
The Even More Liberalized δ–Rule in

Free Variable Semantic Tableaux

Bernhard Beckert, Reiner Hähnle, Peter H. Schmitt

Institute for Logic, Complexity and Deduction Systems
University of Karlsruhe

Am Fasanengarten 5, 7500 Karlsruhe
Federal Republic of Germany

{beckert,haehnle,pschmitt}@ira.uka.de

Abstract. In this paper we have a closer look at one of the rules of the
tableau calculus presented in [3], called the δ–rule, and the modification
of this rule, that has been proved to be sound and complete in [6], called
the δ+–rule, which uses fewer free variables. We show that an even more
liberalized version, the δ++

–rule, that in addition reduces the number of
different Skolem–function symbols that have to be used, is also sound and
complete. Examples show the relevance of this modification for building
tableau–based theorem provers.

Introduction

The most popular version of the proof procedure which is usually called Analytic
Tableaux or Semantic Tableaux is due to Raymond Smullyan [8] and goes back
to Beth and Hintikka. Semantic tableaux have recently experienced a renewed
interest by AI researchers, since their closeness to the semantic definitions of
logical operators makes the basic system easily adjustable to a wide scope of non–
standard logics. For example, in [2] tableaux are extended to cover first–order
modal logic and in [4] to many–valued logics. Areas of application include Natural
Language Processing, Non–Monotonic Reasoning and Logic Programming, just
to name a few. The present paper is only concerned with quantifier rules in
classical predicate logic, but the results are equally applicable to non–standard
first–order tableaux systems.

We assume that the reader is familiar with the method of semantic tableaux
(if not, excellent introductions can be found in [8] and [3]). Let us just recall
that Smullyan introduced unified notation, a classification scheme for logical
operators (and thus for tableau rules) that makes definitions and proofs clearer
and much more compact. According to this scheme, there are four types of
operators, namely α (conjunctive propositional), β (disjunctive propositional),
γ (universal quantifiers) and δ (existential quantifiers) with corresponding rules.
Semantic tableaux for classical logic come in two versions, signed and unsigned,
from which we choose the latter. In Table 1 we have summarized γ– and δ–type
formulas.

Table 1. γ– and δ–type formulas

γ γ0(t)

(∀x)φ(x) φ(t)
¬(∃x)φ(x) ¬φ(t)

δ δ0(t)

¬(∀x)φ(x) ¬φ(t)
(∃x)φ(x) φ(t)

1 Free Variable Tableaux

In Smullyan’s formulation the γ–rule requires the substitution of an arbitrary
but fixed term1 for the quantified variable, see Table 2. Since this “guess” may be
wrong, the γ–rule may have to be applied again and again to the same universal
type formula in a tableau proof. Obviously, this indeterminism can make proofs
very long and it is a natural idea to postpone the instantiation in a γ–rule until
more information on the instance actually needed has been collected. We know
of two approaches in the literature where this has been expressed formally [7, 3].
We concentrate on the latter, which we assume the reader to be familiar with.

For convenience, we have given the free quantifier rules from [3] in Table 3.

Table 2. Ground tableau rules for quantified formulas.

γ

γ0(t)

δ

δ0(t)

where t is any ground term. where t is a ground term not oc-
curring on the current branch.

Table 3. Free tableau rules for quantified formulas.

γ

γ0(x)

δ

δ0(f(x1, . . . , xn))

where x is a free variable. where x1, . . . , xn are the free va-
riables occurring on the current
branch and f is a new function
symbol.

1 Smullyan did not include function symbols in his first–order language, so in his case
constants were the only ground terms. We assure the reader that in the extended lan-
guage all results are still valid and the proofs may be adopted without any problems.

The proviso of the δ–rule ensures that the introduced Skolem term is new
on the branch constructed so far, even when the free variables are instantiated
later during the proof. Thus it can be safely given an appropriate meaning in
order to preserve satisfiability of tableaux after δ–rule applications.

Let us henceforth call the tableau system with these rules the free version
and the old one the ground version.

2 The Liberalized δ+–Rule

Both versions of tableaux systems, free and ground, have essentially the same
proviso in the δ–rule: under any substitutions, the introduced term has to be
absolutely new on the current branch.

Hähnle and Schmitt showed in [6] that this proviso is somewhat stronger than
is actually needed and formulated the liberalized free δ–rule stated in Table 4,
which they called δ+–rule.

To show the possible advantage of a system using δ+ over one using δ, here
is an example of a tableau proof using Fitting’s δ–rule:

(1) ¬(∃x)(((∀z)p(z)) ∨ ¬p(x))

(2) ¬(((∀z)p(z)) ∨ ¬p(x1))

(3) ¬(∀z)p(z)

(4) ¬¬p(x1)

(5) p(x1)

(6) ¬p(f(x1))

(7) ¬(((∀z)p(z)) ∨ ¬p(x2))

(8) ¬(∀z)p(z)

(9) ¬¬p(x2)

(10) p(x2)

closed by (10) and (6)

Line (6) is obtained from line (3) by Fitting’s δ–rule. It is not possible to
close the tableau by using lines (6) and (5). Only after a second application of
the γ-rule on the formula in line (1) resulting in line (7) closure can be obtained.
A closer look at this proof reveals that it is in fact the shortest possible proof
using the δ–rule. The same root formula yields the following tableau using the
δ+–rule:

(1) ¬(∃x)(((∀z)p(z)) ∨ ¬p(x))

(2) ¬(((∀z)p(z)) ∨ ¬p(x1))

(3) ¬(∀z)p(z)

(4) ¬¬p(x1)

(5) p(x1)

(6) ¬p(c)

closed by (5) and (6)

Using the δ+–rule instead of the δ–rule can shorten tableau proofs exponen-
tially. Since the system using the free δ–rule is complete, a system using the
liberalized free rule δ+ will also be complete. The problem thus lies in proving
correctness of the δ+–rule. A proof has been given in [6].

Table 4. Liberalized free tableau rules for quantified formulas, introduced in [6].

γ

γ0(x)

δ

δ0(f(x1, . . . , xn))

where x is a free variable. where x1, . . . , xn are the free va-
riables occurring in δ and f is a
new function symbol.

3 The Even More Liberalized δ++
–Rule

It is possible to liberalize the δ+–rule even more. This additional liberaliza-
tion does not effect the number of variables used as arguments for the Skolem–
function that is introduced by a δ–rule application, but it effects the Skolem–
function symbol itself. The restriction that the function symbol has to be new is
weakened.2 The same function symbol is used more than once when the δ+

+
–rule

is applied to δ–formulas that are identical up to variable renaming.

Definition 1 Signature, Language. A signature Σ = 〈PΣ , FΣ〉 consists of a
non–empty set PΣ of predicate symbols and a set FΣ of function symbols.3

LΣ denotes the first–order language over Σ, i.e., the set of well–formed for-
mulas over Σ.
2 Smullyan introduced a δ–rule liberalized in this way for the ground version of ta-

bleaux: The same Skolem–function symbol may be used on different branches. In the
ground version, however, this is easy to see; and it is not as liberal as our rule.

3 Constants are functions of arity 0.

The following definition describes which δ–formulas are assigned the same
Skolem–function symbol. In addition, for a given signature Σ a new signature
Σ⋆ is defined. Σ⋆ contains all Skolem–function symbols that can occur during
the construction of a tableau for a formula over Σ. After n induction steps
the new signature contains all Skolem–function symbols that are needed for the
Skolemization of a formula φ ∈ LΣ provided the maximal nesting of existential
quantifiers in φ is not greater than n.

The new δ+
+
–rule is stated in Table 5.

Definition 2 Assigned Skolem–function, Signature Σ⋆, Rank. Let Σ =
〈PΣ , FΣ〉 be a signature. For each δ–formula δ ∈ LΣ , the equivalence class [δ] is
the set of all formulas that are identical to δ up to variable renaming (including
renaming of the bound variables in δ).

All formulas in an equivalence class [δ] are assigned the same unique Skolem–
function symbol f[δ] 6∈ Σ.

The signature Σsk is defined by

Σsk = 〈PΣ , FΣ ∪ {f[δ] : δ ∈ LΣ , δ is a δ–formula}〉 .

Based on that the signature Σ⋆ is inductively defined by

Σ0 = Σ

Σn+1 = (Σn)sk (n ≥ 0)

Σ⋆ =
⋃

n≥0

Σn .

The rank of a new function symbol f[δ] is the least n such that f[δ] ∈ Σ
n.

Example 1. The formulas (∃x)p(x, y, z) and (∃y)p(y, x, u) are assigned the same
Skolem–function symbol

f[(∃x)p(x,y,z)] = f[(∃y)p(y,x,u)] ,

but (∃x)p(x, x, x) is assigned a different one.

Example 2. Supposed p ∈ PΣ is a binary predicate symbol. Then

δ = (∃x)(∃y)p(x, y) ∈ LΣ

and f[δ] ∈ Σsk = Σ1; f[δ] is of rank 1 (apart from f[δ] there are more new
Skolem–function symbols in Σsk — in fact, there is an infinite number of them).

This new Skolem–function symbol can now be used to build formulas over
Σsk. Therefore,

δ′ = (∃y)p(f[δ], y) ∈ L
Σ1

and f[δ′] ∈ (Σsk)sk = Σ2 (f[δ′] is of rank 2).
Finally, we have

δ′′ = p(f[δ], f[δ′]) ∈ L
Σ2

.

This shows that the Skolemization of δ can be done using the signature Σ⋆,
since FΣ⋆ ⊃ FΣ2 ⊃ FΣ1 .

Table 5. The even more liberalized free tableau rules for quantified formulas.

γ

γ0(x)

δ

δ0(f[δ](x1, . . . , xn))

where x is a free variable. where x1, . . . , xn are the free va-
riables occurring in δ and f[δ] is
the function symbol assigned to δ

(see Def. 2).

The same construction as above could be applied to the more comprehen-
sive equivalence classes [(∃x)φ(x, ȳ)] consisting of all renamings of formulas
(∃x)ψ(x, ȳ) such that (∀ȳ)(∀x)(φ(x, ȳ) ↔ ψ(x, ȳ)) is a tautology. But we could
find no sensible application of this.

4 Advantages of Using the δ++
–Rule

The example in Section 2, that has been taken from [6], shows the advantage of
using the δ+–rule.

The following examples illustrate that using the δ+
+
–rule instead of the δ+–

rule can lead to even simpler and shorter tableau proofs:

Example 3. If several instances of the formula (∀x)(∃y)p(x, y) are generated
using the γ– and the δ+

+
–rule, they are of the form4

p(x1, f(x1)), p(x2, f(x2)), . . .

whereas using the δ+–rule leads to instances

p(x1, f1(x1)), p(x2, f2(x2)),

Example 4. The closed tableau (with the substitution {x1 ← c})

(1) (∀x)¬p(x)

(2) (∃x)p(x) ∨ (∃x)p(x)

(3) ¬p(x1)

(4) (∃x)p(x)

(5) p(c)

�� QQ

(6) (∃x)p(x)

(7) p(c)

4 Here and in the following examples we use f and c as abbreviations for f[δ] (where
δ is a more or less complex formula).

has been built using the δ+
+
–rule. If it had been built using the δ+–rule, the

formulas (5) and (7) would be of the form p(c1) and p(c2) respectively, and the
tableau could only be closed by applying the γ–rule a second time to (1).

Example 5. The previous example appears to be somewhat artificial. However,
identical δ–formulas quite often occur multiply if equivalences are present:

(1) (∀x)¬q(x)

(2) p(a)↔ ((∃x)q(x) ↔ p(a))

(3) ¬q(x1)

(4) p(a)

(5) (∃x)q(x)↔ p(a)

(6) (∃x)q(x)

(7) p(a)

(8) q(c)

�� QQ

(9) ¬(∃x)q(x)

(10) ¬p(a)

���� PPPP

(11) ¬p(a)

(12) ¬((∃x)q(x) ↔ p(a))

(13) (∃x)q(x)

(14) ¬p(a)

(15) q(c)

�� QQ

(16) ¬(∃x)q(x)

(17) p(a)

This tableau is closed with the substitution {x1 ← c}, but, as in Example 4, if
the tableau had been built using the δ+–rule, the formulas (8) and (15) would
be of the form p(c1) and p(c2) respectively, and the tableau could only be closed
by applying the γ–rule a second time to (1).

As a matter of fact, using the δ+
+
–rule instead of the δ+–rule can reduce the

length of tableau proofs exponentially. Therefore, free variable tableaux with the
δ+–rule cannot polynomially simulate free variable tableaux with the δ+

+

–rule.
On the other hand, using the δ+

+
–rule instead of the δ+–rule, never lengthens

the proof of a formula φ, because every closed tableau that has been built using
the δ+–rule, would be closed as well if it had been built using the δ+

+
–rule.

Theorem 3. There is a class of formulas φn (n ≥ 1) such that, if b+
+
(n) is the

number of branches of the shortest closed tableau for φn using the δ+
+
–rule, then

the shortest closed tableau for φn using the δ+–rule has

b+(n) = O(2b
++

(n))

branches.

Proof. This can, for example, be proved using the class of formulas φn (n ≥ 1)
defined recursively by

φ1 = ⊥

φn = (∀x)(φn−1 ∨ (pn(x) ∧ ((∃y)(¬pn(y)) ∨ (∃y)(¬pn(y))))

The shortest closed tableau using the δ+
+
–rule has

b+
+
(n) = b+

+
(n− 1) + 2 = 2n− 1

branches, whereas the shortest closed tableau for φn using the δ+–rule has

b+(n) = 2b+(n− 1) + 1 = 2n − 1

branches. ⊓⊔

In contrast to the other δ–rules, the δ+
+
–rule does not take into account the

whole tableau or a whole branch, but only the local δ–formula. One does not
have to keep track of the Skolem–function symbols already used.

In addition, when using the δ+
+
–rule, it suffices to have only a finite number

of function symbols at hand. The number of different function symbols that have
to be used while building a tableau for a formula φ is not larger than the number
of subformulas of φ. That and the locality of the δ+

+

–rule are both important
advantages if one wants to implement the tableau calculus (we have built the

δ+
+
–rule into our tableau based theorem prover 3T

AP [5]).

5 A Soundness Proof

The following proof for the soundness5 of the δ+
+
–rule is similar to that of the

δ+–rule given in [6]. First, satisfiability of tableaux is defined (Def. 5), and then
it is proved that satisfiability is preserved when a tableau is expanded (Lemma 6)
or a substitution is applied to a tableau (Lemma 7).6

We consider a tableaux T , that may contain free variables. Usually we think
of the free variables as being introduced by the γ–rule. First we give some pre-
liminary definitions:

Definition 4 Structure, Model, Variable Assignment. A structure M =
〈D, I〉 for a signature Σ consists of a domain D and an interpretation I which
gives meaning to the function and predicate symbols of Σ.

A variable assignment is a mapping µ : Var → D from the set of variables
to the domain D.

5 Since the δ++

–rule is a liberalization of the δ–rule, completeness is obviously preser-
ved and does not have to be proved.

6 The satisfiability of semantic tableaux as defined in Definition 5 differs from that
used in [3], which is not preserved if the δ+– or the δ++

–rule is applied. This is the
main reason why the soundness proof for the free δ–rule in [3], as it stands, does not
carry over to the tableau system using the δ+– or the δ++

–rule.

The combination of an interpretation I and an assignment µ associates (by
structural recursion) with each term t over Σ an element tI,µ in D and with each
formula φ ∈ LΣ a truth value

valI,µ(φ) ∈ {true, false} .

If valI,µ(φ) = true, we callM a model of the formula φ for the assignment µ
(denoted by (M, µ) |= φ). If (M, µ) |= φ holds for all assignments µ, we use the
abbreviationM |= φ.

Definition 5 Satisfiability of Tableaux. A tableau T is satisfiable if there is
a structure M, such that for every variable assignment µ we have (M, µ) |= T ,
i.e., there is a branch B in T , such that (M, µ) |= B.

If we want to be more specific we say that T is satisfied by M and write in
symbolsM |= T .

A branch B is considered here as a set of formulas and (M, µ) |= B means
(M, µ) |= φ for all formulas φ in B.

Lemma6. If T is a tableau whose root is labeled by a satisfiable closed formula
φ, then T is satisfiable.

Proof. Let M0 = 〈D, I0〉 be a structure for the signature Σ = Σ0 that satis-
fies φ ∈ LΣ .

We inductively define a sequence (Mn)n≥0 of structures that all have the do-
main D.Mn+1 = 〈D, In+1〉 is a structure for the signature Σn+1; In+1 coincides
with In on all symbols in Σn. The function symbols f[δ] of rank r ≤ n have al-
ready been interpreted inMn. Consider f[δ] of rank n+1 with δ = (∃x)δ0(x, ȳ);

its interpretation fn+1
[δ] is for all argument tupels b̄ ⊂ D of the appropriate length

defined by:

1. If there is a variable assignment µ with µ(ȳ) = b̄ and (Mn, µ) |= δ we choose
an element c ∈ D with7

(Mn, µ[x← c]) |= δ0(x, ȳ)

and set

fn+1
[δ] (b̄) = c .

2. Otherwise we set

fn+1
[δ] (b̄) = c

for an arbitrary element c ∈ D.

7 Since f[δ] is of rank n + 1, the symbols in δ are from the signature Σn.

We can think of the sequence (Mn)n≥0 as an approximization to a structure
M⋆ = 〈D, I⋆〉 for the signature Σ⋆. I⋆ coincides with In, In+1, In+2, . . . on the
symbols in Σn.

Since T is a tableau whose root is labeled by φ, there has to be a sequence

φ = T 0, . . . , Tm = T

of tableaux, where T i+1 is constructed from T i by applying a single tableau rule.
By induction on m we will prove that M⋆ satisfies all the tableaux T 0, . . . , Tm

(and in particular T).

m = : M0 |= φ, φ is a formula in signature Σ, and M0 and M⋆ coincide on
all symbols in Σ. ThereforeM⋆ satisfies T 0 = φ.

m → m+: Let Bm be a branch in Tm. Tm+1 is obtained from Tm by applying
a tableau rule to a formula on Bm.

By assumptionM⋆ satisfies Tm. Let µ be a fixed assignment. Thus we have
(M⋆, µ) |= Bm

0 for some branch Bm
0 of Tm. If Bm

0 is different from Bm, then
Bm

0 is also a branch of Tm+1 and we are through.

If on the other hand Bm
0 = Bm and therefore (M⋆, µ) |= Bm, we show

that (M⋆, µ) satisfies one of the branches of Tm+1 by cases according to which
tableau rule is applied to obtain Tm+1 from Tm.

β–rule: Let β be a β–formula in Bm. Tm+1 is obtained from Tm by adding β1

to Bm obtaining Bm+1
1 and adding β2 to Bm obtaining Bm+1

2 .

We have (M⋆, µ) |= β. By the property of β–formulas this entails that
(M⋆, µ) |= β1 or (M⋆, µ) |= β2. Therefore (M⋆, µ) |= Bm+1

1 or (M⋆, µ) |=
Bm+1

2 .

α–rule: Similar to the β–rule and left to the reader.

γ–rule: Let γ be a γ–formula in Bm and Tm+1 be obtained from Tm by adding
γ0(x) to Bm obtaining the branch Bm+1.

We have (M⋆, µ) |= γ. By definition of |= this gives (M⋆, µ[x← d]) |= γ0(x)
for all elements d ∈ D. Since this is in particular true for d = µ(x) we get
(M⋆, µ) |= γ0(x) and therefore also (M⋆, µ) |= Bm+1.

δ++
–rule: Let δ = (∃x)δ0(x, ȳ) be a δ–formula in Bm and Tm+1 be obtained

from Tm by adding δ0(f[δ](ȳ), ȳ) to Bm obtaining the branch Bm+1. Let r be
the rank of f[δ].

We have (M⋆, µ) |= (∃x)δ0(x, ȳ). By definition of the structuresM0,M1, . . .

andM⋆ that implies (Mr−1, µ) |= (∃x)δ0(x, ȳ); and the function value

c = f∗
[δ](µ(ȳ)) = f r

[δ](µ(ȳ))

was chosen such that (Mr, µ[x← c]) |= δ0(x, ȳ) and therefore (M⋆, µ[x← c]) |=
δ0(x, ȳ). Thus (M⋆, µ) |= δ0(f[δ](ȳ), ȳ) and so (M⋆, µ) |= Bm+1 follow. ⊓⊔

Because the construction ofM⋆ in the proof of Lemma 6 does not depend on
the tableau T , we not only have shown that a tableau for a satisfiable formula
φ is satisfiable, but that there is a single structure M⋆ satisfying all tableaux
for φ.

Lemma7. Let T be a satisfiable tableau and τ a substitution, that associates
with every free variable in T a term in the language of T , then Tτ is also satis-
fiable.

Proof. By hypothesis there is a structure M = 〈D, I〉 such that for all variable
assignments µ we have (M, µ) |= T . We claim that for the same structure M,
we have also for all assignments ξ that (M, ξ) |= Tτ .

To prove the above claim we consider a given variable assignment ξ. Let the
variable assignment µ be defined by

µ(x) = (xτ)
I,ξ

for all x ∈ Var .

That implies for all terms t ∈ Term, and in particular for all terms t in the
tableau T ,

(tτ)
I,ξ

= tI,µ

and therefore

(Tτ)
I,ξ

= T I,µ ,

and, since (M, µ) |= T , as well (M, ξ) |= Tτ . ⊓⊔

Definition 8 Closed Tableau. A tableau T is closed, if there is a substitution
τ such that every branch of Tτ contains a complementary pair of formulas.

Theorem 9 Soundness of Semantic Tableau with the δ+
+
–rule. If T is a

closed tableau whose root is labeled by the closed formula ¬φ, then φ is universally
valid.

Proof. If T is closed, then there is a substitution τ , such that Tτ is not satisfiable.
By Lemmata 6 and 7 the root cannot be satisfiable; its negation is therefore
universally valid. ⊓⊔

6 Conclusion

We have presented a Skolemization method that is very suitable for implementa-
tion, because it suffices to have only a finite number of Skolem–function symbols
at hand; in addition only the formula being Skolemized (not the whole branch)
has to be taken into concern. Using the δ+

+

–rule never lengthens tableau proofs.
They can, however, be shortened exponentially. Proofs of typical benchmark pro-
blems are only slightly shortened, because they usually do not contain formulas
multiply — in contrary to many natural problems.

There are other Skolemization methods [1] that can be used to Skolemize
arbitrary formulas (that do not have to be in prenex normal form). These me-
thods can be used to Skolemize formulas in a pre–processing step before they
are handed over to the tableau prover.

Andrew’s Skolemization method, for example, provides the same (or better)
results than using the δ+–rule, but, still, there are examples where using the
δ+

+
–rule shortens the proofs exponentially.
It is, however, possible to combine the δ+

+
–rule and methods that do not use

the prenex normal form, and thus combine the advantages of both methods.

Acknowledgements

Many thanks to Stefan Gerberding for pointing out some errors in an earlier
version of this paper and to Bertram Ludäscher for fruitful discussions.

References

1. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory. Aca-
demic Press, 1986.

2. Melvin C. Fitting. First-order modal tableaux. Journal of Automated Reasoning,
4:191–213, 1988.

3. Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
New York, 1990.

4. Reiner Hähnle. Automated Theorem Proving in Multiple-Valued Logics. Oxford
University Press, to appear December 1993, 1993.

5. Reiner Hähnle, Bernhard Beckert, Stefan Gerberding, and Werner Kernig. The

Many-Valued Tableau-Based Theorem Prover 3T
AP . IWBS Report 227, Wissen-

schaftliches Zentrum Heidelberg, IWBS, IBM Deutschland, July 1992.
6. Reiner Hähnle and Peter H. Schmitt. The liberalized δ-rule in free variable semantic

tableaux. Journal of Automated Reasoning, to appear, 1993.
7. Steve V. Reeves. Semantic tableaux as a framework for automated theorem-proving.

Department of Computer Science and Statistics, Queen Mary College, Univ. of
London, 1987.

8. Raymond Smullyan. First-Order Logic. Springer, New York, 1968.

This article was processed using the LaTEX macro package with LLNCS style

