
Simpli�cation of Many-Valued Logic Formulas Using Anti-Links�Bernhard Beckert and Reiner H�ahnleUniversit�at Karlsruhe, Institut f�ur Logik, Komplexit�at und Deduktionssysteme,D-76128 Karlsruhe, Germany. Email: fbeckert,haehnleg@ira.uka.de,WWW: http://i12www.ira.uka.de/andGonzalo Escalada-ImazInstitut d'Investigaci�o en Intel�lig�encia Arti�cial, Campus Universitat Aut�onoma de Barcelona,E-08193 Bellaterra, Barcelona, Spain. Email: gonzalo@sinera.iiia.csic.es,WWW: http://www.iiia.csic.esJune 3, 1997Abstract. We present the theoretical foundations of the many-valued generalization of a tech-nique for simplifying large non-clausal formulas in propositional logic, that is called removal ofanti-links. Possible applications of anti-links include computation of prime implicates of largenon-clausal formulas as required, for example, in diagnosis. Anti-links do not compute any nor-mal form of a given formula themselves, rather, they remove certain forms of redundancy fromformulas in negation normal form (NNF). Their main advantage is that no clausal normal formhas to be computed in order to remove redundant parts of a formula. In this paper, we de�nean anti-link operation on a generic language for expressing many-valued logic formulas calledsigned NNF and we show that all interesting properties of two-valued anti-links generalize to themany-valued setting, although in a non-trivial way.1 IntroductionIn this article we present the theoretical foundations of the many-valued generaliza-tion of a novel technique for simplifying large non-clausal formulas in propositionallogic. This technique, called removal of anti-links (or just anti-links, for short) hasbeen introduced for the two-valued case in (Ramesh et al., 1997).Possible applications of anti-links include computation of prime implicates1 oflarge non-clausal formulas as required, for example, in logic design (Sasao, 1993)and diagnosis (de Kleer et al., 1992).Purely clausal approaches, applied after doing a polynomial time structure pre-serving clause form transformations (Plaisted and Greenbaum, 1986), cannot beused here, because such transformations do not preserve models. As a conse-quence, the set of prime implicates of the resulting clause set and of the originalformula bear no straightforward relationship, see (Ramesh, 1995, Section 3.5.1)and (Ramesh et al., to appear) for details.In such settings often binary decision diagrams2 (BDDs) (Bryant, 1986) are� This research was supported in part within an Acci�on Integrada called \Discrete FunctionManipulation Using Anti-Links" granted by DAAD (Germany) and M.E.C. (Spain).1 There is a strong duality between implicates and implicants. Therefore, all techniques pre-sented in this paper can be used as well for the computation of prime implicants.2 Or, rather, many-valued decision diagrams (Srinivasan et al., 1990) as the present paper deals



2 Bernhard Beckert et al.used. In contrast to these, anti-links do not compute any normal form of a givenformula themselves, rather, they remove certain forms of redundancy from formulasin negation normal form (NNF, cf. De�nition 1). Their main advantage is that noclausal normal form has to be computed in order to remove redundant parts of aformula. Although BDD implementations are storing subformulas in hash tableto avoid multiple computations, a full BDD has to be computed for subsumptionchecking.Viewing an NNF formula as a combinational circuit, using anti-links one cansimplify circuits with unbounded nesting depth without having to compute abounded depth circuit �rst. This can greatly reduce the size required for interme-diate representations.We stress, that anti-links are not intended to replace existing and successfultechniques such as BDDs or dissolution (Murray and Rosenthal, 1993) (they arenot even a complete inference rule for propositional logic), rather, the latter canbe augmented and improved by our analysis.In this paper, we de�ne an anti-link operation on a generic language for express-ing many-valued logic formulas called signed NNF and we show that all interestingproperties of two-valued anti-links generalize to the many-valued setting, althoughin a non-trivial way.Contrary to (Murray and Rosenthal, 1993) we do not use the special concept ofsemantic graphs for the representation of NNF formulas, but introduce an improvednotation that solely relies on well-known notions like formulas, subformulas, etc.Before giving the technical details, in the remainder of this section we brie
youtline our results on an informal level.Roughly, (two-valued) anti-links work as follows (see Sections 2 and 3 for allformal de�nitions): Consider the NNF formula below written down in a two-dimensional notation, where disjunctions are written horizontally and conjunctionsare written vertically (F , G, H , and I , respectively, are arbitrary formulas, whileAX and AY are occurrences of the same literal p in the subformula X and in thesubformula Y ). X � � � AX̂F _ G _ � � � AY _ HÎ Y (1)Let us call a maximal, disjunctively connected set of literal occurrences a paththrough a formula. Two of its paths are schematically displayed in (1).Observe that all literals on any path through AX , AY , and H occur as wellon some path through F , G, AY , and H , because AX and AY are occurrences ofthe same literal. In other words, the latter paths are all subsumed by one of thewith many-valued logic. mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 3former paths, where subsumption on disjunctive paths coincides with the subsetrelation. Generalizing, we have this kind of situation, whenever1. AX and AY are two di�erent occurrences of the same literal A in a formula,2. AX and AY are disjunctively connected, and3. at least one of AX and AY is a conjunct.If (1){(3) hold, then we call the pair hAX ; AY i a redundant anti-link.3 A redun-dant anti-link thus always signi�es the presence of subsumed paths in a formula.If the formula is converted to conjunctive normal form (CNF) such paths becomenon-prime implicates. It is, therefore, desirable to get rid of them.The anti-link operator restructures a formula containing a redundant anti-linkin such a way that exactly the subsumed paths are removed and, in addition, oneoccurrence of p is deleted on the (non-subsumed) paths where it occurs twice.The result of applying the anti-link operator to (1) F _ G _ I^AX _ ĤI(without considering the parts of the formula indicatedby \. . . ") is displayed on the right. Observe that none ofthe paths containing fF;G;AY ; Hg is present anymore.Of course, if the input formula is in (signed) CNF,the anti-link technique is applicable as well (the result,however, may not be in CNF anymore). It performsessentially a conjunctive factoring step, i.e., an appli-cation of the distributive law. While uncontrolled factoring is in general useless,the anti-link operator leads to a controlled application. Thus it can be very wellbene�cial to sacri�ce CNF in intermediate steps.In the many-valued case we still work with an NNF formula that is classicalwith respect to conjunctions and disjunctions. The di�erence comes in at theliteral level: we use signed literals (sometimes called universal literals), that isexpressions of the form S:p, where S is a subset of some truth value set and p isan atom.It is not obvious how to extend the anti-link technique to the many-valuedcase; there are several possible approaches. Careful analysis reveals that, whilecondition (2) for anti-links can be left unchanged, conditions (1) and (3) have tobe suitably altered.1'. AX and AY are two di�erent occurrences of signed literals SX :p and SY :p,respectively, with SX \ SY 6= ;.The main idea for handling many-valued anti-links is to replace the occur-rence of SY :p with the equivalent formula (SX \ SY ):p_ (SY nSX):p, to replace theoccurrence of SX :p with (SX \ SY ):p_ (SXnSY ):p, and then to apply the classicalresults to the resulting two di�erent occurrences of (SX \ SY ):p. Obviously, mak-ing the replacement can destroy property (3), which must be changed as well; thisis discussed in detail in Section 4.3 The phrase \anti-link" is motivated by the fact that a link is a pair of complementary andconjunctively connected literals. mvanti.tex - Date: June 3, 1997 Time: 19:55



4 Bernhard Beckert et al.In Section 5 we give an extended example. The paper is closed by pointing outthe next stages of work.2 Prerequisites and Concepts Related to Anti-LinksDefinition 1. Let � be a propositional signature that is a countable set ofpropositional variables fp; q; : : :gwhich are also called atoms. LetN = fi1; : : : ; ingbe a �nite set of truth values disjoint with �. If p 2 � and S � N , thenthe expression S:p is called a signed literal.4 Signed literals of the form ;:p,respectively, N :p are identi�ed with the expressions false, respectively, true .Signed formulas in negation normal form (NNF formulas, for short) areinductively de�ned as the smallest set with the following properties:1. signed literals, and true , false are NNF formulas;2. if F1; : : : ; Fm are NNF formulas, so are F1 ^ � � � ^ Fm and F1 _ � � � _ Fm.If N = f0; 1g, then we speak also of a classical NNF formula. In this casewe abbreviate signed literals as follows: f0g:p with p, f1g:p with p.Definition 2. The subformulas of an NNF formula G are de�ned as the smallestset having the following properties:1. if G is a signed literal then its only subformula is G itself;2. if G = F1^� � �^Fm (G = F1_� � �_Fm) then, for any fi1; : : : ; irg � f1; : : : ; mg,Fi1 ^ � � � ^ Fir (Fi1 _ � � � _ Fir) is a subformula of G;3. if F is a subformula of H and H is a subformula of G, then F is also asubformula of G.Definition 3. Let G, H be subformulas of an NNF formula F . We say thatG and H are disjunctively (conjunctively) connected|d-(c-)connected, forshort|if there exists a subformula X_Y (X^Y ) of F such that G is a subformulaof X and H is a subformula of Y .A partial disjunctive path through an NNF formula F is a set of mutuallyd-connected occurrences of true and literals in F (occurrences of false are omitted).A disjunctive path|d-path, for short|through F is a partial d-path through Fwhich is maximal and does not contain true . The set of all d-paths through anNNF formula F is denoted with dp(F ). (Partial) conjunctive paths are de�neddually (using c- instead of d- and true , false exchanged). They are denoted cp(F ).Observe that paths are de�ned as sets of literal occurrences A and do not containthe constants true and false. `(A) denotes the literal of which A is an occurrence.4 As signed literals are the only kind of literals we deal with, we often simply say \literal"instead of \signed literal". mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 5The set f`(A) : A 2 �g of literals on a path � is denoted with `(�). One maythink of a literal occurrence as a uniquely labelled subformula.The above de�nition of paths is the same as in (Murray and Rosenthal, 1993;Ramesh et al., 1997). In the following a di�erent, but equivalent de�nition of pathsthrough a formula will be convenient. As we make use of some results on pathscontained in the papers mentioned above, we formally state their equivalence:Lemma 1. Let F be an NNF formula.dp(F ) = 8>>>><>>>>: ; if F = truef;g if F = falseffFgg if F is a literalfSmi=1 �i j �i 2 dp(Fi) for 1 � i � mg if F = F1 _ � � � _ FmSmi=1 dp(Fi) if F = F1 ^ � � � ^ Fmcp(F ) = 8>>>><>>>>: f;g if F = true; if F = falseffFgg if F is a literalSmi=1 cp(Fi) if F = F1 _ � � � _ FmfSmi=1 �i j �i 2 cp(Fi) for 1 � i � mg if F = F1 ^ � � � ^ FmProof. A straightforward induction on the depth of F .There are two di�erent notions of subsumption: either paths are simply sets ofliteral occurrences or else the signs inside their literals are taken into account.Definition 4. Let �, �0 be d-paths through a formula F . � classically sub-sumes �0 i� `(�) � `(�0). � MV-subsumes �0 i� for each S:p 2 `(�) there arefS1:p; : : : ; Sm:pg � `(�0) such that S � Smi=1 Si.Let F , G be NNF formulas. Then F classically subsumes G i� for each� 2 dp(G) there is a �0 2 dp(F ) such that �0 classically subsumes �. F MV-subsumes G i� for each � 2 dp(G) there is a �0 2 dp(F ) such that �0 MV-subsumes �.A path or a formula properly subsumes (classically or MV-) another i� itsubsumes the latter, but not vice versa.A d-path is tautological i� it contains signed literals S1:p; : : : ; Sm:p such thatSmi=1 Si = N .Two NNF formulas are classically (MV-)path equivalent i� they classically(MV-)subsume each other.It is obvious that classical subsumption (path equivalence) implies MV-sub-sumption (path equivalence).mvanti.tex - Date: June 3, 1997 Time: 19:55



6 Bernhard Beckert et al.Example 1. Let N = f0; 1; 2; 3g. Consider d-paths � = ff0; 1g:p; f2g:p; f3g:qgand �0 = ff0; 2g:pg. Neither classically subsumes the other, but �0 properly MV-subsumes �.The NNF formula F = f0; 1g:p classically (and thus MV-) subsumes G =(f0g:p ^ f3g:qg) _ f0; 1g:p. G does not classically subsume F , but it MV-subsu-mes F . Hence, F and G are MV-, though not classically, path equivalent.Definition 5. Relative to a signature � and a truth value set N one de�nes an(MV) interpretation as a function I : �! N .An interpretation I satis�es a signed literal S:p if I(p) 2 S. It satis�es ad-(c-)path i� it satis�es at least one (all) of the literals occurring on it. No inter-pretation satis�es false and all interpretation satisfy true . Satisfaction is extendedto complex NNF formulas in a natural way:I satis�es F i� � F = F1 ^ � � � ^ Fm and I satis�es all FiF = F1 _ � � � _ Fm and I satis�es at least one FiA formula is satis�able i� there exists a satisfying interpretation for it. Twoformulas are logically equivalent i� they are satis�ed by exactly the same inter-pretations.Observe that for classical NNF formulas our notion of satisfaction coincideswith the usual one. The following lemma is obvious.Lemma 2. I satis�es an NNF formula F i� it satis�es all literals in one of itsc-paths i� it satis�es at least one literal in each of its d-paths.Lemma 3. If two NNF formulas are classically or MV-path equivalent, then theyare also logically equivalent.Proof. Classical path equivalence implies MV-path equivalence, so assume thelatter of F , G. We show that every interpretation that satis�es F also satis�es G,the other direction is symmetric.Assume I satis�es F and I does not satisfy G. Then there is a d-path �through G which is not satis�ed by I. Because F MV-subsumes G, there is ad-path �0 through F which MV-subsumes �.By the previous lemma I satis�es at least one literal, say L , in each d-path of F , in particular, I satis�es an L�0 = S:p in �0, hence I(p) 2 S. Because �0MV-subsumes �, there are fS1:p; : : : ; Sm:pg � `(�) such that S � Smi=1 Si. ThusI(p) 2 Si for some i. But then I satis�es a literal in �|contradiction.Given an occurrence of a subformula G of an NNF formula F and an NNFformula H , FfG  Hg denotes the result of replacing this occurrence of G in Fby H . mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 7Lemma 4. Let G be a subformula of F and let H be an MV-path equivalent of G.Then FfG Hg is an MV-path equivalent of F .Let G be a subformula of F and let H be an NNF formula such that dp(G) =dp(H). Then dp(FfG Hg) = dp(F ).Proof. Using Lemma 1 one proves with a straightforward induction on the formulastructure using dp(H) instead of dp(G) preserves MV-path equivalence.The second claim is an immediate consequence of Lemma 1.Lemma 5. For all S; S 0 � N , and atoms p:1. (S [ S 0):p is MV-path equivalent to S:p _ S 0:p;2. ;:p is MV-path equivalent to false;3. N :p is MV-path equivalent to true .Proof. Straightforward from the de�nitions.Finally we need some special terminology:Definition 6. Given an NNF formula F , a subformula with respect to a set �of literal occurrences is obtained from F by deleting all literal occurrences notin �.Let G be a subformula of an NNF formula F . A d-path � in dp(F ) passesthrough an occurrence of G i� the subset of � which consists of literal occurrencesin G is a d-path through G. c-paths passing through a formula occurrence arede�ned dually.Definition 7. Let G be an NNF formula. The c-extension and the d-extensionof a subformula occurrence H in G, denoted by CE(H) resp. DE(H), are induc-tively de�ned as follows:1. CE(G) = DE(G) = G.2. If M is the occurrence of a conjunction F1 ^ : : :^ Fm (m > 1) in G thenCE(Fi) = CE(M) and DE(Fi) = Fi (1 � i � m) :3. If M is the occurrence of a disjunction F1 _ : : :_ Fm (m > 1) in G thenCE(Fi) = Fi and DE(Fi) = DE(M) (1 � i �m) :Note, that the operators CE and DE have an implicit second argument thatis always the entire formula G in which the �rst argument occurs. Contrary tothat the operators CPE and DPE (see the following de�nition) have an explicitsecond argument, that does not have to be the entire formula.mvanti.tex - Date: June 3, 1997 Time: 19:55



8 Bernhard Beckert et al.Definition 8. Let X and H be arbitrary occurrences of subformulas in an NNFformula.5 The c-path complement of H with respect to X , written CC(H;X),is the subformula of X with respect to all literals in X that lie on c-paths thatdo not pass through H . If no such literal exists, CC(H;X) = false. The c-pathextension of H with respect to X , written CPE(H;X), is the subformula of Xcontaining all literals that lie on c-paths that pass through H . If no such literalexists, CPE(H;X) = false.In the development of anti-link operations, we will use operations that are theduals of CC and CPE. We use DC for the d-path complement and DPE forthe d-path extension operators. Their de�nitions are straightforward by duality(but note that then the base case is de�ned as DC(H;X) = DPE(H;X) = true).Example 2. In (2) on page 9,DC(AX ; X) = B DC(AY ; Y ) = E _ CYDPE(AY ; Y ) = AY CE(AX) = AXDC(CE(AX); X)) = B DPE(AX ; X) = AX _ CXCC(AY ; Y ) = false3 Anti-Links in Two-Valued LogicIn this section we restate formally the discussion of the introduction on two-valuedanti-links. It is partly taken from (Ramesh et al., 1997), where also proofs of all theresults in this section can be found. All formulas in this section are classical NNFformulas. Likewise, subsumed means always classically subsumed, path equivalentmeans classically path equivalent, etc.Definition 9. A disjunctive (conjunctive) anti-link is a pair hAX ; AY i of dis-junctively (conjunctively) connected occurrences of the same literal p = `(AX) =`(AY ) in an NNF formula F such that AX occurs in X , AY occurs in Y , and X_Y(X ^ Y ) is a subformula of F .In the rest of the paper we deal mainly with disjunctive anti-links; thus, whenwe write \anti-link" the intended meaning is always \disjunctive anti-link".The following theorem relates subsumed paths to both kinds of anti-links. Thetheorem is immediate for classical CNF formulas; there is an obvious dual theoremregarding subsumed c-paths that is immediate for DNF formulas.Theorem 1. Let F be an NNF formula in which a non-tautological d-path �subsumes a distinct d-path �0 in F . Then F contains either a disjunctive anti-linkor a conjunctive anti-link.5 H usually is (but does not have to be) a subformula with respect to some set of literaloccurrences of X. mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 93.1 Redundant Anti-linksUnfortunately, the presence of anti-links does not imply the presence of subsumedpaths, and hence the converse of the above theorem is not true.It turns out, however, that it is possible to identify such disjunctive anti-linkswhich do imply the presence of subsumed paths:Definition 10. An anti-link hAX ; AY i is called redundant if CE(AX) 6= AX orif CE(AY ) 6= AY .Definition 11. Let hAX ; AY i be an anti-link in F , where M = X _ Y is thesmallest subformula of F containing the anti-link (the unique subformula of Fcontaining the anti-link such that no proper subformula of M contains the anti-link). DP (hAX ; AY i; F ) is de�ned as the set of all d-paths ofM which pass throughboth CE(AX)� fAXg6 and AY or through both CE(AY )� fAY g and AX .Example 3. Consider the following formula F = X _ Y :X AX _ CXB̂ _ AŶE _ CY Y (2)The two occurrences of A in F form a redundant anti-link.We proceed to show that DP (hAX ; AY i; F ) consists solely of subsumed paths:Since CE(AX)� fAXg = true there are no paths through it. Therefore, the onlypaths in DP (hAX ; AY i; F ) are those which go through CE(AY )�fAY g = E_CYand AX . Since DPE(AX ; X) = AX _ CX , there is only one such d-path, namely� = fAX ; CX ; E; CY g (indicated by a line). � is subsumed by �0 = fAX ; CX; AY g(with literal set fA;Cg). In the example, the smallest subformula of F containingthe anti-link is F itself. Notice that when F is a proper subformula of a formula G,then every d-path  in G containing � is subsumed by a corresponding d-path  0di�ering from  only in that  0 contains �0 instead of �.In general, one or both of the literals in a redundant anti-link hAX ; AY i is anargument of a conjunction, and DP (hAX ; AY i; F ) 6= ;. In the above example,the two occurrences of C are both arguments of disjunctions, and thus comprise anon-redundant anti-link for which accordingly DP (hCX; CY i; F ) = ;.Although only redundant anti-links contribute directly to subsumed d-paths,non-redundant anti-links do not prohibit the existence of subsumed paths. How-ever, such non-redundant anti-links do not themselves provide any evidence thatsuch paths are in fact present.Theorem 2. Let hAX ; AY i be a redundant anti-link in an NNF formula F . Theneach d-path in DP (hAX ; AY i; F ) is properly subsumed by a d-path through Fthat contains the anti-link.6 CE(AX)� fAXg is used here and in the future as a shorthand for CE(AX )fAX  trueg.mvanti.tex - Date: June 3, 1997 Time: 19:55



10 Bernhard Beckert et al.3.2 An Anti-Link OperatorThe identi�cation of redundant anti-links can be done easily by checking to see ifCE(AX) 6= AX or CE(AY ) 6= AY . After identifying a redundant anti-link, it ispossible to remove it using the disjunctive anti-link dissolvent (DADV) oper-ator de�ned below; in the process, all d-paths in DP (hAX ; AY i; F ) are eliminated,and the two occurrences of the anti-link literal are collapsed into one.Definition 12. Let hAX ; AY i be an anti-link and let M = X _Y be the smallestsubformula containing the anti-link. ThenDADV (hAX ; AY i;M) = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ CC(AY ; Y )Example 4. Consider again formula (2) from Example 3. In Example 2 we com-puted DC(AX ; X) and DC(AY ; Y ), so the upper conjunct in DADV is (B _E _ CY ). For the middle conjunct use DC(CE(AX); X) and DPE(AY ; Y ) whichyields (B _ AY ). Finally, in the lower conjunct, DPE(AX ; X) and CC(AY ; Y )give (AX _ CX). The result is:DADV (AX ; AY ;M) = B _ E _ CY^B _ AY^AX _ CXWe point out that although DADV produces a CNF formula in the abovesimple example, in general it does not. In particular, the above formula can besimpli�ed as the consequence of easily recognizable conditions, and the resultingformula is not in CNF. For the details, see Case 1 of Section 3.4.3.3 Correctness of DADVTheorem 3 below states that DADV (hAX ; AY i; F ) is logically equivalent to F anddoes not contain the d-paths of DP (hAX ; AY i; F ).Theorem 3. LetM = X_Y be the smallest subformula containing hAX ; AY i, ananti-link in the NNF formula F . Then DADV (hAX ; AY i;M) is logically equivalenttoM and FfM  DADV (hAX ; AY i;M)g, i.e., the result of applying the anti-linkoperator, di�ers in d-paths from F as follows: d-paths in DP (hAX ; AY i; F ) arenot present, and any d-path of F containing the anti-link is replaced by a pathwith the same literal set having only one occurrence of the anti-link literal.mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 11Theorem 3 gives us a method to remove anti-links and some subsumed d-paths:Simply identify a redundant anti-link hAX ; AY i and the smallest subformula Mcontaining it, and then replace M by DADV (hAX ; AY i;M). The cost of per-forming DADV (hAX ; AY i;M) is proportional to the size of the formula replacingM , and this is linear in M . Also, c-connected literals in M do not become d-connected in DADV (hAX ; AY i;M). Thus truly new disjunctive anti-links are notintroduced. However, parts of the formula may be duplicated, and this may giverise to additional copies of anti-links not yet removed.Nevertheless, persistent removal of disjunctive anti-links is a terminating pro-cess, because at each step1. if the removed anti-link is redundant (in which case DP (hAX ; AY i;M) 6= ;),then the number of d-paths is strictly reduced;2. else, if the anti-link is not redundant, then the d-paths in the formula remainunchanged with the exception of those going through the anti-link on whichone literal occurrence is deleted.This proves:Theorem 4. Finitely many applications of the DADV operation will result in aformula without disjunctive anti-links, and termination of this process is indepen-dent of the choice of anti-link at each step.Although we can remove all the redundant disjunctive anti-links in the formula,this process can introduce new conjunctive anti-links. Such anti-links may indicatethe presence of subsumed d-paths, but the su�cient requirement for redundancyis much stronger as in De�nition 10, see (Ramesh et al., 1997, Section 3.7).3.4 SimplificationsObviously, DADV (hAX ; AY i;M) can be syntactically larger than M = X _ Y .Under certain conditions we may use simpli�ed alternative de�nitions for DADV .These de�nitions result in formulas which are syntactically smaller than those thatresult from the general de�nition. The following is a list of possible simpli�cations.1. If CE(AX) = AX (and CE(AX) 6= X) ;then DC(CE(AX); X) = DC(AX ; X). Therefore by (possibly non atomic)factoring on DC(AX ; X) and observing that (DC(AY ; Y ) ^ DPE(AY ; Y ))has the same d-paths as Y , DADV (hAX ; AY i;M) becomesDC(AX ; X) _ Y^DPE(AX ; X) _ CC(AY ; Y )mvanti.tex - Date: June 3, 1997 Time: 19:55



12 Bernhard Beckert et al.It turns out that this rule applies to (2) in Example 3; the simpli�ed rule forthis case results in the following formula:B _ ÂE _ C^A _ C2. If CE(AX) = X ;then DC(CE(AX); X) = true , DPE(AX ; X) = AX and DC(AX ; X) = (X �fAXg). Hence DADV (hAX ; AY i;M) becomesX � fAXg _ DC(AY ; Y )^AX _ CC(AY ; Y )3. If both Case 1 and Case 2 apply, then CE(AX) = X = AX , and the aboveformula simpli�es to AX _ CC(AY ; Y ) :Note that in all the above versions of DADV , the rôles of X and Y can beinterchanged. 4 Anti-Links in Many-Valued LogicBy de�nition, an anti-link in classical logic consists of two occurrences of thesame literal. In many-valued logics the de�nition has to be more general, becausethere are redundancies as well if literals are not identical but consist of the samepropositional variable and non-disjoint truth signs:Definition 13. A disjunctive (conjunctive) many-valued anti-link consistsof disjunctively (conjunctively) connected occurrences AX and AY of literals in amany-valued formula in NNF such that1. `(AX) = SX :p and `(AY ) = SY :p for some atom p and SX ; SY � N ;2. SX \ SY 6= ;. mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 134.1 Redundant Anti-Links in Many-Valued LogicsThe analogue of Theorem 1 holds for many-valued anti-links, i.e., if a formulacontains subsumed d-paths this implies the presence of anti-links; and the converseof the theorem is not true: only redundant anti-links indicate the existence ofsubsumed d-paths.The classical anti-link operator, when applied to a redundant anti-link, reducesa formula in two ways. First, if the anti-link literal AX is a conjunct, d-pathsthat go through the other anti-link literal AY and through CE(AX) � fAXg areremoved (cf. Figure 1 on page 18). These paths are of the form� = �CE [ �r [ fAY g(where �CE is the part going through CE(AX)� fAXg and �r is the rest of thepath except AY ). Such a path � is classically subsumed by a path�0 = fAXg [ �r [ fAY gin the formula, because `(�0) � `(�) for a classical anti-link. �0 is identical to �except that it goes through AX instead of CE(AX) � fAXg (and, thus, throughboth anti-link literals).In the many-valued case, where `(AX) = SX :p and `(AY ) = SY :p, this type ofreduction is possible i� SX � SY , because then a path �0 = fAXg [ �r [ fAY gMV-subsumes a path � = �CE [ �r [ fAY g. The same type of reduction can befound if AY is a conjunct instead of AX and|in the many-valued case|providedSY � SX .These considerations justify the following de�nitions:Definition 14. A many-valued anti-link hAX ; AY i, where `(AX) = SX :p and`(AY ) = SY :p, is redundant if either one of the following conditions holds:� AX is a conjunct, i.e. CE(AX) 6= AX , and SX � SY� AY is a conjunct, i.e. CE(AY ) 6= AY , and SY � SX .Definition 15. Let hAX ; AY i be a many-valued anti-link in F , where `(AX) =SX :p and `(AY ) = SY :p, and M = X _ Y is the smallest subformula containingthe anti-link. ThenDPMV (hAX ; AY i; F ) = 8>>>>>>><>>>>>>>:DP (hAX ; AY i; F ) if SX = SYf� 2 dp(F ) j � passes throughCE(AX)� fAXg and AY g if SX ( SYf� 2 dp(F ) j � passes throughCE(AY )� fAY g and AXg if SY ( SX; otherwisemvanti.tex - Date: June 3, 1997 Time: 19:55



14 Bernhard Beckert et al.The following theorem is the many-valued version of Theorem 2 (and the prooffor Theorem 2 given in (Ramesh et al., 1997) can easily be adapted):Theorem 5. Let hAX ; AY i be a redundant many-valued anti-link in an NNF for-mula F . Then each d-path in DPMV (hAX ; AY i; F ) is properly MV-subsumed bya d-path through F that contains the anti-link.The second type of reduction of the (classical) anti-link operator is to removeone anti-link literal occurrence AY from all paths that go through both anti-linkliterals AX and AY , which is justi�ed by the fact that `(AX) = `(AY ). In themany-valued case this second reduction is only possible if SY � SX or SX � SY .4.2 A Many-Valued Anti-Link OperatorIt is not obvious how to extend the anti-link technique to the many-valued case;there are several possible approaches. Careful analysis shows that the following is asuccessful method for developing a many-valued anti-link operator for simplifyingsigned NNF formulas from the classical operator.The following assertions are obvious for all sets SX and SY of truth values:1. SX = (SX \ SY ) [ (SX n SY ).2. SX :p is MV-path equivalent to (SX \ SY ):p _ (SX n SY ):p.3. If SX � SY , then SX :p is identical to (SX \ SY ):p.Therefore, given a formula F in NNF that contains an anti-link hAX ; AY i,where `(AX) = SX :p, `(AY ) = SY :p, the result of replacing AX by (SX \ SY ):p _(SX n SY ):p if SX 6� SY and replacing SY :p by (SX \ SY ):p_ (SY n SX):p if SY 6�SX is a formula F 0 that is MV-path equivalent to F .F 0 contains a classical anti-link: the two occurrences of (SX \ SY ):p. Thus, theclassical anti-link operator can be applied to F 0 if F 0 is viewed as a classical NNFformula over the signature consisting of the many-valued literals (including theirsigns) that occur in F 0.The result of this application is a formula F 00 that is classically path equivalentto F 0 and thus MV-path equivalent to F . By de�nition of the classical anti-link operator, F 00 is constructed by replacing the smallest subformula M 0 in F 0containing the anti-link by M 00 = DADV (hAX ; AY i;M 0).M 00 (and thus F 00) can be expressed in terms of the original formula; the resultis a d-path equivalent formula that can be seen as the result of applying a many-valued anti-link operator to the original formula, and in fact we use it as thede�nition of our operator:Definition 16. Let hAX ; AY i be a many-valued anti-link in an NNF formula F ,where `(AX) = SX :p and `(AY ) = SY :p, and let M = X _ Y be the smallestmvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 15subformula of F containing the anti-link. ThenMVDADV (hAX ; AY i;M) = DC(AX ; X) _ DC(AY ; Y )^T _ DPE(AY ; Y )^DPE(AX ; X) _ Swhere T = �DC(CE(AX); X) if SX � SYDC(AX ; X) otherwiseand S = � CC(AY ; Y ) if SY � SXY fAY  (SY n SX):pg otherwiseAs in the classical case, the cost of computing MVDADV (hAX ; AY i;M) islinear in M .The following theorem, that states correctness of the many-valued anti-linkoperator is the analogue of Theorem 3.Theorem 6. Let M = X _ Y be the smallest subformula containing hAX ; AY i, amany-valued anti-link in the NNF formula F , where `(AX) = SX :p and `(AY ) =SY :p. Then MVDADV (hAX ; AY i;M) is MV-path equivalent toM and di�ers ind-paths from M as follows:1. d-paths in DPMV (hAX ; AY i;M) are not present;2. any d-path � of M containing the anti-link is replaced by �0 = � n fAY g ifSY � SX , and else by �0 = (� n fAY g) [ fAnY g, where AnY is an occurrenceof (SY n SX):p.Proof. The proof follows closely the description given at the beginning of thissection of how the many-valued anti-link operator can be constructed from theclassical one.1st case: SX = SYIn this case, where both SX � SY and SY � SX , the de�nition of MVDADVis identical to that of DADV , and the theorem follows immediately from thecorrectness of the classical operator (Theorem 3).2nd case: SX ( SYThe set of paths in M can be separated into four disjoint subsets: the set of pathsthat (a) do not go through AY , (b) go through AY but not through CE(AX),(c) go through AY and through CE(AX) � fAXg, (d) go through both anti-linkliterals AX and AY (cf. Figure 1).Because of SX ( SY the formulaM 0 is constructed fromM by replacing AY by(SX \ SY ):p _ (SY n SX):p. Paths that do not go through AY remain unchanged;mvanti.tex - Date: June 3, 1997 Time: 19:55



16 Bernhard Beckert et al.in paths that contain AY this is replaced by occurrences A\Y of (SX \ SY ):p andAnY of (SY n SX):p. Thus, dp(M 0) = (a)[ (b0) [ (c0) [ (d0) where(b0) = f(p n fAY g) [ fA\Y ; AnY g j p 2 dp(M) goes through AYand not through CE(AX)g(c0) = f(p n fAY g) [ fA\Y ; AnY g j p 2 dp(M) goes through AYand through CE(AX)� AXg(d0) = f(p n fAY g) [ fA\Y ; AnY g j p 2 dp(M) goes through AYand through AXgBecause A\Y is part of a disjunction, CE(A\Y ) = A\Y in M 0; therefore the set (c0)is identical to DP (hAX ; A\Y i;M 0). This means that (c0) is|according to Theo-rem 3|the set of paths that is removed when the classical anti-link operator isapplied to the anti-link hAX ; A\Y i inM 0 (recall that SX :p is identical to (SX \ SY ):pby SX � SY ). In addition, by applying the classical operator, the second occur-rence A\Y is removed from the paths going through the anti-link, i.e., from allpaths in (d0). The set of paths in the result M 00 of applying DADV to M 0 is thusdp(M 00) = (a)[ (b0) [ (d00) where(d00) = f(p n fAY g)[ fAnY g j p 2 dp(M) goes through AYand through AXgAccording to the de�nition of the classical anti-link operator,M 00 has the formM 00 = DC(AX ; X 0) _ DC(A\Y ; Y 0)^DC(CE(AX); X 0) _ DPE(A\Y ; Y 0)^DPE(AX ; X 0) _ CC(A\Y ; Y 0)Because1. X = X 0;2. DC(A\Y ; Y 0) is identical to DC(AY ; Y ) since the disjunctive complement DCconsists of those paths that do not contain the anti-link literal;3. CC(A\Y ; Y 0) = Y fAY  (SY n SX):pg using the de�nition of the conjunctivecomplement and since Y 0 = Y fAY  ((SX \ SY ):p _ (SY n SX):p)g;the only di�erence betweenM 00 andMVDADV (hAX ; AY i;M) is thatM 00 containsthe subformula DPE(A\Y ; Y 0) in its middle part instead of DPE(AY ; Y ). Thisdi�erence only a�ects the paths in the subset (b0) of dp(M 00). Instead of the twooccurrences A\Y and AnY they contain AY in MVDADV (hAX ; AY i;M).This, �nally, shows that dp(MVDADV (hAX ; AY i;M)) consists of the paths in(a), (b), and (d00). The paths in DPMV (hAX ; AY i;M) = (c) have been removed,mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 17and in the paths in (d) (the paths going through hAX ; AY i) the occurrence AY hasbeen replaced by AnY ; this concludes the proof of the second part of the theoremfor this case.It remains to be shown that MVDADV (hAX ; AY i;M) is MV-path equivalenttoM : This, however, is obvious using Theorem 5 and the fact that for any  paths� =  [ AX [AY , �0 =  [ AX [AnY subsume each other provided SX � SY .3rd case: SY ( SXThe proof for this subcase proceeds analogously to that for the previous subcase.The only di�erences are:� If SY ( SX , then Y 0 = Y and therefore CC(AY ; Y 0) = CC(AY ; Y ), etc.� AX is replaced by the disjunction (SX \ SY ):p_ (SY n SX):p to construct M 0from M . Therefore, A\X (the occurrence of (SX \ SY ):p in M 0) is a disjunct.This implies CE(A\X) = A\X and DC(CE(A\X); X 0) = DC(AX ; X).4th case: otherwiseThe proof for this subcase is a combination of the proofs for the two previoussubcases.Observing the de�nition of disjunctive paths, the result of Theorem 6 for thesmallest subformula M containing the anti-link can easily be extended to anyformula containing an anti-link.Corollary. Let M = X _ Y be the smallest subformula containing hAX ; AY i, amany-valued anti-link in the NNF formula F . Then the resultFfM  MVDADV (hAX ; AY i;M)gof applying the many-valued anti-link operator to F is MV-path equivalent to Fand di�ers in d-paths from F in the same way asMVDADV (hAX ; AY i;M) di�ersfrom M .As in the classical case iterative application of the many-valued anti-link oper-ator is a terminating process:Theorem 7. Finitely many applications of the MVDADV operation will resultin a formula without many-valued disjunctive anti-links, and termination of thisprocess is independent of the choice of anti-link at each step.Proof. We use the following complexity measure j � j for the size of a many-valuedformula F , that in the classical case is identical to the sum of the lengths of alld-paths of F : jF j = X�2dp(F ) XS:p2� jSj ;mvanti.tex - Date: June 3, 1997 Time: 19:55



18 Bernhard Beckert et al.XCE(AX )AX̂CE(AX)� fAXg... _ Y AY...(a); (d) (b); (c); (d)(a); (b) (a)(a); (c)Fig. 1. The di�erent types of paths if SX ( SY (see proof of Theorem 6).where jSj is the cardinality of S. This measure is �nite for all formulas in �nitely-valued logics.7The second part of the corollary impliesjFfM  MVDADV (hAX ; AY i;M)gj < jF j ;even if the anti-link is not redundant (note that SX \ SY 6= ; by De�nition 13).This implies the termination of the process of applying the anti-link operatoriteratively, because at each step the complexity measure strictly decreases.Since the anti-link operator is not symmetric, there are always two possibilitiesfor its application (by interchanging AX and AY ). How to choose is not obvious;note that in both cases the number of d-paths in the result is the same. Otherthings have to be considered, for example the syntactic size of the result. In general,applications are preferable that make use of the simpli�ed versions of MVDADVdescribed in the following subsection.4.3 SimplificationsSimilar to the classical operator (see Section 3.4), the MVDADV operator canbe simpli�ed in certain cases. Here S and T are the same subformulas as inDe�nition 16.1. If SX 6� SY or CE(AX) = AX ;then MVDADV (hAX ; AY i;M) = DC(AX ; X) _ Y^DPE(AX ; X) _ S7 The theorem holds for in�nitely-valued logics as well; to prove this, however, a more elaboratecomplexity measure has to be used.mvanti.tex - Date: June 3, 1997 Time: 19:55



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 192. If SX � SY and CE(AX) = X ;then MVDADV (hAX ; AY i;M) = X � fAXg _ DC(AY ; Y )^AX _ S3. If CE(AX) = AX = X ;then MVDADV (hAX ; AY i;M) = AX _ S5 Extended ExampleWe apply the many-valued anti-link operator to the formulaF = S1:pB̂ _ CD̂ _ S2:p _ GĤF contains six paths and seven literals. In the left parts of Figures 2 and 3 theresult of applying the many-valued anti-link operator to hAX ; AY i is shown, where`(AX) = S1:p and `(AY ) = S2:p, i.e., F = X_Y . The formulas on the right are theresult when the second possibility is used, where `(AX) = S2:p and `(AY ) = S1:p,i.e., F = Y _X .If S1 � S2, S2 6� S1 the anti-link is redundant. By applying the many-valuedoperator, the MV-subsumed path fB;C;AY ; Gg (resp. fB;C;AX; Gg) is removed.In case `(AX) = S2:p, `(AY ) = S1:p, the �rst simpli�ed version ofMVDADV (seeSection 4.3) can be used. The two possible results are shown in Figure 2. Theyboth have the same �ve paths. However, the formula on the right, that resultsfrom using the simpli�ed version ofMVDADV is syntactically smaller: it consistsof nine instead of twelve literals.If S2 � S1, S1 6� S2, the anti-link is not redundant, and the number of pathsis not reduced. The formula on the left in Figure 3, that is the result of applyingMVDADV if `(AX) = S1:p, `(AY ) = S2:p, is syntactically smaller, because inthat case the occurrence AY can be removed from paths going through the anti-link. In the formula on the right AY has been replaced by (SY n SX):p in pathsthrough the anti-link.The two possible results of applying the anti-link operator to either hAX ; AY i orto hAY ; AXi have always identical d-paths (except the one going through the anti-link). However, as the example shows, they can be quite di�erent syntactically.mvanti.tex - Date: June 3, 1997 Time: 19:55



20 Bernhard Beckert et al.DC(AX;X)B _ CD̂ _ DC(AY ;Y )H^DC(CE(AX );X)D _ DPE(AY ;Y )S2:p _ G^DPE(AX ;X)S1:p _ C _ Y fAY  (SY nSX):pg(S2 n S1):p _ GĤ
YS1:pB̂ _ CD̂ _ DC(AX;X)H^CC(AY ;Y )ĈD _ DPE(AX;X)S2:p _ GFig. 2. The two possible results of applying the anti-link operator to F if S1 � S2.DC(AX;X)B _ CD̂ _ YS2:p _ GĤ^DPE(AX ;X)S1:p _ C _ CC(AY ;Y )ĜH

YS1:pB̂ _ CD̂ _ DC(AX;X)H^Y fAY (SY nSX ):pg(S1 n S2):pB̂ _ CD̂ _ DPE(AX ;X)S2:p _ GFig. 3. The two possible results of applying the anti-link operator to F if S2 � S1, S1 6� S2.Here the result is larger than the original formula F , but in general it does nothave to be; and in all cases MVDADV (hAX ; AY i; F ) is much smaller than theresult of transforming F to disjunctive normal form which contains 19 literals.Summary and Future WorkWe extended the concept anti-links from classical to many-valued logic and de�neda many-valued anti-link operator. This operator can be employed so as to strictlyreduce the number of d-paths in a many-valued NNF formula. Anti-link operationsremove subsumed paths without any direct subsumption checks. This is signi�cantmvanti.tex - Date: June 3, 1997 Time: 19:55
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