (1) a=b
| | |
(2) pla,a) (2) pla,a) (2) p(a,a)
| > | |
(3) —p(b,b) (3) —wp(b,d) N> (3) —p(b,d)
| |
(4) pla,b) (4) pla,b)
|
(5) p(b,b)

*

Figure 1: The application of Jeffrey’s additional rules to expand and close a tableau
branch (Example 11).

Theorem 10 (Jeffrey) A first-order sentence ¢ is an E-tautology if and only if there
is a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.

2. For 1 <i < n the tableau T; is constructed from 7;_; by applying one of the
tableau expansion rules from Table 2 or one of the equality expansion rules from
Table 4.

3. All branches of T;, are closed, i.e., contain an inequality of the form —(t ~ ¢) or
complementary formulae ¢ and —¢.

Example 11 Figure 1 shows an example for the application of Jeffrey’s additional
tableau expansion and closure rules: The equality (1) is applied to the formula (2) to
derive formula (4) and to (4) to derive (5). The branch is closed by the complementary
formulae (3) and (5). Note, that it is not possible to derive p(b,b) in a single step.

Besides being based on the ground version of tableaux, the new expansion rules
have a major disadvantage: they are symmetrical and their application is completely
unrestricted. This leads to much indeterminism and a huge search space; an enormous
number of irrelevant formulae can be added. If, for example, a branch B contains
the formulae f(a) =~ a and p(a) then all the formulae p(f(a)),p(f(f(a))),... can be
added to B.

The rules presented by S. Reeves [23] (see Table 5) generate a smaller search space.
They are the tableau counterpart of RUE-resolution [12] and are more goal-directed
than Jeffrey’s expansion rules: only atomic formulae that potentially close a branch
are used for expansion. Like RUE-resolution, the rules are based upon the following
fact: If in a canonical model M the inequality —=(f(a1,...,an) = f(b1,...,b,)) is valid
or the formulae p(ay,...,a,) and —p(by,...,by), then at least one of the inequalities
—(a1 &= by), ..., =(a, ~ b,) has to be valid in M. With these expansion rules it is
sufficient to use the same closure rules as in Theorem 10:

p(alv""an) ﬁ(f(a,l,..-,a/n)zf(b17"'5bn))

=p(b1,...,by
(a1 = by) |(1... | l(an ~ by) (a1~ b)) | - | —(an = by)

Table 5: Reeves’s additional expansion rules.

(1) a=b
|

(2) p(a,a)
|

(3) —p(b,b)

— ~—

(4) —(a=~b) (5) —(a=~b)
* *

Figure 2: The application of Reeves’s additional expansion rule (Example 13).

Theorem 12 (Reeves) A first-order sentence ¢ is an E-tautology if and only if
there is a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.

2. For 1 <i <mn the tableau T; is constructed from 7;_; by applying one of the
tableau expansion rules from Table 2 or one of the equality expansion rules from
Table 5.

3. All branches of T;, are closed, i.e., contain an inequality of the form —(¢t ~ ¢) or
complementary formulae ¢ and —¢.

Example 13 Figure 2 shows the application of Reeves’s rule to expand and close the
same tableau branch as in Figure 1: Tt is applied to the atomic formulae (2) and (3)
to generate the inequalities (4) and (5). The branches are closed by the formulae (1)
and (4) and (1) and (5) respectively.

Reeves’s approach, however, can lead to heavy branching, because the new expan-
sion rules can as well be applied to pairs of equalities and inequalities. In the worst
case the number of branches generated is exponential in the number of equalities on
the branch.

Example 14 Figure 3 shows an example for the heavy branching that can occur using
Reeves’s expansion rules. The three equalities (1), (2), (3) and the inequality (4)
result in eight branches; and even more branches could be added to the tableau.
By applying the expansion rule, the inequalities (5) and (6) are derived from (1)
and (4), (7) and (8) from (2) and (5), (9) and (10) from (2) and (6), (11) and (12)
from (3) and (7), (13) and (14) from (3) and (8), (15) and (16) from (3) and (9),
(17) and (18) from (3) and (10).

10

(1) a1 = by

(2) az =~ ba

(3) a3z ~ b3

@ —(c~d)
() (a1 = c) (6) —(b1 = d)
(n (a2 = a1) ®) (b2 = c) (9 (a2 = by) (10) —(b2 = d)
/N /N /N
—(a3 = a2) ~(bs = a1) —(a3 = bz) —(bs = c) —(az = az2) —(bz = b1) —(az = ba) (b3 = d)
(11) (12) (13) (14) (15) (16) a7 (18)

Figure 3: The disadvantage of Reeves’s method (Example 14).

t~s s~t
o[t'] o[t']
(¢ls])p (¢[s])
uis a MGU of ¢ and t' that is uis a MGU of ¢ and t' that is
applied to the whole tableau. applied to the whole tableau.

Table 6: Fitting’s additional expansion rules for free variable tableaux.

4.2 Additional Expansion Rules for Free Variable Tableaux

M. Fitting [13] extended Jeffrey’s approach and adapted it to free variable tableaux.
The main difference is that equality rule applications may require instantiating free
variables. These substitutions can be obtained in a similar way as those needed to
close a branch in free variable tableaux: If an equality ¢ ~ s is to be applied to a
formula ¢[t'], the application of an MGU pu of ¢ and ' to the tableau is sufficient
to derive (¢[s])u. However, the unifier p has to be applied not only to the formulae
involved but to the whole tableau (see Table 6).

Unification can as well become necessary if a branch is to be closed using equality;
for example, a branch that contains the inequality —(f(z) ~ f(a)) is closed if the
substitution {z/a} is applied (to the whole tableau):

Theorem 15 (Fitting) A first-order sentence ¢ is an E-tautology if and only if
there is a sequence Ty, ..., T, of tableaux (n > 0) such that

1. Ty consists of the single node —¢.
2. For 1 < i < n the tableau T; is constructed from T;_; by

(a) applying one of the tableau expansion rules from Table 3 or one of the
equality expansion rules from Table 6; or

11

(b) applying a substitution o that closes a branch B of T;_1, i.e., there is an
inequality —(t ~ t') € B such that o is an MGU of ¢t and ¢’ or there are
formulae ¢, 7 € B such that ¢ is an MGU of ¢ and .

The branch Bo of T; = Tj_ 0 is marked as being closed in T;.8

3. All branches of T}, are marked as being closed.

Example 16 Figure 4 shows a free variable tableau that proves the following set of
formulae to be inconsistent:

(1) (Vz)(g(x) = f(z) V =(z = a))
(2) (Vz)(g(f(x)) = x)

(3) brc

(4) p(g(g(a)),d)

(5) -p(a,c)

By applying the standard free variable tableau rules, formula (6) is derived from (2),
(7) from (1), and (8) and (9) from (7). The framed formulae are added to the left
branch by applying Fitting’s additional expansion rules for handling equality: For-
mula (10) is derived by applying equality (8) to (4) (the substitution {z2/a} has to
be applied), formula (11) is derived by applying (6) to (10) (the substitution {z;/a}
has to be applied), and formula (12) is derived by applying (3) to (11). Formulae (12)
and (5) close the left branch. The right branch is closed by the inequality (9) (the
substitution {z2/a} has already been applied).

The example demonstrates a difficulty involved in using additional expansion rules:
If equality (8) is applied to (4) in the wrong way, i.e., if the formula (10’) p(f(g(a)),b)
is derived instead of (10) p(g(f(a)),b), then the term g(a) is substituted for zo and
the tableau cannot be closed. Either a new instance of (7), (8) and (9) has to be
generated by applying the y-rule to (1), or backtracking has to be initiated.

4.3 Additional Rules for Tableaux with Universal Formulae

Fitting’s method can easily be extended to free variable tableau with universal for-
mulae. When equalities are used to derive new formulae, universality of both the
equality ¢ =~ s (resp. s = t) and the formula ¢[t'] it is applied to has to be taken into
consideration. The difference to the additional equality expansion rules from Sec-
tion 4.2 is, that instead of the MGU g of ¢ and ' only its restriction p/ to those
variables is applied w.r.t. which t ~ s (resp. s & t) and ¢[t'] are not universal, i.e.,
p = vy where U = T (B, (t ~ s)) N T(B, ¢[t']). If an equality is universal with
respect to a variable z, the variable x does not have to be instantiated to apply the
equality. When branches are closed, the universality of formulae has to be taken into
consideration as well:

Theorem 17 Let T be a method for recognizing universal formulae. A first-order
sentence ¢ is an E-tautology if and only if there is a sequence Ty, ..., T, of tableaux
(n > 0) such that

8 Again, the restriction to most general unifiers is not necessary, but restricts the search space.

12

Figure 4: A free variable tableau using Fitting’s expansion rules (Example 16).

1. Ty consists of the single node —¢.
2. For 1 < i < n the tableau T; is constructed from T;_; by

(a) applying one of the tableau expansion rules from Table 3 to a branch B
of T;_1 or one of the equality expansion rules from Table 6 where not
the MGU p of ¢ and ¢’ is applied to the tableau but only its restriction
1 = po\vy where U = Y(B, (t = s)) N (B, $[t']); or

(b) applying a substitution o that closes a branch B of T;_1, i.e., there is an
inequality —(t ~ t') € B such that ¢ and ¢’ are unifiable with an MGU o’
or there are formulae ¢, =1 € B such that ¢ and v are unifiable with an
MGU o', and 0 = 0'|y\py where U = Y (B, ¢) N T(B,v).

The branch Bo of T; = T;_10 is marked as being closed in T;.

3. All branches of T}, are marked as being closed.

Example 18 If the method from Theorem 7 for recognizing universal formulae is
used, the tableau in Figure 4 (without the framed formulae) is closed using the substi-
tution {za2/a}. x1 does not have to be instantiated, because equality (6) is recognized
to be universal w.r.t. to xy.

13

5 Handling Equality Using FE-Unification

5.1 Motivation

The common problem of all the partial reasoning methods described in Section 4,
that are based on additional tableau expansion rules, is that there are virtually no
restrictions on the application of equalities. Because of their symmetry this leads to
a very large search space; even very simple problems cannot be solved in reasonable
time.

It is difficult to transform more elaborate and efficient methods for handling equal-
ity, such as completion-based approaches, into (sufficiently) simple tableau expansion
rules. A set of rules that implement a completion procedure for the ground ver-
sion of tableaux has been described in [10]; however, these expansion rules are quite
complicated, and the method cannot be extended to free variable tableaux.

If total equality reasoning is used, i.e., if no equality expansion rules are added,
then the problem of finding substitutions that close a tableau branch is equivalent
to solving F-unification problems. FE-unification is much more difficult than just
checking whether the terms of an inequality —(¢ ~ t) are unifiable; on the other hand,
no equality expansion steps are necessary, and arbitrary algorithms can be used to
compute F-unifiers. Such algorithms do not have to take the tableau into concern.

In [7] it has been shown that an implementation based on E-unification is much
more efficient than one based on additional rules—even if the comparatively inefficient
algorithm from [7] is used to solve E-unification problems.

Depending on the version of semantic tableaux that equality is to be added to,
different types of E-unification problems have to solved. These are introduced in the
following section, and in Section 5.3 the extraction of E-unification problems from
tableau branches is described.

5.2 Universal, Rigid and Mixed E-Unification

The different versions of E-unification that are important for handling equality in
semantic tableaux are: the classical “universal” E-unification [26], “rigid” E-unifica-
tion [14] and “mixed” E-unification which is a combination of both [5]. The different
versions allow equalities to be used differently in an equational proof: in the universal
case the equalities can be applied several times with different instantiations for the
variables they contain; in the rigid case they can be applied more than once but with
only one instantiation for each variable; in the mixed case there are both types of
variables.

Which type of E-unification problems has to be solved to decide whether a tableau
is closed depends on the version of semantic tableaux that equality is to be added to.
Universal F-unification can only be used in the ground case. For handling equality in
free variable tableaux, rigid E-unification problems have to be solved.? For tableaux
with universal formulae both versions have to be combined [4]; then, equalities contain
two types of variables, namely universal and rigid ones. To distinguish them syntacti-
cally, equalities (V1) - - - (Vx,)(l & r) are used that can be explicitly quantified w.r.t.
variables they contain.

9Using universal E-unification corresponds to not applying the substitutions necessary for apply-
ing equalities (Sec. 4.2) to the whole tableau—correctness would be destroyed.

14

| E s |t [MGUs [Type |
{f(z) ~z} f(z) a {z/a} |purely rigid
HOED! F(a) = |{z/a) |eround
{(Vo)(f(z) = x)} g(f(a), f())|g(a,b) || id purely universal
{/f(zx) =z} 9(f(a), f(b) | g(a,b) || — purely rigid
{(V2)(f(z,y) = f(y,2))} | f(a,b) f(b,a) || {y/b} |mixed

Table 7: Examples for the different versions of E-unification.

Definition 19 A mized E-unification problem (E, s,t) consists of a finite set F of
equalities of the form (Vz1)--- (Vz,)(l &= r) and terms s and t.
A substitution o is a solution to the problem, iff

Eo = (so ~to) .10

The major differences between this definition and that generally given in the lit-
erature on (universal) E-unification are:

e The equalities in F are explicitly quantified (instead of considering all the vari-
ables in F to be implicitly universally quantified).

e The strong consequence relation =2 is used in the definition instead of ..

e The substitution o is applied not only to the terms s und ¢ but as well to the
set E.

We call a mixed E-unification problem (E, s, t) purely universal if there are no free
variables in F, and purely rigid if there are no bound variables in F (if F is ground,
the problem is both purely rigid and purely universal).

Example 20 Table 7 shows some simple examples for the different versions of FE-
unification. The fourth problem has no solution, since the free variable x would have
to instantiated with both a and b. Contrary to that, the empty substitution id is a
solution to the third problem, where the variable x is universally quantified.

Since purely universal E-unification is already undecidable, mized E-unification
is—in general-—undecidable as well. Is is, however, possible to enumerate a complete
set of MGUs. Purely rigid E-unification is decidable [14].1!

5.3 Closing Tableau Branches Using E-Unification

The equality theory defined by a tableau branch B consists of the equalities on B; they
are (explicitly) quantified w.r.t. to the variables w.r.t. which they can be recognized
as being universal:

10This is equivalent to Eo |= (so ~ to) where the free variables in Eo are “held rigid”, i.e
treated as constants.

" Deciding purely rigid E-unification, i.e., deciding whether a solution to a given problem exists,
is NP-complete [14].

15

Definition 21 Let B be a tableau branch and T a method for recognizing universal
formulae (Def. 6). Then the set E(B) of equalities on B consists of the equalities
(Vq) - - (Va,)(s & t) such that

1. s~ t is formula on B,

2. {z1,...,z,} = T(B, (s = t)).

Example 22 As an example we use the tableau from Figure 4. Its left branch is
denoted by Bj and its right branch by By. If the method for recognizing universal
formulae from Theorem 7 is used, both E(B;) and E(Bs) contain the equalities b & ¢
and (Vz)(g(f(z)) = z). F(B;) contains in addition the equality g(z2) = f(z2).

Substitutions that close a branch B can be computed by extracting the set P(B) of
rigid F-unification problems from B according to the following definition and solving
the problems in P(B). Problems are only extracted from literals, which is sufficient
to preserve completeness.

Definition 23 Let B be a tableau branch and T a method for recognizing universal
formulae. Then the set P(B) of E-unification problems on B consists exactly of:

(E(B),(510,...,8,0),({t10,...,th0))
for each pair of literals p(s1,...,$n), —p(t1,...,tn) on B such that p # =, and
(E(B), so,to)

for each inequality —(s =~) on B.
The substitution o = {z1/y1,...,Tm/Ym} (where y1,...,y, are new variables) re-
names all the variables w.r.t. which the literals are universal, i.e.,

{z1,..yxm} =Y (B,p(s1,...,5,)) NL(B,=p(ty,...,tn)) ,

resp.
{xla e .,I’m} = T(Aa _'(S ~ t)) .

If one of the problems in the set P(B) of unification problems of a branch B has a
solution o, all instances of Bo are unsatisfiable in canonical models; therefore the
branch B is closed under the substitution o. The pair of literals corresponding to
the solved unification problem has been proven to actually be complementary; or the
corresponding inequality has been proven to be inconsistent (provided the unifier is
applied to the tableau).

Example 24 If, again, B; denotes the left and By the right branch of the tableau
in Figure 4 (without the framed formulae), and T is the method from Theorem 7
for recognizing universal formulae, then both P(B;) and P(B2) contain the problem
(E(B;),{g(g(a)),b), {(a,c)). P(Bs) contains in addition the problem (F(B3),x2,a).

Besides the version of FE-unification problems that have to be solved, the way
equality is handled is nearly the same for the different versions of semantic tableau.
Therefore it is sufficient to only formulate one general soundness and completeness
theorem:

16

Theorem 25 Let T be a method for recognizing universal formulae. A first-order
sentence ¢ is an E-tautology if and only if there is a sequence Ty, ..., T, of (ground,
free variable, or universal formula) tableaux (n > 0) such that

1. Ty consists of the single node —¢.

2. For 1 < i < n the tableau T; is constructed from 7;_1 by

(a) applying a tableau expansion rule (a rule from Table 2 for the ground
version of tableau, and a rule from Table 3 for the free variable version
with and without universal formulae); or

(b) applying a substitution o that is a solution to one of the E-unification
problems in P(B) for a branch B of T;_; and that, thus, closes B.

The branch Bo of T; = T;_10 is marked as being closed in 7;.
3. All branches of T}, are marked as being closed.

As before, it is sufficient to only apply most general closing substitutions. Addi-
tional restrictions are possible. For example, completeness is preserved if only such
closing substitutions are applied that are minimal (w.r.t. a term ordering) in their
equivalence class, where substitutions are equivalent if they are identical modulo the
set of equalities {(I = r) : (I & r) € E(B) for all branches B of the tableau}.

Example 26 If the method from Theorem 7 for recognizing universal formulae is
used, both branches of the tableau from Figure 4 can be closed (the framed formulae
not taken into consideration): The substitution o = {x2/a} is a solution both to the
mixed F-unification problems

(E(B1), (9(g(a)),b), (a,c)) € P(B1)
(E(Bg), X9, a) S P(BQ)

When o is applied to close one of the branches, the other branch is then closed under
the empty substitution.

Since purely rigid F-unification is decidable, it is decidable whether a given free
variable tableau branch without universal formulae can be closed. However, if a
branch cannot be closed it may, nevertheless, be unsatisfiable (and, thus, be expand-
able to a closed branch). It is undecidable whether a tableau branch with universal
formulae is closed, because mixed F-unification is undecidable.

Instead of closing one branch after the other, one could search for a substitution
that closes all branches simultaneously. However, this is much more difficult than
closing a single branch. To find a substitution that closes all branches of a given
tableau, simultaneous E-unification problems have to be solved:

Definition 27 A finite set {(E1, s1,t1),. .-, {(En, Sn,tn)} (n > 1) of mixed E-unifica-
tion problems is called simultaneous E-unification problem.

A substitution o is a solution to the simultaneous problem iff it is a solution to
every component (Ey, sk, t;) (1 <k <n).

Simultaneous mixed E-unification is much more difficult than non-simultaneous mixed
E-unification; moreover, simultaneous rigid E-unification is already undecidable [11]
(the non-simultaneous rigid problem is NP-complete [14]).

17

5.4 Solving E-Unification Problems

To solve the E-unification problems that are extracted from tableaux (Def. 23), arbi-
trary algorithms can be used.

The problems extracted from ground tableaux comnsist solely of ground terms.
There are very efficient methods for solving these ground FE-unification problems,
that are based on computing the equivalence classes of the terms to be unified (w.r.t.
to the relation defined by the equalities on the branch) [25, 19].

Algorithms based on computing equivalence classes can be used as well to solve
rigid and mixed E-unification problems, i.e., to add equality to free variable tableaux
with universal formulae.

However, for solving non-ground problems, it is much better to use completion-
based methods. Unfortunately, the Unfailing Knuth-Bendix-Algorithm [18, 2] with
narrowing [20], that is generally considered to be the best algorithm for universal
FE-unification and has often been implemented, cannot be used to solve rigid or mixed
problems. A completion-based method for rigid E-unification has been described
n [14]; it is, however, indeterministic and unsuited for implementation, since the
“guess” that is part of the algorithm is highly complex.

Recently, deterministic completion-based methods have been introduced, both
for purely rigid E-unification [3] and for mixed FE-unification [5]. Besides being
completion-based, there are several reasons why these methods are well suited for
adding equality to free variable semantic tableaux: Firstly, the terms to be unified do
not become part of the completion (contrary to the method described in [14]); this is
important because the E-unification problems extracted from a branch B, that share
the same set of equalities, can thus be solved using a single completion of E(B). Sec-
ondly, E-unification problems of the form (E, (s1,...,$n), (t1,...,tn)) can be solved
by searching for common specializations of solutions to its components (E, s;, ;).

If a completion-based method is used to solve the F-unification problems that are
extracted from a tableau, it is advantageous to combine the completion process and
the expansion of the tableau. Thus, if a (-rule is applied, the (partial) completion
that has been computed up to that point can be shared by the new subbranches and
has only to be computed once.

Example 28 The following example requires only very little non-equality reasoning.
A powerful equality handling technique is needed to find a closed tableau, and the
universal formula version of tableaux has to be used to restrict the search space: If I"
consists of the axioms'?

(V) (i(tr, z) ~
(020, 0) 6,9) =)

then
I = (Vo) (Vy) (V2) (Fw)(i(z, w) = tr A w =iy, i(z,9))) .

To prove this, the tableau shown in Figure 5 has to be closed. Formulae (2) to (4)
are derived from the axioms by ~-rule applications. (5) is derived from the negated
theorem (1) by three J- and one v-rule application; (6) and (7) are derived from (5).

12This is an axiomatization of propositional logic, i(x, y) stands for “z implies y” and tr for “true”.

18

r

W ﬂ<v:c>(Vy><vZ><3w><i<x,w:> ~tr A w iy iz, 9)))
(2) i(tr,z1) ~ a1
|
(3) i(i(xa,y2),i(i(y2, 22), (22, 22))) = tr

|
(4) i(i(w3,y3),y3) ~ i(i(ys, z3), T3)

|
(5) —(i(cr,wr) = tr A wy = i(ca,i(cs, c2)))
/ \
(6) —(i(cr,wr) =~ tr) (7) —(wy = i(ca,i(cs, c2)))

Figure 5: The tableau that has to be closed to prove the theorem from Example 28.

The free variable instances (2), (3) and (4) of the axioms can easily be recognized
to be universal w.r.t. the variables they contain, Thus, to close the left branch the
F-unification problem

P, = (T, i(c1,wy), tr)

has to be solved, and the problem
PT = <Fa Wi, i(CQai(C3vc2))>

has to be solved to close the right branch.

The search for solutions performed by the tableau-based theorem prover 37’%3 [6,
15], that uses the completions-based method from [5] for solving E-unification prob-
lems, proceeds as follows: One of the first reduction rules that are deduced from I is
(Vz)(i(x,2) — tr). Using this rule the solution

o={wi/c1}

to the problem P; is found and applied to the tableau. Then the Problem P.o has
to be solved to close the right branch; unfortunately no solution exists. Thus, after
a futile try to close the right branch, backtracking is initiated. More reduction rules
are computed, until finally the rule (Vz)(i(z,tr) — tr) is applied to the problem P,
and the solution

o' = {w /tr}

is found. Now, the problem P.o’ has to be solved to close the right branch. It takes
the computation of 48 critical pairs to deduce the rule (Vz)(Vy)(i(y,i(z,y)) — tr)
that can be applied to show that the empty substitution is a solution to P.o’, and
that therefore the right branch is closed.

It takes 37’%3 about ten seconds to find this proof (running on a SUN SPARC work-
station); 377%9 reuses the partial completion computed to close a branch during back-
tracking.

19

6 Conclusion

Although it is easier to add equality to the ground version, to prove even simple
theorems, free variable tableaux have to be used. These are sufficient as long as
each branch is relatively easy to close—even if there is a large number of branches.
If however, complex equational theories have to be applied to close the branches,
universal formulae and elaborate methods for solving E-unification problems have to
be used.

After the handling of equality has been reduced to solving rigid and mixed E-uni-
fication problems, the search for efficient methods has not come to an end. However,
the difficulties that have to be overcome have been identified.

Completion-based methods for solving mixed E-unification have just recently been
developed; experiments show promising results. Further investigations are necessary
to combine these methods and semantic tableau in a more efficient way.

Acknowledgements

I would like to thank Marcello D’Agostino and three anonymous referees for their
constructive criticism and useful comments on earlier versions of this paper.

References

[1] Matthias Baaz and Christian G. Fermiiller. Non-elementary speedups between
different versions of tableaux. In Proceedings, 4th Workshop on Theorem Proving
with Analytic Tableauzr and Related Methods, St. Goar, LNCS 918, pages 217-230.
Springer, 1995.

[2] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. Completion without
failure. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic
Structures, Volume 2, chapter 1. Academic Press, 1989.

[3] Gerard Becher and Uwe Petermann. Rigid EF-unification by completion and rigid
paramodulation. Report 93-22, LATAC, University of Caen, 1993.

[4] Bernhard Beckert. Adding equality to semantic tableaux. In K. Broda,
M. D’Agostino, R. Goré, R. Johnson, and S. Reeves, editors, Proceedings, 3rd
Workshop on Theorem Proving with Analytic Tableaux and Related Methods,
Abingdon, pages 29-41, Imperial College, London, TR-94/5, 1994.

[5] Bernhard Beckert. A completion-based method for mixed universal and rigid
FE-unification. In A. Bundy, editor, Proceedings, 12th International Conference
on Automated Deduction (CADE), Nancy, France, LNCS 814, pages 678-692.
Springer, 1994.

[6] Bernhard Beckert, Stefan Gerberding, Reiner Hiahnle, and Werner Kernig. The

tableau-based theorem prover 37’4P for multiple-valued logics. In Proceed-
ings, 11th International Conference on Automated Deduction (CADE), Saratoga
Springs, NY, LNCS 607, pages 758-760. Springer, 1992.

20

[7]

[19]

[20]

Bernhard Beckert and Reiner Hahnle. An improved method for adding equality
to free variable semantic tableaux. In Depak Kapur, editor, Proceedings, 11th
International Conference on Automated Deduction (CADE), Saratoga Springs,
NY, LNCS 607, pages 507-521. Springer, 1992.

Bernhard Beckert, Reiner Hahnle, and Peter H. Schmitt. The even more liber-
alized é-rule in free variable semantic tableaux. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Proceedings, 3rd Kurt Godel Colloguium
(KGC), Brno, Czech Republic, LNCS 713, pages 108-119. Springer, 1993.

D. Brand. Proving theorems with the modification method. SIAM Journal on
Computing, 4(4):412-430, 1975.

Randall Jeffrey Browne. Ground term rewriting in semantic tableaux systems
for first-order logic with equality. Technical Report UMIACS-TR-88-44, College
Park, MD, 1988.

Anatoli Degtyarev and Andrei Voronkov. Simultaneous rigid F-unification is
undecidable. UPMAIL Technical Report 105, Uppsala University, May 1995.
Presented at: Annual Conference of the European Association for Computer
Science Logic (CSL’95), Paderborn.

Vincent J. Digricoli and Malcolm C. Harrison. Equality-based binary resolution.
Journal of the ACM, 33(2):253-289, April 1986.

Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1990.

Jean H. Gallier, Paliath Narendran, Stan Raatz, and Wayne Snyder. Theorem
proving using equational matings and rigid E-unification. Journal of the ACM,
39(2):377-429, April 1992.

Reiner Héhnle, Bernhard Beckert, and Stefan Gerberding. The many-valued

tableau-based theorem prover 377%9 TR 30/94, Universitat Karlsruhe, Fakultét
flir Informatik, November 1994.

Reiner Hahnle and Peter H. Schmitt. The liberalized §-rule in free variable
semantic tableaux. Journal of Automated Reasoning,, 13(2):211-222, 1994.

Richard C. Jeffrey. Formal Logic. Its Scope and Limits. McGraw-Hill, New York,
1967.

Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebras, pages 263-297.
Pergamon Press, Oxford, 1970.

G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure. Journal of the ACM, 27(2):356-364, April 1980.

Werner Nutt, P. Réty, and Gert Smolka. Basic narrowing revisited. Journal of
Symbolic Computation, 7(3/4):295-318, 1989.

21

[21]

[25]

[26]

[27]

Uwe Petermann. A framework for integrating equality reasoning into the exten-
sion procedure. In D. Basin, R. Hahnle, B. Fronhofer, J. Posegga, and C. Schwind,
editors, Proceedings, 2nd Workshop on Theorem Proving with Analytic Tableaux
and Related Methods, Marseille/France, Saarbriicken, MPI-1-92-213, March 1993.
Max-Planck-Institut fiir Informatik.

R. J. Popplestone. Beth-tree methods in automatic theorem proving. In Machine
Intelligence, volume 1, pages 31-46. Oliver and Boyd, 1967.

Steve V. Reeves. Adding equality to semantic tableau. Journal of Automated
Reasoning, 3:225-246, 1987.

J. A. Robinson and L. Wos. Paramodulation and theorem proving in first order
theories with equality. In B. Meltzer and Mitchie, editors, Machine Intelligence.
Edinburgh University Press, 1969.

Robert E. Shostak. An algorithm for reasoning about equality. Communications
of the ACM, 21(7):583-585, 1978.

Jorg H. Siekmann. Universal unification. Journal of Symbolic Computation,
7(3/4):207-274, 1989. Earlier version in Proceedings, 7th International Confer-
ence on Automated Deduction (CADE), Napa/FL, LNCS 170, Springer, 1984.

Raymond Smullyan. First-Order Logic. Springer, 1968.

22

