
A Completion-Based Method for
Mixed Universal and Rigid E-Unification

Bernhard Beckert

Universität Karlsruhe
Institut für Logik, Komplexität und Deduktionssysteme

76128 Karlsruhe, Germany
beckert@ira.uka.de Tel. +49-721-608-4324

Abstract. We present a completion-based method for handling a new
version of E-unification, called “mixed” E-unification, that is a combina-
tion of the classical “universal” E-unification and “rigid” E-unification.
Rigid E-unification is an important method for handling equality in
Gentzen-type first-order calculi, such as free-variable semantic tableaux
or matings. The performance of provers using E-unification can be in-
creased considerably, if mixed E-unification is used instead of the purely
rigid version. We state soundness and completeness results, and describe
experiments with an implementation of our method.

1 Introduction

We present a completion-based method for handling a new version of E-unifi-
cation called “mixed” E-unification, that is a combination of the classical “uni-
versal” E-unification and “rigid” E-unification [9]. There has been a growing
interest in rigid E-unification, because it is an important method for handling
equality in Gentzen-type first-order calculi, such as free-variable semantic ta-
bleaux [4] or matings [9, 15]. The performance of provers using E-unification for
handling equality can be increased considerably, if mixed E-unification is used
instead of the purely rigid version [4].1

The Unfailing Knuth-Bendix-Algorithm (UKBA) [13, 1] with narrowing [14],
that is generally considered to be the best algorithm for universal E-unification
and has often been implemented, cannot be used to solve rigid or mixed pro-
blems. Completion-based methods for rigid E-unification have been described
in [9, 10]. These, however, are non-deterministic and unsuited for implementa-
tion (they have, in fact, never been implemented). In [4] a method for solving
mixed E-unification problems has been introduced that does not use completion
but is based on computing equivalence classes.

1 An equality has often to be applied more than once in a proof, each time with
different substitutions for the variables occurring in it. In Gentzen-type calculi the
mechanism to do so is to generate several instances of the equality. It is, however,
often possible to recognize equalities that are “universal” w.r.t. variables they contain
(e.g. equalities that occur on only one branch of a tableau). If mixed E-unification is
used, this knowledge can be used to avoid generating additional copies of equalities.

The basic idea of our approach—and the main difference to the classical
unfailing completion procedure—is that during the completion process free va-
riables are never renamed, even if equalities that have variables in common are
applied to each other. In addition, constraints consisting of a substitution and
an order condition are attached to the reduction rules and terms.2

The paper is organized as follows: In the next section we give some basic
definitions and notations; the different versions of E-unification are described in
Section 3. In Sections 4 to 8 we develop our new method for mixed E-unification.
Completeness and correctness results are presented in Section 9; the implementa-
tion of our method and experiments are described in Sections 10 and 11. Finally,
we draw conclusions from our research in Section 12. We assume familiarity with
completion-based methods [1] and (universal) E-unification [12].

2 Preliminaries

We use sequences of natural numbers to denote positions in terms; tp is the
subterm at position p in the term t (e.g. f(a, b)〈2〉 = b). The equality predicate
is denoted by ≈, such that no confusion with the meta-level equality = can arise.

For the sake of simplicity and without any loss of generality, we use a slightly
non-standard notion of substitutions: They have to be idempotent and of finite
domain; Subst is the set of these substitutions. id is the empty substitution. The
application of a substitution σ to a term t is denoted by tσ; if a substitution is
applied to a quantified rule, equality, or term, the bound variables are never
instantiated. ≤ denotes the specialization relation on substitutions: σ ≤ τ iff
there is a σ′ such that σ′ ◦ σ = τ .

The reduction ordering ≻LPO on terms is an arbitrary but fixed lexicographic
path ordering (LPO) [7] that is total on ground terms.3

3 Universal, Rigid and Mixed E-Unification

To be able to mix rigid and universal E-unification, we have to use equalities
(resp. reduction rules) containing two types of variables. To distinguish them
syntactically, equalities (∀x̄)(l ≈ r) and reduction rules (∀x̄)(l → r) can be ex-
plicitly quantified w.r.t. variables they contain.4

Definition 1. A mixed E-unification problem 〈E, s, t〉 consists of a finite
set E of equalities of the form (∀x̄)(l ≈ r) and terms s and t.5

2 In [5] a similar type of constraints is used for E-unification—but only for its purely
universal version. In [4] substitutions are used to restrict the validity of terms. For
a completion-based approach, however, this is not sufficient because the validity of
reduction rules depends on the ordering on terms.

3 Other reduction orderings can be used, provided the satisfiability of constraints
(Def. 6) is still decidable.

4 (∀x̄) is an abbreviation for (∀x1) · · · (∀xn).
5 Without making a real restriction, we require the sets of bound and free variables in

the problem to be disjoint.

A substitution σ is a solution to the problem, iff Eσ |= (sσ ≈ tσ), where the
free variables in Eσ are “held rigid”, i.e. treated as constants.

The major differences between this definition and that generally given in the
(extensive) literature on (universal) E-unification are: (i) the equalities in E are
explicitly quantified (instead of considering all the variables in E to be implicitly
universally quantified); (ii) in difference to the “normal” notion of logical conse-
quence, free variables in Eσ are “held rigid”; (iii) the substitution σ is applied
not only to the terms s und t but as well to the set E.

Definition 2. An E-unification problem 〈E, s, t〉 is purely universal iff there
are no free variables in E; it is purely rigid iff there are no bound variables
in E.6

The intention of defining different versions of E-unification is to allow the equa-
lities in Eσ to be used differently in a proof for Eσ |= (sσ ≈ tσ): in the purely
universal case the equalities can be applied several times with different instan-
tiations for the variables they contain; in the purely rigid case they can be
applied more than once but with only one instantiation for each variable x (na-
mely σ(x)); in the mixed case there are both types of variables. The following
table shows some simple examples:

E s t MGUs Type

{f(x) ≈ x} f(a) a {x/a} purely rigid
{f(a) ≈ a} f(x) a {x/a} ground
{(∀x)(f(x) ≈ x)} g(f(a), f(b)) g(a, b) id purely universal
{f(x) ≈ x} g(f(a), f(b)) g(a, b) — purely rigid
{(∀x)(f(x, y) ≈ f(y, x))} f(a, b) f(b, a) {y/b} mixed

The following well known [17, 9] feature of purely rigid and purely universal
E-unification can be proven to be valid for mixed E-unification as well: Supposed
the substitution σ is a solution to the mixed E-unification problem 〈E, s, t〉, then
every specialization τ of σ is a solution to 〈E, s, t〉 as well.

Since our aim is to find most general unifiers (MGUs), a subsumption relation
on substitutions has to be defined. One could use the specialization relation ≤.
But, for solving mixed E-unification problems, the subsumption relation ≤

E
is

better suited:7

Definition 3. Let E be a set of equalities. The subsumption relation ≤
E

is
defined on the set of substitutions by: σ ≤

E
τ iff there is a substitution σ′ such

that Eτ |= (σ′ ◦ σ)(x) ≈ τ(x) for all variables x, where the free variables in Eτ
are held rigid.

The intuitive meaning of σ ≤
E

τ is: there is a specialization of σ that can be
derived from τ by applying equalities from Eτ . In contrary to ≤ the relation ≤

E

depends on the set E of equalities.

6 If E is ground, the problem is both purely rigid and purely universal.
7 A similar subsumption relation—for purely rigid problems—has been defined in [9].

Since purely universal E-unification is already undecidable, mixed E-unifica-
tion is—in general—undecidable as well. It is, however, possible to enumerate a
complete set of MGUs. Purely rigid E-unification is NP-complete and, therefore,
decidable [8].8

Often, in particular for applications in automated theorem proving, several
E-unification problems have to be solved simultaneously:

Definition 4. A finite set {〈E1, s1, t1〉, . . . , 〈En, sn, tn〉} of mixed E-unification
problems (n ≥ 1) is called simultaneous E-unification problem.

A substitution σ is a solution to the simultaneous problem iff it is a solution
to every component 〈Ek, sk, tk〉 (1 ≤ k ≤ n).

A simultaneous E-unification problem can be solved by searching for common
specializations of solutions to its components.9

4 Constraints

For different substitutions σ, the completion of Eσ contains different reduction
rules. Nevertheless, a single completion can be computed for all Eσ, if con-
straints are attached to the rules to restrict their validity to certain (sets of)
substitutions.

The first part of the constraints we attach to reduction rules and terms is an
order condition10; it expresses a restriction on the ordering of terms w.r.t. the
LPO used.

Example 1. A reduction system equivalent to Eσ = {x ≈ y}σ either consists of
the rule (x → y)σ or the rule (y → x)σ, depending on which of the terms σ(x)
and σ(y) is greater w.r.t. the LPO used.

The expression x ≻ y is the natural choice for a restriction such as “the term
substituted for x has to be greater than that substituted for y”:

Definition 5. Order conditions are composed of the atomic order conditions
s ≻ t (s and t are terms) using the logical connectives ¬, ∧, ∨ and ⊃, and the
constants true and false.

Ground order conditions, i.e., order conditions that contain no variables, are
assigned a truth value by interpreting the (predicate) symbol ≻ by a (fixed) LPO.

A (non-ground) order condition O is true iff Oσ is true for all ground sub-
stitutions σ, false (or inconsistent) iff its negation ¬O is true, and consistent
iff it is not false.

Since LPOs are total on ground terms, the truth value of ground order con-
ditions is well defined; non-ground order conditions are (similar to first order
formulas) either consistent or inconsistent, and may be true or false.

8 In [9] a proof is given that is based on a non-deterministic algorithm for computing
a finite set of MGUs that is complete w.r.t. ≤

E
.

9 Simultaneous purely rigid E-unification is decidable [10].
10 These are similar to the “constraints” in [16], but there are some differences.

Example 2. The order condition f(a) ≻ a is true; (x ≻ y) ∧ (y ≻ x) is false; and
x ≻ y is consistent. The truth value of a ≻ b depends on the LPO used to inter-
pret ≻.

In some cases, order conditions are not sufficient for describing the set of
substitutions for which a reduction rule is valid:

Example 3. Suppose E = {f(b) ≈ a, f(x) ≈ c}; the reduction rule c → a is part
of the completion of Eσ iff σ(x) = b (then the equalities are a critical pair).

One could use the formula x ≈ t to express conditions of the form “x has to
be substituted by (an instance of) t”, if the predicate symbol ≈ were allowed in
order conditions. That, however, would make the handling of conditions unne-
cessarily complicated. Instead the substitution {x/t} itself becomes part of the
constraint:

Definition 6. A constraint c = 〈σ, O〉 consists of a substitution σ and an order
condition O such that the variables in the domain of σ do not occur in O, i.e.
O = Oσ.

A substitution τ satisfies a constraint c = 〈σ, O〉 iff τ is a specialization of σ
and Oτ is true. τ satisfies a set C of constraints iff there is a c ∈ C satisfied by τ .

Sat(c) (resp. Sat(C)) is the set of substitutions satisfying the constraint c
(resp. the set C of constraints).

Note, that sets of constraints implicitly represent disjunctions. To simplify the
handling of constraints, we give some additional definitions and notations:

Definition 7. A constraint c1 subsumes a constraint c2 iff the substitutions
satisfying c2 satisfy as well c1: Sat(c2) ⊂ Sat(c1).

A constraint c−1 that is satisfied by the substitutions not satisfying c is called
negation of c: Sat(c−1) = Subst \ Sat(c).

A constraint c1 ⊓ c2 that is satisfied by the constraints satisfying both c1

and c2 is called a combination of c1 and c2: Sat(c1 ⊓ c2) = Sat(c1) ∩ Sat(c2).

The empty constraint ǫ = 〈id, true〉 consists of the empty substitution id and the
order condition true; it is satisfied by all substitutions.

There are efficient algorithms for computing negations and combinations of
constraints. Since a constraint c1 subsumes a constraint c2 iff c−1

1 ⊓ c2 is incon-
sistent, these are an important part of the implementation. Deciding whether
a constraint is satisfiable is NP-hard [6]. The problem can however simplified
considerably: The order condition (s ≻ x) ∧ (x ≻ t) is inconsistent if there is no
term between s and t (w.r.t. the LPO used). Without causing any harm, we can
do without checking for such inconsistencies, that are very difficult to detect.

5 Constrained Terms and Reduction Rules

Since—syntactically—constrained reduction rules can be considered to be con-
strained terms,11 it suffices to define the latter:

11 Over a different signature that contains → as a function symbol.

Definition 8. A constrained term t = (∀x̄)(t ≪ c) is a term t with a con-
straint c = 〈σ, O〉 attached to it such that tσ = t.12 It can be universally quan-
tified w.r.t. some or all of the variables it contains (the quantification includes
the constraint).

On first sight quantified terms may look strange, but, later on, a constrained
term t is used to express the fact that it can be derived from another term t′.
Therefore, it is important to be able to make a distinction between rigid and
non-rigid (quantified) variables.

Using constraints, for every equality an equivalent set of reduction rules can
be constructed; even for those that cannot be oriented without constraints.

Example 4. The equality f(x) ≈ g(y) cannot be oriented without constraints,
since (i) its instance f(g(a)) ≈ g(a) has to be oriented from left to right, while
(ii) its instance f(a) ≈ g(f(a)) has to be oriented from right to left. The constrai-
ned rules f(x) → g(y) ≪ 〈id, f(x) ≻ g(y)〉 and g(y) → f(x) ≪ 〈id, g(y) ≻ f(x)〉,
however, define the same derivability relation as the equality f(x) ≈ g(y).

Other typical examples are the pair of constrained rules x → y ≪ 〈id, x ≻ y〉
and y → x ≪ 〈id, y ≻ x〉, that corresponds to the equality x ≈ y; and the con-
strained rule (∀x)(∀y)(f(x, y) → f(y, x) ≪ 〈id, f(x, y) ≻ f(y, x)〉), that is equi-
valent to (∀x)(∀y)(f(x, y) ≈ f(y, x)).

The possibility to orient every equality justifies the following definition, that
assigns to each set of equalities a constrained reduction system. Since it will be
the starting point of the completion process, it is called the initial system:

Definition 9. Let E be a set of equalities. Then

{(∀x̄)(s → t ≪ 〈id, s ≻ t〉) | (∀x̄)(s ≈ t) ∈ E or (∀x̄)(t ≈ s) ∈ E}

is the initial constrained reduction system assigned to E.

A constrained reduction system R defines derivability relations ⇒R and ⇛
R

on the set of constrained terms:

Definition 10. Let R be a constrained reduction system and t = (∀x̄)(t ≪ ct)
a constrained term. Iff there is a rule r = (∀ȳ)(l → r ≪ cr) in R, such that

1. {x1, . . . , xn} ∩ Var(r) = ∅ and {y1, . . . , ym} ∩ Var(t) = ∅,13

2. p is a position in t where t|p is not a variable unless t|p = l = xi,
3. t|p and l are (syntactically) unifiable with an MGU ν,
4. the combination cnew = 〈µ, Onew〉 = ct ⊓ cr ⊓ 〈ν, true〉 is consistent,

then t ⇒R t′, where t′ = (∀x̄)(∀ȳ)((t[p/r])µ ≪ cnew).14

Iff in addition (i) t|p = lµ, and (ii) cnew subsumes ct, then t ⇛
R

t′. We call
the triple 〈r, p, µ〉 a justification for t ⇒R t′ (resp. t ⇛

R
t′).

12 The symbol ≪ means “if”.
13 This is not a real restriction, since the bound variables can be renamed.
14 If the constraint cnew expresses restrictions on bound variables that do not occur

in t[p/r], these restrictions can be omitted. For example, (∀x)(a → b ≪ 〈id, x ≻ c〉)
can be reduced to a → b ≪ ǫ.

The intuitive meaning of (∀x̄)(s ≪ cs) ⇒R (∀ȳ)(t ≪ ct) is: there is a substi-
tution σ such that tσ can be derived from sσ using a rule from R, and σ satisfies
the constraints cs, ct and that attached to the rule.

The main difference between the two derivability relations ⇒R and ⇛
R

(which is a sub-relation of ⇒R) is that the derivation t ⇛
R

t′ is “reversible”, if
the order on terms is not taken into concern. The derived term t′ can—in com-
bination with the rules in R—take on the functions of t. In contrary to that, a
derivation t ⇒R t′ is “irreversible” (provided t 6⇛

R
t′).

Example 5. Some examples for derivations and their justification:

(g(a, c) ≪ ǫ) ⇛ (g(a, b) ≪ ǫ) – 〈(c → b ≪ ǫ), 〈2〉, id〉
(f(c) ≪ ǫ) ⇛ (c ≪ ǫ) – 〈((∀x)(f(x) → x ≪ ǫ), 〈〉, id〉

(a ≪ ǫ) ⇒ (y ≪ 〈{x/a}, a ≻ y〉) – 〈(x → y ≪ 〈id, x ≻ y〉), 〈〉, {x/a}〉
(f(c) ≪ ǫ) ⇒ (c ≪ 〈{x/c}, true〉) – 〈(f(x) → x ≪ ǫ), 〈〉, {x/c}〉

It is useful to define a subsumption relation on constrained terms. It is similar
to the relation between a term (without constraint) and its instances:

Definition 11. A constrained term t1 = (∀x̄)(t1 ≪ c1) subsumes a constrai-
ned term t2 = (∀ȳ)(t2 ≪ c2), iff (i) t2 is an instance of t1, and (ii) the combina-
tion c1 ⊓ 〈µ, true〉 subsumes the constraint c2 (Def. 7).

Example 6. The constrained term a ≪ ǫ subsumes a ≪ 〈{x/a}, true〉.
If b ≻LPO a, then the constrained rule x → a ≪ 〈id, x ≻ a〉 subsumes the rule

b → a ≪ 〈{x/b}, true〉.

6 Completion of Constrained Reduction Systems

6.1 Goal of the Completion

The following transformation rules define a method for completing constrained
reduction systems. If this rules are applied repeatedly (in a fair way) to an in-
itial system R = R0, a system R∞ is approximated. It represents the (classical)
completions of all the different instances of E.

In general, the instances of R∞ will not be irreducible and, therefore, not
canonical. Nevertheless, the relation ⇒R

∞ will be confluent (in a sense clarified
in Lemma 19), and thus have the feature crucial for computing normal forms of
constrained terms and solving E-unification problems.

The following example shows that it would not make sense to expect the
instances to be canonical:

Example 7. None of the transformation rules introduced in the next section
can be applied to the reduction system R∞ = {f(x) → c ≪ ǫ, a → b ≪ ǫ}. Ne-
vertheless, its instance {f(a) → c, a → b} is not canonical, since it can be sim-
plified to {f(b) → c, a → b}.

6.2 The Transformation Rules

The rules that have to be applied to complete a reduction system are presented
in form of transformation rules.15

Deletion A rule that has an inconsistent constraint attached to it can be re-
moved, because it cannot be applied anyway:

(Del)
R∪ {(∀x̄)(s → t ≪ c)}

R
c inconsistent

Example 8. The rule x → f(x) ≪ 〈id, x ≻ f(x)〉 can be deleted, because its con-
straint is inconsistent.

Subsumption A constrained rule that is subsumed by another rule (Def. 11)
can be removed:

(Sub)
R∪ {r, r′}
R ∪ {r}

r subsumes r′

Equivalence Transformation A constraint c attached to a reduction rule can
be replaced by a set {c1, . . . , cn} of constraints that—disjunctively connected—
are equivalent to c (i.e. Sat(c) =

⋃

1≤i≤n Sat(ci)). Since only a single constraint
can be attached to a rule, n copies of the original rule are generated:

(Equ)
R∪ {(∀x̄)(l → r ≪ c)}

R ∪ {(∀x̄)(lσ → rσ ≪ 〈σ, O〉) | 〈σ, O〉 ∈ C}

Sat(c) = Sat(C),
C finite

Though this equivalence rule is not necessary for the completeness of our
method, it is very useful; it allows to transform constraints into a normal form,
and thus simplify their handling significantly.

Example 9. The rule f(x, y) → f(a, b) ≪ 〈id, f(x, y) ≻ f(a, b)〉 can be replaced
by f(x, y) → f(a, b) ≪ 〈id, x ≻ a〉 and f(a, y) → f(a, b) ≪ 〈{x/a}, y ≻ b〉.

Critical Pair Rule, Combination, Simplification The transformation rules
described so far allow to delete rules or to replace them by new ones without
using the derivability relation ⇒R. But, to complete a reduction system, ⇒R has
to be taken into concern by applying one rule r2 ∈ R to another rule r1 ∈ R.
Suppose r1 = (∀x̄)(s → t ≪ c1), r2 = (∀ȳ)(l → r ≪ c2), and the rule r2 can be
applied to r1 to derive the rule r′1 = (∀x̄)(∀ȳ)(snew → tnew ≪ cnew), i.e., r1 ⇒ r′1
with a justification 〈r2, p, µ〉. We cannot just add the new rule r′1 to R: Firstly,
instances of r′1 may be oriented differently; we therefore have to use the two
symmetrical versions

rnew1 = (∀x̄)(∀ȳ)(snew → tnew ≪ cnew ⊓ 〈id, snew ≻ tnew〉)

rnew2 = (∀x̄)(∀ȳ)(tnew → snew ≪ cnew ⊓ 〈id, tnew ≻ snew〉) .

15 The set of constrained rules below the line can be derived from the set above the
line if the conditions on the right are met.

Secondly, the form of the transformation rule depends on whether (i) r1 ⇛ r′1
(besides r1 ⇒ r′1) or not,16 and (ii) which side of r1 the rule r2 has been applied
to, i.e., whether p is a position in s or in t.

If r1 ⇛ r′1, then rnew1 and rnew2 allow—together with r2—all the derivations
possible with r1. If, in addition, r2 has been applied to the right side of r1, one
can conclude that the constraint attached to rnew2 is inconsistent. In that case
the transformation is called simplification (Sim), since r1 can be replaced by the
single new rule rnew1:

(Sim)
R

(R \ {r1}) ∪ {rnew1}
p in t, r1 ⇛

R
r′1

Else, if r2 has been applied to the left side of r1, the rule rnew2 cannot
be left out, because the constraint attached to it may be consistent. Such a
transformation is called composition (Com).

(Com)
R

(R \ {r1}) ∪ {rnew1, rnew2}
p in s, r1 ⇛

R
r′1

If r1 6⇛ r′1, the new rules cannot replace the old rule r1; it cannot be removed.
Nevertheless, the transformation has to be carried out provided r2 has been
applied to the left side of r1. Then r1 and r2 are a critical pair , and the new
rules are needed to make the reduction system confluent:

(CP)
R

R∪ {rnew1, rnew2}
p in s, r1 6⇛

R
r′1

In difference to the critical pair rule defined in [9] the unifier µ is only applied
locally to the new rules (not to the whole system R).

Example 10. Suppose f ≻LPO c ≻LPO b ≻LPO a, and R contains the constrained re-
duction rules

r1 = f(c) → b ≪ ǫ
r2 = b → a ≪ ǫ

r3 = (∀x)(f(x) → y ≪ 〈id, f(x) ≻ y〉)
r4 = f(x) → y ≪ 〈id, f(x) ≻ y〉

The simplification rule (Sim) can be applied to r1 and r2 to replace r1 by the
single new rule f(c) → a ≪ ǫ.

The composition rule (Com) can be applied to r1 and r3 to replace r1 by
y → b ≪ 〈id, (f(c) ≻ y ∧ y ≻ b)〉 and b → y ≪ 〈id, (f(c) ≻ y ∧ b ≻ y)〉.

The critical pair rule (CP) can be applied to r1 and r4 (note, that in r4 the
variable x is not quantified); the new rules y → b ≪ 〈{x/c}, (f(c) ≻ y ∧ y ≻ b)〉
and b → y ≪ 〈{x/c}, (f(c) ≻ y ∧ b ≻ y)〉 have to be added.

6.3 Fair Completion Procedures

In general, an infinite number of transformation steps can be necessary to com-
plete a reduction system. But even if the computation does not terminate, a
completion R∞ is approximated, consisting of the persistent reduction rules,
that occur in all but a finite number of the resulting system. To generate a
confluent reduction systems, certain fairness conditions have to be met:

16 That is, r1 ⇛ r
′

1 with the same justification as r1 ⇒ r
′

1; whether r1 ⇛ r
′

1 with a
different justification is not relevant.

Definition 12. R |− R′ means that the constrained reduction system R′ can
be derived from R by applying one of the transformation rules from Section 6.2.

A transformation procedure specifies, when supplied with an initial re-
duction system R0, in which way (in particular: in which order) the transfor-
mation rules are to be applied to generate a sequence R0 |− R1 |− R2 |− · · · of
reduction systems. Then, the reduction system

R∞ =

{

Rm if the sequence is of length m
⋃

k≥0

⋂

m≥k R
m if the sequence is infinite

is called the completion of R = R0, and the completion of the set E of equalities
if R is the initial system for E.

A transformation procedure is fair provided:

1. There is no infinite sequence (ri)i≥0 ⊂
⋃

m≥k R
m such that for all i ≥ 0 the

rule ri+1 has been derived from ri by an equivalence transformation.
2. There is no infinite sequence (ri)i≥0 ⊂

⋃

m≥k R
m such for all i ≥ 0 the rule

ri+1 subsumes ri, and ri has therefore been removed.
3. For every persistent critical pair r1, r2 ∈ R∞ there is an i ≥ 0 such that

Ri+1 has been derived by applying the critical pair transformation rule to
r1, r2 ∈ Ri.

The first two fairness conditions are of a more technical nature: Condition 1
avoids infinite sequences of equivalence transformations. Condition 2 assures
that, if there is an infinite sequence of rules subsuming each other, at least
one of them is in the completion R∞.

Condition 3 is the most important: it assures the application of the critical
pair transformation rule to all persistent critical pairs. It is essential for achieving
confluence of the completion.

Provided, the above fairness conditions are met, arbitrary heuristics can be
used to choose the next transformation rule to apply.

7 Computing Normal Forms

7.1 Normalization Rules

Using constrained reduction systems and terms, a term has more than one nor-
mal form—in general an infinite number of them.

Example 11. With R∞ = {b → a ≪ ǫ, d → c ≪ ǫ} the constrained term x ≪ ǫ
has three normal forms: a ≪ 〈{x/b}, true〉, c ≪ 〈{x/d}, true〉, and x ≪ ǫ itself.

The above example shows that there can be redundancies in a set of normal
forms: the validity of x ≪ ǫ is not restricted to substitutions σ such that σ(x) 6= a
and σ(x) 6= b.

The computation of normal forms is—similar to the completion procedure—
presented in form of transformation rules operating on sets of constrained terms:

Definition 13. To compute the normal forms of a set T of constrained terms,
the rules deletion (Del), equivalence (Equ), subsumption (Sub), simplifi-
cation (Sim), and deduction (Ded) can be applied to T ; the rules depend on
a constrained reduction system R:

(Del)
T ∪ {(∀x̄)(t ≪ c)}

T
c inconsistent

(Equ)
T ∪ {(∀x̄)(t ≪ c)}

T ∪ {(∀x̄)(tσ ≪ 〈σ, O〉) | 〈σ, O〉 ∈ C}

Sat(c) = Sat(C),
C finite

(Sub)
T ∪ {t, t′}
T ∪ {t}

t subsumes t′

(Sim)
T ∪ {t}
T ∪ {t′}

t ⇛
R

t′

(Ded)
T ∪ {t}

T ∪ {t, t′}
t ⇒R t′, t 6⇛

R
t′

7.2 Fair Normalization Procedures

As for completion, an infinite number of normalization steps can be necessary;
similar fairness conditions have to be met. A set T ∞ of normal forms is appro-
ximated, consisting of the persistent terms, that occur in all but a finite number
of the sets.

Definition 14. T |− T ′ means that the set T ′ of constrained terms can be
derived from T by applying one of the normalization rules from Definition 13.

A normalization procedure specifies, when supplied with an initial set T 0

of constrained terms and a reduction system R, in which way the rules are to
be applied to generate a sequence T 0 |− T 1 |− T 2 |− · · · of sets of constrained
terms. Then, the set

T ∞ =

{

T m if the sequence is of length m
⋃

k≥0

⋂

m≥k T
m if the sequence is infinite

is called the set of normal forms of T = T 0 (w.r.t. R).
A normalization procedure is fair provided:

1. There is no infinite sequence (ti)i≥0 ⊂
⋃

m≥k T
m such that for all i ≥ 0 the

term ti+1 has been derived from ti by an application of equivalence (Equ).
2. There is no infinite sequence (ti)i≥0 ⊂

⋃

m≥k T
m such that for all i ≥ 0 the

term ti+1 subsumes ti, and ti has therefore been removed.
3. For every persistent term t ∈ T ∞ that a rule r ∈ R can be applied to, there

is an i ≥ 0 such that T i+1 has been derived by applying r to t ∈ T i.

The first two fairness conditions are similar to that of fair completion pro-
cedures (Def. 12). Condition 3 assures that whenever possible deduction and
simplification are applied to persistent terms.

7.3 Combining Completion and Normalization

Although a completion R∞ may be infinite, one has to abandon the computation
of further reduction rules at a certain point, if completion and normalization of
terms are separated. It is very difficult to decide when this point is reached.
Therefore, it is better to combine the completion and the normalization process:

Definition 15. A completion and normalization sequence (〈Ri, T i〉)i≥0

consists of constrained reduction systems Ri and sets T i of constrained terms,
where (for i ≥ 0) either (i) Ri+1 has been derived from Ri by applying a trans-
formation rule (Sec. 6.2) and T i = T i+1; or (ii) T i+1 has been derived from T i

by applying a normalization rule (Def. 13) and Ri = Ri+1.

Of course, when completion and normalization are combined, the fairness con-
ditions (Def. 12 and 14) still have to be met.

8 Solving Mixed E-Unification Problems

Now we can solve an arbitrary mixed E-unification problem 〈E, s, t〉 by com-
pleting the initial reduction system R0 for E and computing the sets of normal
forms of the constrained terms s ≪ ǫ and t ≪ ǫ. Using these normal forms, sets
Ci of constraints can be computed that are satisfied by solutions to the unifica-
tion problem. These approximate a set C such that Sat(C) is a complete set of
unifiers:

Definition 16. Let 〈E, s, t〉 be a mixed E-unification problem, R0 the initial
system for E, S0 = {s ≪ ǫ}, T 0 = {t ≪ ǫ}, and (〈Ri,Si〉)i≥0 and (〈Ri, T i〉)i≥0

fair completion and normalization procedures. Then, for (i = 0, 1, 2, . . . ,∞) the
sets Ci(〈E, s, t〉) consist of the constraints

{c1 ⊓ c2 ⊓ 〈µ, true〉 | (∀x̄)(r1 ≪ c1) ∈ Si, (∀ȳ)(r2 ≪ c2) ∈ T i,
r1 and r2 are (syntactically) unifiable with an MGU µ }

C(〈E, s, t〉) denotes their union
⋃

i≥0
Ci(〈E, s, t〉).

9 Soundness, Completeness, Confluence

In this section we state soundness and completeness results for our method. Due
to space restrictions the proofs are omitted; they can be found in [2].

Theorem17 Soundness. Let 〈E, s, t〉 be a mixed E-unification problem. A
substitution σ satisfying one of the constraints in C(〈E, s, t〉) (Def. 16) is a so-
lution to 〈E, s, t〉.

Theorem18 Completeness. Let 〈E, s, t〉 be a mixed E-unification problem.
The set Sat(C(〈E, s, t〉)) of unifiers is ground-complete w.r.t. the subsumption
relation ≤

E
(Def. 3), i.e., for every ground unifier σ of 〈E, s, t〉 there is a sub-

stitution τ ∈ Sat(C(〈E, s, t〉)) such that τ ≤
E

σ.

A ground-complete set of unifiers w.r.t. the relation ≤ can be computed by
inverting the constrained rules in a completion R∞ for E (i.e., by changing their
orientation, not the validity of their constraints), and applying the inversion
to the unifiers in Sat(C(〈E, s, t〉)). Computing these additional solutions can be
necessary—in theory—to find solutions to a simultaneous E-unification problem
by combining solutions to its components. Fortunately, in practice this turns out
to be very rarely the case, in particular in the semantic tableau framework.

∗
⇒R

∞ is in general not well founded. Therefore, our method is only a semi-
deciding procedure for unifiability—even if the completion R∞ is finite (it is an

open problem, whether
∗
⇒R

∞ is well founded for purely rigid E-unification pro-
blems). The following example shows that, in addition,

∗
⇒R

∞ cannot be expected
to be confluent:

Example 12. Supposed there are rules f(a) → a ≪ ǫ and f(b) → b ≪ ǫ in R∞.
Then from the constrained term s = f(x) ≪ ǫ terms t1 = a ≪ 〈{x/a}, true〉 and
t2 = b ≪ 〈{x/b}, true〉 can be derived (i.e. s ⇒R

∞ t1 and s ⇒R
∞ t2).

If ⇒R
∞ were confluent, there would have to be a term derivable from both

t1 and t2. That would not make any sense but contradicts soundness.

However, the derivability relation
∗
⇒R

∞ can be proven to be “weak” confluent
(the proof of Theorem 18 is based upon that):

Lemma19. If R∞ is a fair completion, s, t1 and t2 are constrained terms
such that (i) s

∗
⇒R

∞ t1 and s
∗
⇒R

∞ t2, and (ii) the combination c1 ⊓ c2 is con-

sistent, then there are constrained terms u1 and u2, such that (i) t1

∗
⇒R

∞ u1

and t2

∗
⇒R

∞ u2, and (ii) u1 and u2 have a common instance.

10 Implementation

The completion-based method for mixed E-unification we have described, has

been implemented as part of the tableau-based theorem prover 3T
AP [3]. The

implementation consists of about 2500 lines of code, written in Quintus Prolog.
Besides the possibility to prove theorems from predicate logic with equality, the
E-unification module can be used “stand alone” to solve simultaneous mixed
E-unification problems. Complete sets of unifiers w.r.t. both ≤ and ≤

E
can be

computed.17 The experiments described in the next section have been carried
out using this implementation. Upon request the source code is available from
the author.

11 Experiments

If free variables occur in only one side of an equality that cannot be oriented wi-
thout using constraints, a lot of different critical pairs are generated. The worst

17 Because these sets are infinite in general, they can only be enumerated.

case are sets of equalities such as E = {x1 ≈ y1, x2 ≈ y2, x3 ≈ y3}. Its completion
consists of 126 reduction rules, that take more than 10 minutes18 to compute. A
similar example is E = {f(x) ≈ g(y), f(f(u)) ≈ g(g(v))}. The completion, con-
sists of 16 rules and is computed in 6.1s; 19 critical pairs are generated. In prac-
tice, however, such equalities are only very rarely used to formulate theories;
therefore, the problem does not occur too often.

The standard example for purely universal completion are the axioms from
group theory. The completion generated (ten rules) is the same that is computed
by an implementation of the UKBA; all rules have the empty constraint attached
to them.

The following example, taken from [11], shows that our method can be su-
perior to the UKBA for purely universal problems:

The equalities (∀x)(∀y)(m(x, y) ≈ m(y, x)) and (∀x)(∀y)(p(x, y) ≈ p(y, x)),
expressing commutativity of m and p, combined with (∀x)(m(x, 1) ≈ x) and
m(a, b) ≈ p(a, 1) are difficult to complete using the UKBA, because the former
cannot be oriented. Our implementation, however, computes the following com-
pletion, generating only two critical pairs (instead of 16):

r3 = (∀x)(∀y)(p(y, x) → p(x, y) ≪ 〈id, y ≻ x〉)
r4 = (∀x)(m(x, 1) → x ≪ ǫ)
r6 = (∀x)(∀y)(m(y, x) → m(x, y) ≪ 〈id, y ≻ x〉)
r7 = m(a, b) → p(1, a) ≪ ǫ
r8 = (∀x)(m(1, x) → x ≪ 〈id, x ≻ 1〉)

There are other similar examples, where using constraints, the completion
can be computed in a few seconds, whereas using an implementation of the
UKBA, hundreds of critical pairs have to be generated, and several minutes are
needed.

Experiments using the theorem prover 3T
AP showed that for adding equality

to semantic tableaux our method is superior to other approaches (see [4]). A

major and still unsolved problem is the fact that 3T
AP closes the tableau branches

one after the other. In fact, finding a closing substitution for a tableau virtually
never fails because a single branch could not be closed, but because the search
for a single substitution closing all branches simultaneously takes too long.

12 Conclusion

The method presented is the first completion-based algorithm for mixed E-
unification and the first completion-based algorithm for purely rigid E-unifica-
tion that has been implemented. In addition, there are examples (Sec. 11) where
it is superior to the classical UKBA for purely universal problems.

In contrary to other methods for purely rigid E-unification, the algorithm is
deterministic, i.e., backtracking has never to be used to complete a system of
equalities or to solve a unification problem. Moreover, the completion process
does not depend on the terms to be unified. That is important for applications,

18 Runtimes have been measured on a SUN SPARC 10 workstation.

where often a lot of different terms have to be unified using the same set of
equalities.

Completion-based mixed E-unification is a promising way to add the hand-
ling of equality to semantic tableaux and other Gentzen-type calculi for first
order logic; however, methods have to be developed for composing a substitu-
tion that closes all branches of a tableau simultaneously from a great number of
substitutions closing single branches.

References

1. L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In
H. Aı̈t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures,
Volume 2, chapter 1. Academic Press, 1989.

2. B. Beckert. Ein vervollständigungsbasiertes Verfahren zur Behandlung von Gleich-
heit im Tableaukalkül mit freien Variablen. Diploma thesis, Univ. Karlsruhe, 1993.

3. B. Beckert, S. Gerberding, R. Hähnle, and W. Kernig. The tableau-based theorem

prover 3T
AP for multiple-valued logics. In Proceedings, 11th International Confe-

rence on Automated Deduction (CADE), Albany/NY, LNCS. Springer, 1992.
4. B. Beckert and R. Hähnle. An improved method for adding equality to free variable

semantic tableaux. In Proceedings, 11th International Conference on Automated
Deduction (CADE), Albany/NY, LNCS. Springer, 1992.

5. J. Chabin, S. Anantharaman, and P. Réty. E-unification via constrained rewriting.
Unpublished, 1993.

6. H. Comon. Solving inequations in term algebras. In Proceedings, 5th Symposium
on Logic in Computer Science (LICS), Philadelphia/PA. IEEE Press, 1990.

7. N. Dershowitz. Termination of rewriting. J. of Symbolic Computation, 3(1), 1987.
8. J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification: NP-

completeness and application to equational matings. Information and Computa-
tion, pages 129–195, 1990.

9. J. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using equa-
tional matings and rigid E-unification. Journal of the ACM, 39(2), 1992.

10. J. Goubault. Simultaneous rigid E-unifiability is NEXPTIME-complete. Technical
report, Bull Corporate Research Center, 1993.

11. J. Hsiang and J. Mzali. SbREVE user’s guide. Technical report, LRI, Université
de Paris-Sud, 1988.

12. C. Kirchner, editor. Unification. Academic Press, 1990.
13. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In

J. Leech, editor, Computational Problems in Abstract Algebras. Pergamon Press,
Oxford, 1970.

14. W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic
Computation, 7(3/4):295–318, 1989.

15. U. Petermann. A framework for integrating equality reasoning into the extension
procedure. In Proc., 2nd Workshop on Theorem Proving with Analytic Tableaux
and Related Methods, Marseille. MPI für Informatik, 92-213, Saarbrücken, 1993.

16. G. Peterson. Complete sets of reductions with constraints. In Proceedings, 10th In-
ternational Conference on Automated Deduction (CADE), Kaiserslautern, LNCS.
Springer, 1990.

17. J. Siekmann. Universal unification. Jour. of Symbolic Computation, 7(3/4), 1989.

