
Simpli�cation of Many-Valued Logic Formulas Using Anti-Links�Bernhard Beckert and Reiner H�ahnleUniversit�at Karlsruhe, Institut f�ur Logik, Komplexit�at und Deduktionssysteme, D-76128 Karlsruhe,Germany. Email: fbeckert,haehnleg@ira.uka.de, WWW: http://i12www.ira.uka.de/andGonzalo Escalada-ImazInstitut d'Investigaci�o en Intel�lig�encia Arti�cial, Campus Universitat Aut�onoma de Barcelona, E-08193Bellaterra, Barcelona, Spain. Email: gonzalo@sinera.iiia.csic.es, WWW: http://www.iiia.csic.esApril 17, 1997Abstract. We present the theoretical foundations of the many-valued generalization of a technique forsimplifying large non-clausal formulas in propositional logic, that is called removal of anti-links. Possibleapplicationsof anti-links include computationof prime implicates of large non-clausal formulas as required,for example, in diagnosis. Anti-links do not compute any normal form of a given formula themselves,rather, they remove certain forms of redundancy from formulas in negation normal form (NNF). Theirmain advantage is that no clausal normal form has to be computed in order to remove redundant parts of aformula. In this paper, we de�ne an anti-link operation on a generic language for expressing many-valuedlogic formulas called signed NNF and we show that all interesting properties of two-valued anti-linksgeneralize to the many-valued setting, although in a non-trivial way.1 IntroductionIn this article we present the theoretical foundations of the many-valued generalization ofa novel technique for simplifying large non-clausal formulas in propositional logic. Thistechnique, called removal of anti-links (or just anti-links, for short) has been introducedfor the two-valued case in (Ramesh et al., 1997).Possible applications of anti-links include computation of prime implicates1 of largenon-clausal formulas as required, for example, in logic design (Sasao, 1993) and diagnosis(de Kleer et al., 1992).Purely clausal approaches, applied after doing a polynomial time structure preservingclause form transformations (Plaisted and Greenbaum, 1986), cannot be used here, becausesuch transformations do not preserve models. As a consequence, the set of prime implicatesof the resulting clause set and of the original formula bear no straightforward relationship,see (Ramesh, 1995, Section 3.5.1) for details.In such settings often binary decision diagrams (BDDs)2 (Bryant, 1986) are used. Incontrast to these, anti-links do not compute any normal form of a given formula them-selves, rather, they remove certain forms of redundancy from formulas in negation normalform (NNF, cf. De�nition 1). Their main advantage is that no clausal normal form has tobe computed in order to remove redundant parts of a formula. Although BDD implemen-tations are storing subformulas in hash table to avoid multiple computations, a full BDD� This research was supported in part within an Acci�on Integrada called \Discrete Function Manipu-lation Using Anti-Links" granted by DAAD (Germany) and M.E.C. (Spain).1 There is a strong duality between implicates and implicants. Therefore, all techniques presented inthis paper can be used as well for the computation of prime implicants.2 Or, rather, many-valued decision diagrams (Srinivasan et al., 1990) as the present paper deals withmany-valued logic.



2 Bernhard Beckert et al.has to be computed for subsumption checking.Viewing an NNF formula as a combinational circuit, using anti-links one can simplifycircuits with unbounded nesting depth without having to compute a bounded depth circuit�rst. This can greatly reduce the size required for intermediate representations.We stress, that anti-links are not intended to replace existing and successful techniquessuch as BDDs or dissolution (Murray and Rosenthal, 1993) (they are not even a completeinference rule for propositional logic), rather, the latter can be augmented and improvedby our analysis.In this paper, we de�ne an anti-link operation on a generic language for expressingmany-valued logic formulas called signed NNF and we show that all interesting propertiesof two-valued anti-links generalize to the many-valued setting, although in a non-trivialway. Before giving the technical details, in the remainder of this section we brie
y outlineour results on an informal level.Roughly, (two-valued) anti-links work as follows (see Sections 2 and 3 for all formalde�nitions): Consider the NNF formula below written down in a two-dimensional nota-tion, where disjunctions are written horizontally and conjunctions are written vertically(F , G, H, and I, respectively, are arbitrary formulas, while AX and AY are occurrencesof the same literal p in the subformula X and in the subformula Y ).X � � � AX̂F _ G _ � � � AY _ HÎ Y (1)Let us call a maximal, disjunctively connected set of literal occurrences a path through aformula. Two of its paths are schematically displayed in (1).Observe that all literals on any path through AX , AY , and H occur as well on somepath through F , G, AY , and H, because AX and AY are occurrences of the same literal.In other words, the latter paths are all subsumed by one of the former paths, wheresubsumption on disjunctive paths coincides with the subset relation. Generalizing, wehave this kind of situation, whenever1. AX and AY are two di�erent occurrences of the same literal A in a formula,2. AX and AY are disjunctively connected, and3. at least one of AX and AY is a conjunct.If (1){(3) hold, then we call the pair hAX ; AY i a redundant anti-link.3 A redundantanti-link thus always signi�es the presence of subsumed paths in a formula. If the formulais converted to conjunctive normal form (CNF) such paths become non-prime implicates.It is, therefore, desirable to get rid of them.The anti-link operator restructures a formula containing a redundant anti-link in sucha way that exactly the subsumed paths are removed and, in addition, one occurrence of pis deleted on the (non-subsumed) paths where it occurs twice.The result of applying the anti-link operator to (1) (without considering the parts ofthe formula indicated by \. . . ") is displayed on the right. Observe that none of the pathscontaining fF;G;AY ;Hg is present anymore.3 The phrase \anti-link" is motivatedby the fact that a link is a pair of complementary and conjunctivelyconnected literals. mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 3In the many-valued case we still work with an NNF formula that is classical withrespect to conjunctions and disjunctions. The di�erence comes in at the literal level: weuse signed literals (sometimes called universal literals), that is expressions of the form S:p,where S is a subset of some truth value set and p is an atom.While condition (2) for anti-links can be left unchanged, F _ G _ I^AX _ ĤIconditions (1) and (3) have to be suitably altered:1'. AX andAY are two di�erent occurrences of signed literals SX :p and SY :p, respectively,with SX \ SY 6= ;.The main idea for handling many-valued anti-links is to replace the occurrence of SY :pwith the equivalent formula (SX \ SY ):p _ (SY nSX ):p, to replace the occurrence of SX :pwith (SX \ SY ):p _ (SXnSY ):p, and then to apply the classical results to the resultingtwo di�erent occurrences of (SX \ SY ):p. Obviously, making the replacement can destroyproperty (3), which must be changed as well; this is discussed in detail in Section 4.In Section 5 we give an extended example. The paper is closed by pointing out thenext stages of work.2 Prerequisites and Concepts Related to Anti-LinksDefinition 1. Let � be a propositional signature that is a countable set of proposi-tional variables fp; q; : : :g which are also called atoms. Let N = fi1; : : : ; ing be a �nite setof truth values disjoint with �. If p 2 � and S � N , then the expression S:p is called asigned literal.4 Signed literals of the form ;:p, respectively, N :p are identi�ed with theexpressions false, respectively, true.Signed formulas in negation normal form (NNF formulas, for short) are induc-tively de�ned as the smallest set with the following properties:1. signed literals, and true, false are NNF formulas;2. if F1; : : : ; Fm are NNF formulas, so are F1 ^ � � � ^ Fm and F1 _ � � � _ Fm.If N = f0; 1g, then we speak also of a classical NNF formula. In this case weabbreviate signed literals as follows: f0g:p with p, f1g:p with p.Definition 2. The subformulas of an NNF formula G are de�ned as the smallest sethaving the following properties:1. if G is a signed literal then its only subformula is G itself;2. if G = F1 ^ � � � ^ Fm (G = F1 _ � � � _ Fm), then for any fi1; : : : ; irg � f1; : : : ;mg,Fi1 ^ � � � ^ Fir (Fi1 _ � � � _ Fir) is a subformula of G;3. if F is a subformula of H and H is a subformula of G, then F is also a subformula ofG.4 As signed literals are the only kind of literals we deal with, we often simply say \literal" instead of\signed literal". mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



4 Bernhard Beckert et al.Definition 3. Let G, H be subformulas of an NNF formula F . We say that G and H aredisjunctively (conjunctively) connected|d-(c-)connected, for short|if there existsa subformulaX _Y (X ^Y ) of F such that G is a subformula of X and H is a subformulaof Y .A partial disjunctivepath through an NNF formulaF is a set of mutuallyd-connectedoccurrences of true and literals in F (occurrences of false are omitted). A disjunctivepath|d-path, for short|through F is a partial d-path through F which is maximal anddoes not contain true. The set of all d-paths through an NNF formula F is denoted withdp(F ). (Partial) conjunctive paths are de�ned dually (using c- instead of d- and true,false exchanged). They are denoted cp(F ).Observe that paths are de�ned as sets of literal occurrences A and do not contain theconstants true and false. `(A) denotes the literal of which A is an occurrence. The setf`(A) : A 2 �g of literals on a path � is denoted with `(�). One may think of a literaloccurrence as a uniquely labelled subformula.The above de�nition of paths is the same as in (Murray and Rosenthal, 1993; Rameshet al., 1997). In the following a di�erent, but equivalent de�nition of paths through aformula will be convenient. As we make use of some results on paths contained in thepapers mentioned above, we formally state their equivalence:Lemma 1. Let F be an NNF formula.dp(F ) =8>>>><>>>>: ; F = truef;g F = falseffFgg F is a literalfSmi=1 �ij �i 2 dp(Fi); 1 � i � mg F = F1 _ � � � _ FmSmi=1 dp(Fi) F = F1 ^ � � � ^ Fmcp(F ) =8>>>><>>>>: f;g F = true; F = falseffFgg F is a literalSmi=1 cp(Fi) F = F1 _ � � � _ FmfSmi=1 �ij �i 2 cp(Fi); 1 � i � mg F = F1 ^ � � � ^ FmProof. A straightforward induction on the depth of F .There are two di�erent notions of subsumption: either paths are simply sets of literaloccurrences or also the signs inside their literals are taken into account.Definition 4. Let �, �0 be d-paths through a formula F . � classically subsumes �0i� `(�) � `(�0). � MV-subsumes �0 i� for each S:p 2 `(�) there are fS1:p; : : : ; Sm:pg �`(�0) such that S � Smi=1 Si.Let F , G be NNF formulas. Then F classically subsumes G i� for each � 2 dp(G)there is a �0 2 dp(F ) such that �0 classically subsumes �. F MV-subsumes G i� foreach � 2 dp(G) there is a �0 2 dp(F ) such that �0 MV-subsumes �.A path or a formula properly subsumes (classically or MV-) another i� it subsumesthe latter, but not vice versa.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 5A d-path is tautological i� it contains signed literals S1:p; : : : ; Sm:p such thatSmi=1 Si =N . Two NNF formulas are classically (MV-)path equivalent i� they classically (MV-)subsumeeach other.It is obvious that classical subsumption (path equivalence) implies MV-subsumption(path equivalence).Example 1. Let N = f0; 1; 2; 3g. Consider d-paths � = ff0; 1g:p; f2g:p; f3g:qg and �0 =ff0; 2g:pg. Neither classically subsumes the other, but �0 properly MV-subsumes �.The NNF formula F = f0; 1g:p classically (and thus MV-) subsumes G = (f0g:p ^f3g:qg) _ f0; 1g:p. G does not classically subsume F , but it MV-subsumes F . Hence, Fand G are MV-, though not classically, path equivalent.Definition 5. Relative to a signature � and a truth value set N one de�nes an (MV) inter-pretation as a function I : �! N .An interpretation I satis�es a signed literal S:p if I(p) 2 S. It satis�es a d-(c-)path i�it satis�es at least one (all) of the literals occurring on it. No interpretation satis�es falseand all interpretation satisfy true. Satisfaction is extended to complex NNF formulas ina natural way:I satis�es F i� � F = F1 ^ � � � ^ Fm and I satis�es all FiF = F1 _ � � � _ Fm and I satis�es at least one FiA formula is satis�able i� there exists a satisfying interpretation for it. Two formulasare logically equivalent i� they are satis�ed by exactly the same interpretations.Observe that for classical NNF formulas our notion of satisfaction coincides with theusual one. The following lemma is obvious.Lemma 2. I satis�es an NNF formula F i� it satis�es all literals in one of its c-paths i�it satis�es at least one literal in each of its d-paths.Lemma 3. If two NNF formulas are classically or MV-path equivalent, then they are alsologically equivalent.Proof. Classical path equivalence implies MV-path equivalence, so assume the latter ofF ,G. We show that every interpretation that satis�es F also satis�es G, the other directionis symmetric.Assume I satis�es F and I does not satisfy G. Then there is a d-path � through Gwhich is not satis�ed by I. Because F MV-subsumes G, there is a d-path �0 through Fwhich MV-subsumes �.By the previous lemma I satis�es at least one literal, say L , in each d-path  of F ,in particular, I satis�es an L�0 = S:p in �0, hence I(p) 2 S. Because �0 MV-subsumes �,there are fS1:p; : : : ; Sm:pg � `(�) such that S � Smi=1 Si. Thus I(p) 2 Si for some i. Butthen I satis�es a literal in �|contradiction.Given an occurrence of a subformula G of an NNF formula F and an NNF formulaH,FfG Hg denotes the result of replacing this occurrence of G in F by H.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



6 Bernhard Beckert et al.Lemma 4. Let G be a subformula of F and let H be an MV-path equivalent of G. ThenFfG Hg is an MV-path equivalent of F .Let G be a subformula of F and let H be an NNF formula such that dp(G) = dp(H).Then dp(FfG Hg) = dp(F ).Proof. Using Lemma 1 one proves with a straightforward induction on the formula struc-ture using dp(H) instead of dp(G) preserves MV-path equivalence.The second claim is an immediate consequence of Lemma 1.Lemma 5. For all S; S0 � N , and atoms p:1. (S [ S0):p is MV-path equivalent to S:p _ S0:p;2. ;:p is MV-path equivalent to false;3. N :p is MV-path equivalent to true.Proof. Straightforward from the de�nitions.Finally we need some special terminology:Definition 6. Given an NNF formula F , a subformula with respect to a set � ofliteral occurrences is obtained from F by deleting all literal occurrences not in �.Let G be a subformula of an NNF formula F . A d-path � in dp(F ) passes throughan occurrence of G i� the subset of � which consists of literal occurrences in G is a d-paththrough G. c-paths passing through a formula occurrence are de�ned dually.Definition 7. Let H be a subformula of some NNF formula. If H is part of a conjunctionM , then we de�ne the c-extension of H to be M and the d-extension of H to be Hitself. The situation is reversed if H is part of a disjunction. We use the notation CE(H)and DE(H) for the c- and d-extensions, respectively, of H.Definition 8. Let X andH be arbitrary occurrences of subformulas in an NNF formula.5The c-path complement of H with respect to X, written CC(H;X), is the subformulaof X with respect to all literals in X that lie on c-paths that do not pass through H. Ifno such literal exists, CC(H;X) = false. The c-path extension of H with respect to X,written CPE(H;X), is the subformula of X containing all literals that lie on c-paths thatpass through H. If no such literal exists, CPE(H;X) = false.6In the development of anti-link operations, we will use operations that are the dualsof CC and CPE. We use DC for the d-path complement and DPE for the d-pathextension operators. Their de�nitions are straightforward by duality (but note that thenthe base case is de�ned as DC(H;X) = DPE(H;X) = true).Example 2. In (2) on page 7,DC(AX ; X) = B DC(AY ; Y ) = E _CYDPE(AY ; Y ) = AY CE(AX ) = AXDC(CE(AX ); X)) = B DPE(AX ; X) = AX _CXCC(AY ; Y ) = false5 H usually is (but does not have to be) a subformula with respect to some set of literal occurrencesof X.6 Note, that CPE has two arguments whereas CE (Def. 7) has but one; intuitively, CE has an implicitsecond argument that is always the entire formula in which the explicit argument occurs.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 73 Anti-Links in Two-Valued LogicIn this section we restate formally the discussion of the introduction on two-valued anti-links. It is partly taken from (Ramesh et al., 1997), where also proofs of all the resultsin this section can be found. All formulas in this section are classical NNF formulas.Likewise, subsumed means always classically subsumed, path equivalent means classicallypath equivalent, etc.Definition 9. A disjunctive (conjunctive) anti-link is a pair hAX ; AY i of disjunc-tively (conjunctively) connected occurrences of the same literal p = `(AX ) = `(AY ) in anNNF formula F such that AX occurs in X, AY occurs in Y , and X _ Y (X ^ Y ) is asubformula of F .In the rest of the paper we deal mainly with disjunctive anti-links; thus, when we write\anti-link" the intended meaning is always \disjunctive anti-link".The following theorem relates subsumed paths to both kinds of anti-links. The theo-rem is immediate for classical CNF formulas; there is an obvious dual theorem regardingsubsumed c-paths that is immediate for DNF formulas.Theorem 1. Let F be an NNF formula in which a non-tautological d-path � subsumesa distinct d-path �0 in F . Then F contains either a disjunctive anti-link or a conjunctiveanti-link.3.1 Redundant Anti-linksUnfortunately, the presence of anti-links does not imply the presence of subsumed paths,and hence the converse of the above theorem is not true.It turns out, however, that it is possible to identify such disjunctive anti-links whichdo imply the presence of subsumed paths:Definition 10. An anti-link hAX ; AY i is called redundant if CE(AX) 6= AX or ifCE(AY ) 6= AY .Definition 11. Let hAX ; AY i be an anti-link in F , where M = X _ Y is the smallestsubformula of F containing the anti-link (the unique subformula of F containing the anti-link such that no proper subformula of M contains the anti-link). DP (hAX ; AY i; F ) isde�ned as the set of all d-paths ofM which pass through both CE(AX )�fAXg7 and AYor through both CE(AY ) � fAY g and AX .Example 3. Consider the following formula F = X _ Y :X AX _ CXB̂ _ AŶE _ CY Y (2)The two occurrences of A form a redundant anti-link. We show that DP (hAX ; AY i; F )consists solely of subsumed paths. Since CE(AX ) � fAXg = true there are no paths7 CE(AX )� fAXg is used here and in the future as a shorthand for CE(AX )fAX  trueg.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



8 Bernhard Beckert et al.through it. Because CE(AY )�fAY g = E _CY , the d-paths through this and AX are theonly paths in DP (hAX ; AY i; F ). Thus by DPE(AX ; X) = AX _ CX , DP (hAX ; AY i; F )contains the single d-path � = fAX ; CX ; E;CY g (indicated by a line). � is subsumed by�0 = fAX ; CX ; AY g (with literal set fA;Cg). In the example, the smallest subformula ofF containing the anti-link is F itself. Notice that when F is a proper subformula of aformula G, then every d-path  in G containing � is subsumed by a corresponding d-path 0 di�ering from  only in that  0 contains �0 instead of �.In general, one or both of the literals in a redundant anti-link hAX ; AY i is an argumentof a conjunction, and DP (hAX ; AY i; F ) 6= ;. In the above example, the two occurrencesof C are both arguments of disjunctions, and thus comprise a non-redundant anti-link forwhich accordingly DP (hCX ; CY i; F ) = ;.Although only redundant anti-links contribute directly to subsumed d-paths, non-redundant anti-links do not prohibit the existence of subsumed paths. However, suchnon-redundant anti-links do not themselves provide any evidence that such paths are infact present.Theorem 2. Let hAX ; AY i be a redundant anti-link in an NNF formula F . Then eachd-path in DP (hAX ; AY i; F ) is properly subsumed by a d-path through F that containsthe anti-link.3.2 An Anti-Link OperatorThe identi�cation of redundant anti-links can be done easily by checking to see ifCE(AX ) 6=AX or CE(AY ) 6= AY . After identifying a redundant anti-link, it is possible to removeit using the disjunctive anti-link dissolvent (DADV) operator de�ned below; in theprocess, all d-paths in DP (hAX ; AY i; F ) are eliminated, and the two occurrences of theanti-link literal are collapsed into one.Definition 12. Let hAX ; AY i be an anti-link and let M = X _Y be the smallest subfor-mula containing the anti-link. ThenDADV (hAX ; AY i;M ) = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX ); X) _ DPE(AY ; Y )^DPE(AX ; X) _ CC(AY ; Y )Example 4. Consider again formula (2) from Example 3. In Example 2 we computedDC(AX ; X) and DC(AY ; Y ), so the upper conjunct in DADV is (B _E _CY ). For themiddle conjunct use DC(CE(AX ); X) and DPE(AY ; Y ) which yields (B _AY ). Finally,in the lower conjunct, DPE(AX ; X) and CC(AY ; Y ) give (AX _CX). The result is:DADV (AX ; AY ;M ) = B _ E _ CY^B _ AY^AX _ CXmvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 9We point out that although DADV produces a CNF formula in the above simpleexample, in general it does not. In particular, the above formula can be simpli�ed as theconsequence of easily recognizable conditions, and the resulting formula is not in CNF.For the details, see Case 1 of Section 3.4.3.3 Correctness of DADVTheorem 3 below states that DADV (hAX ; AY i; F ) is logically equivalent to F and doesnot contain the d-paths of DP (hAX ; AY i; F ).Theorem 3. Let M = X _ Y be the smallest subformula containing hAX ; AY i, an anti-link in the NNF formula F . Then DADV (hAX ; AY i;M ) is logically equivalent to M andFfM  DADV (hAX ; AY i;M )g, i.e., the result of applying the anti-link operator, di�ersin d-paths from F as follows: d-paths inDP (hAX ; AY i; F ) are not present, and any d-pathof F containing the anti-link is replaced by a path with the same literal set having onlyone occurrence of the anti-link literal.Theorem 3 gives us a method to remove anti-links and some subsumed d-paths: Simplyidentify a redundant anti-link hAX ; AY i and the smallest subformulaM containing it, andthen replace M by DADV (hAX ; AY i;M ). The cost of performing DADV (hAX ; AY i;M )is proportional to the size of the formula replacing M , and this is linear in M . Also,c-connected literals in M do not become d-connected in DADV (hAX ; AY i;M ). Thustruly new disjunctive anti-links are not introduced. However, parts of the formula may beduplicated, and this may give rise to additional copies of anti-links not yet removed.Nevertheless, persistent removal of disjunctive anti-links is a terminating process, becauseat each step1. if the removed anti-link is redundant (in which case DP (hAX ; AY i;M ) 6= ;), then thenumber of d-paths is strictly reduced;2. else, if the anti-link is not redundant, then the d-paths in the formula remain unchangedwith the exception of those going through the anti-link on which one literal occurrenceis deleted.This proves:Theorem 4. Finitely many applications of the DADV operation will result in a formulawithout disjunctive anti-links, and termination of this process is independent of the choiceof anti-link at each step.Although we can remove all the redundant disjunctive anti-links in the formula, thisprocess can introduce new conjunctive anti-links. Such anti-linksmay indicate the presenceof subsumed d-paths, but the su�cient requirement for redundancy is much stronger asin De�nition 10, see (Ramesh et al., 1997, Section 3.7).3.4 SimplificationsObviously, DADV (hAX ; AY i;M ) can be syntactically larger than M = X _ Y . Undercertain conditions we may use simpli�ed alternative de�nitions for DADV . These de�-nitions result in formulas which are syntactically smaller than those that result from thegeneral de�nition. The following is a list of possible simpli�cations.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



10 Bernhard Beckert et al.1. If CE(AX) = AX (and CE(AX) 6= X) ;then DC(CE(AX ); X) = DC(AX ; X). Therefore by (possibly non atomic) factoringonDC(AX ; X) and observing that (DC(AY ; Y )^DPE(AY ; Y )) has the same d-pathsas Y , DADV (hAX ; AY i;M ) becomesDC(AX ; X) _ Y^DPE(AX ; X) _ CC(AY ; Y )It turns out that this rule applies to (2) in Example 3; the simpli�ed rule for this caseresults in the following formula: B _ ÂE _ C^A _ C2. If CE(AX) = X ;then DC(CE(AX ); X) = true, DPE(AX ; X) = AX and DC(AX ; X) = (X � fAXg).Hence DADV (hAX ; AY i;M ) becomesX � fAXg _ DC(AY ; Y )^AX _ CC(AY ; Y )3. If both Case 1 and Case 2 apply, then CE(AX) = X = AX , and the above formulasimpli�es to AX _ CC(AY ; Y ) :Note that in all the above versions ofDADV , the rôles ofX and Y can be interchanged.4 Anti-Links in Many-Valued LogicBy de�nition, an anti-link in classical logic consists of two occurrences of the same literal.In many-valued logics the de�nition has to be more general, because there are redundanciesas well if literals are not identical but consist of the same propositional variable and non-disjoint truth signs:Definition 13. A disjunctive (conjunctive) many-valued anti-link consists of dis-junctively (conjunctively) connected occurrences AX and AY of literals in a many-valuedformula in NNF such thatmvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 111. `(AX ) = SX :p and `(AY ) = SY :p for some atom p and SX ; SY � N ;2. SX \ SY 6= ;.4.1 Redundant Anti-Links in Many-Valued LogicsThe analogue of Theorem 1 holds for many-valued anti-links, i.e., if a formula containssubsumed d-paths this implies the presence of anti-links; and the converse of the theoremis not true: only redundant anti-links indicate the existence of subsumed d-paths.The classical anti-link operator, when applied to a redundant anti-link, reduces a for-mula in two ways. First, if the anti-link literal AX is a conjunct, d-paths that go throughthe other anti-link literal AY and through CE(AX)� fAXg are removed (cf. Figure 1 onpage 15). These paths are of the form� = �CE [ �r [ fAY g(where �CE is the part going through CE(AX ) � fAXg and �r is the rest of the pathexcept AY ). Such a path � is classically subsumed by a path�0 = fAXg [ �r [ fAY gin the formula, because `(�0) � `(�) for a classical anti-link. �0 is identical to � exceptthat it goes through AX instead of CE(AX) � fAXg (and, thus, through both anti-linkliterals).In the many-valued case, where `(AX ) = SX :p and `(AY ) = SY :p, this type of reductionis possible i� SX � SY , because then a path �0 = fAXg [ �r [ fAY g MV-subsumes apath � = �CE [ �r [ fAY g. The same type of reduction can be found if AY is a conjunctinstead of AX and|in the many-valued case|provided SY � SX .These considerations justify the following de�nitions:Definition 14. A many-valued anti-link hAX ; AY i, where `(AX ) = SX :p and `(AY ) =SY :p, is redundant if either one of the following conditions holds:� AX is a conjunct, i.e. CE(AX) 6= AX , and SX � SY� AY is a conjunct, i.e. CE(AY ) 6= AY , and SY � SX .Definition 15. Let hAX ; AY i be a many-valued anti-link in F , where `(AX ) = SX :p and`(AY ) = SY :p, and M = X _ Y is the smallest subformula containing the anti-link. ThenDPMV (hAX ; AY i; F ) =8>>>>>><>>>>>>:DP (hAX ; AY i; F ) if SX = SYf� 2 dp(F ) : � passes throughCE(AX) � fAXg and AY g if SX ( SYf� 2 dp(F ) : � passes throughCE(AY ) � fAY g and AXg if SY ( SX; otherwiseThe following theorem is the many-valued version of Theorem 2 (and the proof forTheorem 2 given in (Ramesh et al., 1997) can easily be adapted):mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



12 Bernhard Beckert et al.Theorem 5. Let hAX ; AY i be a redundant many-valued anti-link in an NNF formu-la F . Then each d-path in DPMV (hAX ; AY i; F ) is properly MV-subsumed by a d-paththrough F that contains the anti-link.The second type of reduction of the (classical) anti-link operator is to remove oneanti-link literal occurrence AY from all paths that go through both anti-link literals AXand AY , which is justi�ed by the fact that `(AX ) = `(AY ). In the many-valued case thissecond reduction is only possible if SY � SX or SX � SY .4.2 A Many-Valued Anti-Link OperatorWe develop the many-valued anti-link operator from the classical operator as a method tosimplify signed NNF formulas. The following assertions are obvious for all sets SX and SYof truth values:1. SX = (SX \ SY ) [ (SX n SY ).2. SX :p is MV-path equivalent to (SX \ SY ):p _ (SX n SY ):p.3. If SX � SY , then SX :p is identical to (SX \ SY ):p.Therefore, given a formula F in NNF that contains an anti-link hAX ; AY i, where`(AX ) = SX :p, `(AY ) = SY :p, the result of replacing AX by (SX \ SY ):p_ (SX n SY ):p ifSX 6� SY and replacing SY :p by (SX \ SY ):p _ (SY n SX ):p if SY 6� SX is a formula F 0that is MV-path equivalent to F .F 0 contains a classical anti-link: the two occurrences of (SX \ SY ):p. Thus, the classicalanti-link operator can be applied to F 0 if F 0 is viewed as a classical NNF formula over thesignature consisting of the many-valued literals (including their signs) that occur in F 0.The result of this application is a formula F 00 that is classically path equivalent to F 0and thus MV-path equivalent to F . By de�nition of the classical anti-link operator, F 00 isconstructed by replacing the smallest subformula M 0 in F 0 containing the anti-link byM 00 = DADV (hAX ; AY i;M 0).M 00 (and thus F 00) can be expressed in terms of the original formula; the result is a d-path equivalent formula that can be seen as the result of applying a many-valued anti-linkoperator to the original formula, and in fact we use it as the de�nition of our operator:Definition 16. Let hAX ; AY i be a many-valued anti-link in an NNF formula F , where`(AX ) = SX :p and `(AY ) = SY :p, and let M = X _ Y be the smallest subformula of Fcontaining the anti-link. ThenMVDADV (hAX ; AY i;M ) = DC(AX ; X) _ DC(AY ; Y )^T _ DPE(AY ; Y )^DPE(AX ; X) _ Swhere T = � DC(CE(AX ); X) if SX � SYDC(AX ; X) otherwisemvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 13and S = � CC(AY ; Y ) if SY � SXY fAY  (SY n SX ):pg otherwiseAs in the classical case, the cost of computingMVDADV (hAX ; AY i;M ) is linear inM .The following theorem, that states correctness of the many-valued anti-link operator isthe analogue of Theorem 3.Theorem 6. Let M = X _ Y be the smallest subformula containing hAX ; AY i, a many-valued anti-link in the NNF formula F , where `(AX ) = SX :p and `(AY ) = SY :p. ThenMVDADV (hAX ; AY i;M ) is MV-path equivalent to M and di�ers in d-paths fromM asfollows:1. d-paths in DPMV (hAX ; AY i;M ) are not present;2. any d-path � of M containing the anti-link is replaced by �0 = � n fAY g if SY � SX ,and else by �0 = (� n fAY g) [ fAnY g, where AnY is an occurrence of (SY n SX ):p.Proof. The proof follows closely the description given at the beginning of this section ofhow the many-valued anti-link operator can be constructed from the classical one.1st case: SX = SYIn this case, where both SX � SY and SY � SX , the de�nition ofMVDADV is identical tothat of DADV , and the theorem follows immediately from the correctness of the classicaloperator (Theorem 3).2nd case: SX ( SYThe set of paths in M can be separated into four disjoint subsets: the set of paths that(a) do not go through AY , (b) go through AY but not through CE(AX ), (c) go through AYand through CE(AX) � fAXg, (d) go through both anti-link literals AX and AY (cf.Figure 1).Because of SX ( SY the formula M 0 is constructed from M by replacing AY by(SX \ SY ):p_ (SY n SX ):p. Paths that do not go through AY remain unchanged; in pathsthat contain AY this is replaced by occurrences A\Y of (SX \ SY ):p and AnY of (SY n SX ):p.Thus, dp(M 0) = (a) [ (b0) [ (c0) [ (d0) where(b0) = f(p n fAY g) [ fA\Y ; AnY g : p 2 dp(M ) goes through AYand not through CE(AX )g(c0) = f(p n fAY g) [ fA\Y ; AnY g : p 2 dp(M ) goes through AYand through CE(AX )� AXg(d0) = f(p n fAY g) [ fA\Y ; AnY g : p 2 dp(M ) goes through AYand through AXgBecause A\Y is part of a disjunction, CE(A\Y ) = A\Y inM 0; therefore the set (c0) is identicalto DP (hAX ; A\Y i;M 0). This means that (c0) is|according to Theorem 3|the set of pathsthat is removed when the classical anti-link operator is applied to the anti-link hAX ; A\Y iinM 0 (recall that SX :p is identical to (SX \ SY ):p by SX � SY ). In addition, by applyingthe classical operator, the second occurrence A\Y is removed from the paths going throughmvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



14 Bernhard Beckert et al.the anti-link, i.e., from all paths in (d0). The set of paths in the result M 00 of applyingDADV to M 0 is thus dp(M 00) = (a) [ (b0) [ (d00) where(d00) = f(p n fAY g) [ fAnY g : p 2 dp(M ) goes through AYand through AXgAccording to the de�nition of the classical anti-link operator, M 00 has the formM 00 = DC(AX ; X 0) _ DC(A\Y ; Y 0)^DC(CE(AX ); X 0) _ DPE(A\Y ; Y 0)^DPE(AX ; X 0) _ CC(A\Y ; Y 0)Because1. X = X 0;2. DC(A\Y ; Y 0) is identical to DC(AY ; Y ) since the disjunctive complementDC consistsof those paths that do not contain the anti-link literal;3. CC(A\Y ; Y 0) = Y fAY  (SY n SX ):pg using the de�nition of the conjunctive comple-ment and since Y 0 = Y fAY  ((SX \ SY ):p _ (SY n SX ):p)g;the only di�erence between M 00 and MVDADV (hAX ; AY i;M ) is that M 00 contains thesubformulaDPE(A\Y ; Y 0) in its middle part instead of DPE(AY ; Y ). This di�erence onlya�ects the paths in the subset (b0) of dp(M 00). Instead of the two occurrences A\Y and AnYthey contain AY in MVDADV (hAX ; AY i;M ).This, �nally, shows that dp(MVDADV (hAX ; AY i;M )) consists of the paths in (a),(b), and (d00). The paths in DPMV (hAX ; AY i;M ) = (c) have been removed, and in thepaths in (d) (the paths going through hAX ; AY i) the occurrence AY has been replacedby AnY ; this concludes the proof of the second part of the theorem for this case.It remains to be shown that MV DADV (hAX ; AY i;M ) is MV-path equivalent to M :This, however, is obvious using Theorem 5 and the fact that for any  paths � =  [AX [AY , �0 =  [AX [AnY subsume each other provided SX � SY .3rd case: SY ( SXThe proof for this subcase proceeds analogously to that for the previous subcase. Theonly di�erences are:� If SY ( SX , then Y 0 = Y and therefore CC(AY ; Y 0) = CC(AY ; Y ), etc.� AX is replaced by the disjunction (SX \ SY ):p_(SY n SX ):p to construct M 0 fromM .Therefore, A\X (the occurrence of (SX \ SY ):p in M 0) is a disjunct. This impliesCE(A\X) = A\X and DC(CE(A\X ); X 0) = DC(AX ; X).4th case: otherwiseThe proof for this subcase is a combination of the proofs for the two previous subcases.Observing the de�nition of disjunctive paths, the result of Theorem 6 for the smallestsubformula M containing the anti-link can easily be extended to any formula containingan anti-link. mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 15Corollary. Let M = X _ Y be the smallest subformula containing hAX ; AY i, a many-valued anti-link in the NNF formula F . Then the resultFfM  MVDADV (hAX ; AY i;M )of applying the many-valued anti-link operator to F is MV-path equivalent to F and di�ersin d-paths from F in the same way as MVDADV (hAX ; AY i;M ) di�ers fromM .As in the classical case iterative application of the many-valued anti-link operator is aterminating process: XCE(AX )AX̂CE(AX )� fAXg... _ Y AY...(a); (d) (b); (c); (d)(a); (b) (a)(a); (c)Fig. 1. The di�erent types of paths if SX ( SY (see proof of Theorem 6).Theorem 7. Finitely many applications of the MV DADV operation will result in aformula without many-valued disjunctive anti-links, and termination of this process isindependent of the choice of anti-link at each step.Proof. We use the following complexity measure j � j for the size of a many-valued for-mula F , that in the classical case is identical to the sum of the lengths of all d-pathsof F : jF j = X�2dp(F ) XS:p2� jSj ;where jSj is the cardinality of S. This measure is �nite for all formulas in �nitely-valuedlogics.8The second part of the corollary impliesjFfM  MV DADV (hAX ; AY i;M )gj < jF j ;even if the anti-link is not redundant (note that SX \ SY 6= ; by De�nition 13).This implies the termination of the process of applying the anti-link operator iteratively,because at each step the complexity measure strictly decreases.Since the anti-link operator is not symmetric, there are always two possibilities for itsapplication (by interchangingAX andAY ). How to choose is not obvious; note that in bothcases the number of d-paths in the result is the same. Other things have to be considered,for example the syntactic size of the result. In general, applications are preferable thatmake use of the simpli�ed versions of MV DADV described in the following subsection.8 The theorem holds for in�nitely-valued logics as well; to prove this, however, a more elaborate com-plexity measure has to be used.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



16 Bernhard Beckert et al.4.3 SimplificationsSimilar to the classical operator (see Section 3.4), the MVDADV operator can be simpli-�ed in certain cases. Here S and T are the same subformulas as in De�nition 16.1. If SX 6� SY or CE(AX) = AX ;then MVDADV (hAX ; AY i;M ) = DC(AX ; X) _ Y^DPE(AX ; X) _ S2. If SX � SY and CE(AX ) = X ;then MVDADV (hAX ; AY i;M ) = X � fAXg _ DC(AY ; Y )^AX _ S3. If CE(AX) = AX = X ;then MVDADV (hAX ; AY i;M ) = AX _ S5 Extended ExampleWe apply the many-valued anti-link operator to the formulaF = S1:pB̂ _ CD̂ _ S2:p _ GĤF contains six paths and seven literals. In the left parts of Figures 2 and 3 the result ofapplying the many-valued anti-link operator to hAX ; AY i is shown, where `(AX ) = S1:pand `(AY ) = S2:p, i.e., F = X _ Y . The formulas on the right are the result when thesecond possibility is used, where `(AX ) = S2:p and `(AY ) = S1:p, i.e., F = Y _X.If S1 � S2, S2 6� S1 the anti-link is redundant. By applying the many-valued operator,the MV-subsumed path fB;C;AY ; Gg (resp. fB;C;AX ; Gg) is removed. In case `(AX ) =S2:p, `(AY ) = S1:p, the �rst simpli�ed version of MVDADV (see Section 4.3) can beused. The two possible results are shown in Figure 2. They both have the same �vepaths. However, the formula on the right, that results from using the simpli�ed version ofMVDADV is syntactically smaller: it consists of nine instead of twelve literals.If S2 � S1, S1 6� S2, the anti-link is not redundant, and the number of paths is notreduced. The formula on the left in Figure 3, that is the result of applying MVDADVmvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



Simpli�cation of Many-Valued Logic Formulas Using Anti-Links 17DC(AX;X)B _ CD̂ _ DC(AY ;Y )H^DC(CE(AX );X)D _ DPE(AY ;Y )S2:p _ G^DPE(AX;X)S1:p _ C _ Y fAY (SY n SX ):pg(S2 n S1):p _ GĤ
YS1:pB̂ _ CD̂ _ DC(AX;X)H^CC(AY ;Y )ĈD _ DPE(AX;X)S2:p _ GFig. 2. The two possible results of applying the anti-link operator to F if S1 � S2.DC(AX;X)B _ CD̂ _ YS2:p _ GĤ^DPE(AX;X)S1:p _ C _ CC(AY ;Y )ĜH

YS1:pB̂ _ CD̂ _ DC(AX;X)H^Y fAY (SY n SX ):pg(S1 n S2):pB̂ _ CD̂ _ DPE(AX;X)S2:p _ GFig. 3. The two possible results of applying the anti-link operator to F if S2 � S1, S1 6� S2.if `(AX ) = S1:p, `(AY ) = S2:p, is syntactically smaller, because in that case the occur-rence AY can be removed from paths going through the anti-link. In the formula on theright AY has been replaced by (SY n SX ):p in paths through the anti-link.The two possible results of applying the anti-link operator to either hAX ; AY i or tohAY ; AXi have always identical d-paths (except the one going through the anti-link).However, as the example shows, they can be quite di�erent syntactically. Here the resultis larger than the original formula F , but in general it does not have to be; and in all casesMVDADV (hAX ; AY i; F ) is much smaller than the result of transforming F to disjunctivenormal form which contains 19 literals.mvanti.ismvl.tex - Date: April 17, 1997 Time: 14:53



18 Bernhard Beckert et al.Summary and Future WorkWe extended the concept anti-links from classical to many-valued logic and de�ned amany-valued anti-link operator. This operator can be employed so as to strictly reduce thenumber of d-paths in a many-valued NNF formula. Anti-link operations remove subsumedpaths without any direct subsumption checks. This is signi�cant for computing primeimplicates, since such computations tend to be dominated by subsumption checks.Anti-link techniques are not restricted to many-valued formulas in NNF. Principally,they can be adapted to work with other normal forms as well, for example, XOR-normalform (Sasao, 1993) or normal forms based on T-norms and S-norms (Gottwald, 1993),as well as with other logics such as modal logics. Necessary conditions are that pathsubsumption and the subset relation coincide, and that an adequate distributivity law canbe formulated for the chosen logical connectives. The details will be subject of forthcomingwork.AcknowledgementWe would like to thank N. Murray for his valuable comments on an earlier version of thispaper and K. Geiss for �nding several typos.ReferencesRandal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions onComputers, C-35:677{691, 1986.J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and systems. Arti�cial Intelligence,56(2{3):197{222, August 1992.Siegfried Gottwald. Fuzzy Sets and Fuzzy Logic. Vieweg, Braunschweig, 1993.Neil V. Murray and Erik Rosenthal. Dissolution: Making paths vanish. Journal of the ACM, 3(40):504{535, 1993.David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation. Journal ofSymbolic Computation, 2:293{304, 1986.Anavai Ramesh, Bernhard Beckert, Reiner H�ahnle, and Neil V. Murray. Fast subsumption checks usinganti-links. Journal of Automated Reasoning, 18(1):47{84, 1997.Anavai G. Ramesh. Some Applications of Non-Clausal Deduction. PhD thesis, Department of ComputerScience, State University of New York at Albany, 1995.Tsutomu Sasao, editor. Logic Synthesis and Optimization. Kluwer, Norwell/MA, USA, 1993.A. Srinivasan, T. Kam, S. Malik, and R. E. Brayton. Algorithms for discrete function manipulation. InProc. IEEE International Conference on CAD, Santa Clara/CA, USA, pages 92{95. IEEE Press, LosAlamitos, November 1990.
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