
leanT
A
P : Lean Tableau-Based Theorem Proving

— Extended Abstract —

Bernhard Beckert & Joachim Posegga

Universität Karlsruhe
Institut für Logik, Komplexität und Deduktionssysteme

76128 Karlsruhe, Germany
{beckert|posegga}@ira.uka.de

Abstract.

“prove((E,F),A,B,C,D) :- !, prove(E,[F|A],B,C,D).

prove((E;F),A,B,C,D) :- !, prove(E,A,B,C,D), prove(F,A,B,C,D).

prove(all(H,I),A,B,C,D) :- !,

\+length(C,D), copy_term((H,I,C),(G,F,C)),

append(A,[all(H,I)],E), prove(F,E,B,[G|C],D).

prove(A,_,[C|D],_,_) :-

((A= -(B); -(A)=B)) -> (unify(B,C); prove(A,[],D,_,_)).

prove(A,[E|F],B,C,D) :- prove(E,F,[A|B],C,D).”

implements a first-order theorem prover based on free-variable semantic
tableaux. It is complete, sound, and efficient.

1 Introduction

The Prolog program listed in the abstract implements a complete and sound
theorem prover for first-order logic based on free-variable semantic tableaux [6].
We call this lean theorem proving: the idea is to achieve maximal efficiency from
minimal means. We will see that the above program is indeed very efficient—not
although but because it is extremely short and compact.

Satchmo [7] can be regarded the earliest application of lean theorem proving.
The core of Satchmo is about 15 lines of Prolog code, and for implementing a re-
futation complete version another 15 lines are required. Unfortunately, Satchmo
works only for formulæ in clausal form (CNF).

Many problems become much harder when translating them to clausal form,
so it seems much better to avoid CNF and to preserve position and scope of
quantifiers.1 One way to achieve this is to use a calculus based on free-variable
tableaux. It is a common, but mistaken belief that tableau calculi are inefficient;
we will demonstrate the contrary.

The reader is assumed to be familiar with free-variable tableaux (e.g. [6]) and
the basics of Prolog. The full version of this paper [4] is available upon request

1 Using a definitional CNF [5] helps at most partially: it avoids exponential growth of
formulæ for the price of introducing some redundancy into the proof search. Exten-
ding the scope of quantifiers to clause level, however, cannot be avoided.

from the authors. The source code of leanTAP (and that of a slightly improved
version; see Section 4) can also be obtained free of charge.

2 The Program

The idea behind leanTAP is to exploit the power of Prolog’s inference engine
as much as possible; whilst Satchmo is based upon assert and retract, we
do not use these predicates at all but rely on Prolog’s clause indexing scheme
and backtracking mechanism. We modify Prolog’s depth-first search to bounded
depth-first search for gaining a complete prover.

For the sake of simplicity, our considerations are restricted to first-order
formulæ in Skolemized negation normal form. This is not a serious restriction;
the prover can easily be extended to full first-order logic by adding the standard
tableau rules.2 We will use Prolog syntax for first-order formulæ: atoms are
Prolog terms, “-” is negation, “;” disjunction, and “,” conjunction. Universal
quantification is expressed as all(X,F), where X is a Prolog variable and F is
the scope. Thus, a first-order formula is represented by a Prolog term (e.g.,
(p(0),all(N,(-p(N);p(s(N))))) stands for p(0) ∧ (∀n(¬p(n) ∨ p(s(n))))).

We use a single Prolog predicate to implement our prover:

prove(Fml,UnExp,Lits,FreeV,VarLim)

succeeds if there is a closed tableau for the first-order formula bound to Fml.
The proof proceeds by considering individual branches (from left to right) of a
tableau; the parameters Fml, UnExp, and Lits represent the current branch: Fml
is the formula being expanded, UnExp holds a list of formulæ not yet expanded,
and Lits is a list of the literals present on the current branch. FreeV is a list
of the free variables on the branch (these are Prolog variables, which might be
bound to a term). A positive integer VarLim is used to initiate backtracking: it
is an upper bound for the length of FreeV.

We will briefly go through the program listed in the abstract again (using a
more readable form now) and explain its behavior. The prover is started with
the goal prove(Fml,[],[],[],VarLim), which succeeds if Fml can be proven
inconsistent without using more than VarLim free variables on each branch.

If a conjunction (α-formula3) “A and B” is to be expanded, then “A” is
considered first and “B” is put in the list of not yet expanded formulæ:

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,[B|UnExp],Lits,FreeV,VarLim).

For disjunctions (β-formulæ) we split the current branch and prove two new
goals:

2 Skolemization has to be carried out very carefully, since straightforwardly Skolemi-
zing can easily hinder finding a proof [3]. The full version [4] of this paper gives more
details.

3 Due to R. Smullyan, conjunctive type formulæ are called α-formulæ in the semantic
tableaux framework.

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

Handling universally quantified formulæ (γ-formulæ) requires a little more ef-
fort. We first check the number of free variables on the branch. Backtracking is
initiated if the depth bound VarLim is reached. Otherwise, we generate a “fresh”
instance of the current γ-formula all(X,Fml) with copy_term. FreeV is used
to avoid renaming the free variables in Fml. The original γ-formula is put at
the end of UnExp4, and the proof search is continued with the renamed instance
Fml1 as the formula to be expanded next. The copy of the quantified variable,
which is now free, is added to the list FreeV:

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

The next clause closes branches; it is the only one which is not determinate.
Note, that it will only be entered with a literal as its first argument. Neg is
bound to the negated literal and sound unification5 is tried against the literals
on the current branch. The clause calls itself recursively and traverses the list in
its second argument; no other clause will match since UnExp is set to the empty
list for this recursion.

prove(Lit,_,[L|Lits],_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

Note, that the implication “->” introduces an implicit cut after binding Neg: this
prevents generating double negation when backtracking (which would happen,
if “,” were used instead).

The last clause is reached if the preceding clause cannot close the current
branch. We add the current formula (always a literal) to the list of literals on
the branch and pick a formula waiting for expansion:

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

leanTAP has two choice points: One is selecting between the last two clauses,
which means closing a branch or extending it. The second choice point within
the fourth clause enumerates closing substitutions during backtracking.

4 Putting it at the top of the list destroys completeness: the same γ-formula would be
used over and over again until the depth bound is reached (bracktracking does not
change the order in which formulæ are expanded).

5 In contrary to the built-in unification =, the predicate unify implements sound uni-
fication, i.e., unification with occurs check.

3 Performance

Although (or better: because) the prover is so small, it shows striking perfor-
mance. Table 1 shows experimental results for a subset of Pelletier’s problems [8].

Table 1. leanTAP ’s performance for Pelletier’s problem set (the runtime has been
measured on a SUN SPARC 10 workstation with SICStus Prolog 2.1; “0 msec” means
“not measurable”).

No. Limit Branches Closings Time
VarLim closed tried msec

17 1 14 14 0
18 2 1 1 9
19 2 4 6 0
20 6 3 3 9
21 2 8 8 0
22 2 7 14 9
23 1 4 4 0
24 6 33 33 9
25 3 5 5 0
26 3 16 17 0
27 4 8 8 0
28 3 5 5 0
29 2 11 11 9
30 2 4 4 9
31 3 5 5 0

No. Limit Branches Closings Time
VarLim closed tried msec

32 3 10 10 10
33 1 11 11 0
34 ?? – – ∞
35 4 1 1 0
36 6 3 3 0
37 7 8 8 9
38 4 90 101 210
39 1 2 2 0
40 3 4 5 0
41 3 4 5 0
42 3 5 5 9
43 5 18 18 109
44 3 5 5 10
45 5 17 17 39
46 5 53 63 59

Some of the theorems, like Problem 38, are quite hard: the 3T
AP prover [1],

for instance, needs more than ten times as long. If leanTAP can solve a problem,
its performance is in fact comparable to compilation-based systems that search
for proofs by generating Prolog programs and running them [10, 9].

Pelletier No. 34 (also called “Andrews Challenge”) is a surprise: all others

run really fast but for Problem 34 leanTAP does not find a proof. One reason
might be that we did not invest much time in finding the right number of free
variables to allow: an iterative deepening approach (as applicable to all other
problems) does not work: if VarLim is set to 4, the prover does not return after
30 minutes. It is easily possible that the right limit (which is above 12) returns
a proof very quickly.

4 Conclusion & Outlook

We showed that a first-order calculus based on free-variable semantic tableaux
can be efficiently implemented in Prolog with minimal means.

One could regard leanTAP as a Prolog hack. However, we think it demon-
strates more than tricky use of Prolog: it shows that semantic tableaux are an
efficient calculus when implemented carefully. Besides this, the philosophy of
“lean theorem proving” is interesting: We showed that it is possible to reach
considerable performance by using extremely compact (and efficient) code in-
stead of elaborate heuristics. One should not confuse “lean” with “simple”: each
line of a “lean” prover has to be coded with a lot of careful consideration.

There is still room for improvement without sacrificing simplicity and/or

elegance of our approach: leanTAP can easily be extended by techniques known
to enhance the performance of tableau-based provers: A slightly longer version
making use of “universal formulæ” [2] can, for example, solve Pelletier No. 34 in
about 100msec (see [4] for details).

Another possibility is to use an additional preprocessing step that translates a
negation normal form into a graphical representation of a fully expanded tableau
(see [9] for details). This can be implemented equivalently simply and requires
only linear effort at runtime. The prover itself then reduces to two clauses, since
no compound formulæ are present any more and all branches are already fully
developed. The speedup will not be dramatic, but considerable. Furthermore,
we can implement the compilation principle described by Posegga [9]: the idea
is to translate tableau graphs into Prolog clauses that carry out the proof search
at runtime. Compared with “conventional” implementations of tableau-based
systems, this gains about one order of magnitude of speed. It will be subject to
future research to apply this principle in the spirit of lean deduction.

References

1. B. Beckert, S. Gerberding, R. Hähnle, and W. Kernig. The tableau-based theorem

prover 3T
AP for multiple-valued logics. In Proceedings, CADE 11, Albany/NY,

LNCS. Springer, 1992.
2. B. Beckert and R. Hähnle. An improved method for adding equality to free variable

semantic tableaux. In Proceedings, CADE 11, Albany/NY, LNCS. Springer, 1992.
3. B. Beckert, R. Hähnle, and P. H. Schmitt. The even more liberalized δ-rule in free

variable semantic tableaux. In Proceedings, 3rd Kurt Gödel Colloquium, Brno,
Czech Republic, LNCS. Springer, 1993.

4. B. Beckert and J. Posegga. leanTAP : Lean tableau-based theorem proving. To
appear (available upon request from the authors), 1994.

5. E. Eder. Relative Complexities of First-Order Calculi. Artificial Intelligence.
Vieweg Verlag, 1992.

6. M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.
7. R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog.

In Proceedings, CADE 9, Argonne, LNCS. Springer, 1988.
8. F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Jour-

nal of Automated Reasoning, 2:191–216, 1986.
9. J. Posegga. Compiling proof search in semantic tableaux. In Proceedings, ISMIS 7,

Trondheim, Norway, LNCS. Springer, 1993.
10. M. E. Stickel. A prolog technology theorem prover. In Proceedings, CADE 9,

Argonne, LNCS. Springer, 1988.

