Logic Programming as a Basis for Lean Deduction:
Achieving Maximal Efficiency from Minimal Means’

Bernhard Beckert & Joachim Posegga

Universitat Karlsruhe, Institut fir Logik, Komplexitat und Deduktionssysteme
76128 Karlsruhe, Germany, {beckert| posegga}@ra. uka. de

1 Introduction

Researchers in Automated Reasoning often complain that there are sparse applications of the techniques they
develop. One reason might be that implementation-oriented research favors huge and highly complex systems
and that this does not suit the needs of many applications. It is hard to see how to apply these systems —
besides using them as a black box. Adaptability, however, is an important criterion for applying techniques; this
discrepancy can be overcome by using lean theorem provers.

The idea of lean deduction is to achieve maxima efficiency from minimal means. Every possible effort
is made to eiminate overhead; based on experience in implementing (complex) deduction systems, only the
most important and efficient techniques and methods are implemented. Logic programming languages provide
an idedl tool for implementing lean deduction, as they offer alevel of abstraction that is close to the needs for
building first-order deduction systems.

The Prolog program shown in Figure 1, called lean7"'P (Beckert & Posegga, 1994b), is an instance of such
alean deduction system: it implements a complete and sound theorem prover for first-order logic in Skolemized
negation normal form. The underlying calculusis based on free-variable semantic tableaux (Fitting, 1990) (we
shall explain the programin Section 2).

Our approach surely does not lead to deduction systems that are superior to highly sophisticated theorem
provers like Otter (McCune, 1990) or Setheo (Letz et al., 1992); these are better on solving difficult problems.
However, many applications do not require deduction which is as complex as the state of the art in automated
theorem proving. Furthermore, there are often strong constraintson thetime allowed for deduction. In such areas
our approach can be extremely useful: it offers high inference rates on simple to moderately complex problems
and a high degree of adaptability.

Another important argument for lean deduction is safety: It is easily possible to verify the couple of lines
of standard Prolog implementing lean7'P (Beckert & Posegga, 1994a; Posegga & Schmitt, 1995); verifying
thousands of lines of C code, however, is hard—if not impossible—in practice.

2 leanTP: The Program

We will briefly describe the basic working principle of the tableau-based theorem prover lean7'P shown in
Figure 1. We assume familiarity with free-variabl e tableaux (e.g. (Fitting, 1990)) and the basics of programming
in Prolog.

For the sake of simplicity, werestrict our considerationsto first-order formul aei n Skolemized negation normal
form. Thisis not a strong restriction; the prover can easily be extended to full first-order logic by adding the
standard tableau rules. However, Skolemization has to be implemented carefully to achieve the highest possible
performance (Beckert et al., 1993).3

*Proc. Workshop on Logic Programming, University of Zirich, Switzerland. Oct. 1994

1Empirical evidence for this claim can easily be given: Hardware and Software Verification are usually listed as the most important
application areaswith practical relevance of Automated Deduction. However, when looking closer, one realizesthat theimplemented systems
in this area either use interactive provers, or application-specific developments. The classical, stand-alone theorem provers seem to be not
flexible enough to beintegrated into such systems.

2Theinterested reader is might wish to consult (Beckert & Posegga, 1994a) for amore detailed explanation.

3A Prolog program for computing an optimized negation normal form, aswell as lean7P’s source code, is available upon request from
the authors.

1 prove((A B), UnExp, Lits, FreeV,VLim :- !,
prove(A, [B| UnExp], Lits, FreeV, VLim .

2 prove((A B), UnExp, Lits, FreeV,VLim :- !,
prove(A, UnExp, Lits, FreeV, VLi m,
prove(B, UnExp, Lits, FreeV, VLi m.

sprove(all (X, Fm), UnExp, Lits, FreeV,VLim :- !,
\'+ I ength(FreeV, VLin),
copy_term((X Fm , FreeV), (X1, Fm 1, FreeV)),
append(UnExp, [al | (X, Fm)], UnExpl),
prove(Fm 1, UnExpl, Lits, [X1| FreeV], VLim.
aprove(Lit, ,[LJLits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits, ,)).
s prove(Lit,[Next|UnExp],Lits, FreeV,VLim :-
prove(Next, UnExp, [Lit]|Lits], FreeV,VLinm.

Figure 1: lean7"'P: The Basic Version of the Program

We use Prolog syntax for first-order formulae atoms are Prolog terms, “- " isnegation, “; " digunction, and
“, " conjunction. Universal quantificationisexpressed asal | (X, F) , where XisaProlog variable and F is the
scope. Thus, afirst-order formulaisrepresented by aPrologterm(eg., (p(0), al I (N, (-p(N); p(s(N)))))
stands for p(0) A (Vn(=p(n) V p(s(n))))).

A singlePrologpredicatepr ove(Fim , UnExp, Li t's, FreeV, VLi m) implementsour prover; it succeeds
if there is a closed tableau for the first-order formula bound to Fmi . The prover is started with the goa
prove(Fm ,[],[],[], VLi m,whichsucceedsif Fri can be proven inconsistent without using more than
VLi mfree variables on each branch.

The proof proceeds by considering individual branches (from left to right) of atableau; the parameters Fim |
UnExp, and Li t s represent the current branch: Fnl is the formula being expanded, UnExp holds a list of
formuleenot yet expanded, and Li t s isalist of theliterals present on the current branch. Fr eeVisalist of the
free variables on the branch (Prol og variables, which might be bound to aterm). A positiveinteger VLi misused
to initiate backtracking; it isan upper bound for the length of Fr eeV.

If aconjunction “A and B” isto be expanded, then “A” is considered first and “B” isput in thelist of not yet
expanded formulae(Clause 1). For digunctionswe split the current branch and prove two new gods (Clause 2).

Handling universaly quantified formulae(y-formula requires alittle more effort (Clause 3). We first check
the number of free variables on the branch. Backtracking is initiated if the depth bound VLi mis reached.
Otherwise, we generate a “fresh” instance of the current v-formulaal | (X, Fm') withcopy_term FreeV
is used to avoid renaming the free variablesin Fnl . The original y-formulais put at the end of UnExp (putting
it a the top of thelist destroys completeness: the same v-formula would be used over and over again until the
depth bound isreached), and the proof search is continued with the renamed instance Fm 1 as the formulato be
expanded next. The copy of the quantified variable, which isnow free, is added to thelist Fr eeV.

Clause 4 closes branches; it is the only one which is not determinate. Note, that it will only be entered
with aliteral asitsfirst argument. Neg is bound to the negated literal and sound unification is tried against the
literals on the current branch. The clause callsitsdlf recursively and traverses thelist in its second argument; no
other clause will match since UnExp is set to the empty list. Note, that the implication“- > after binding Neg
introduces an implicit cut: this prevents generating double negation when backtracking.

Clause 5isreached if Clause 4 cannot closethe current branch. We add the current formula (alwaysalitera)
to thelist of literals on the branch and pick aformulawaiting for expansion.

lean7'P has two choice points. one is selecting between the last two clauses, which means closing a
branch or extending it. The second choice point within the third clause enumerates closing substitutions during
backtracking.

“lean” provers

largeprovers
tractability for applications

Runtime

swe /s ab re|asn

Jeajpun

use lean systems

Problem Complexity
Figure 2: Lean versus Large Deduction Systems

Although (or better: because) this prover is so smal, it shows striking performance: For example, nearly
all of Pelletier's problems (Pelletier, 1986) can be solved (the only exceptions are Problem No. 34 “Andrews
Challenge’ and No. 47 “ Schubert’s Steamroller”). Running on aSUN SPARC 10 workstationthey are provenin
less than 0.2sec, most of them in less than 0.01sec. Some of the theorems, like Problem 38, are quite hard: the
(complex) tableau-based prover 37’4P (Beckert et al., 1992), for instance, needs more than ten times as long. |If
lean7P can solve aproblem, itsperformanceisin fact comparabl e to compilation-based systems that search for
proofs by generating Prolog programs and running them, see (Stickel, 1988; Posegga, 1993a; Posegga, 1993b).

Thisshowsthat afirst-order cal culus based on free-variable semantic tableaux can be efficiently implemented
in Prolog with minima means. Moreover, lean7'P can be further improved without breaking the rules of lean
theorem proving (Beckert & Posegga, 19944a), e.g., by taking into account “universal formulag’.

3 TheldeaBehind Lean Deduction

Satchmo (Manthey & Bry, 1988) can be seen as the earliest application of what we cal lean deduction.
lean7"'Pwas written in the same spirit, but does not have much in common with Satchmo, besides that it is
aso asmall Prolog program.*

One could regard programslike Satchmo and lean7"'P asaProlog hack. However, wethink they demonstrate
more than tricky use of Prolog: they show why the philosophy of “lean theorem proving” is interesting: It is
possibleto reach considerable performance by using extremely compact (and efficient) code instead of elaborate
heuristics. One should not confuse “lean” with“simple’: each line of a“lean” prover hasto be coded with alot
of careful consideration.

It isinteresting to consider the principle of lean deduction w.r.t. applications. Deduction systems like ours
have their limits, in that many problems are solvable with complex and sophisticated theorem provers but not
with an approach likelean7'P. However, when applying deductionin practice, this might not be relevant at all:

4Both programs differ significantly from a logical, as well as from an implementation-oriented point of view: leanTP is based on
free-variable semantic tableaux and works for generd first-order formulag whereas Satchmo applies a model elimination-like calculus to
range-restricted formulaein clausal form (CNF). Satchmo extensively usesassert andr et r act for implementing first-order deduction,
whereasleanT"P relies on Prol 0g’s clause indexing scheme and backtracking mechanism, and does not change Prolog’s database at all.

Figure 2 oversimplifies but shows the point; the z-axis gives a virtual value of the complexity of a problem, and
the y-axis shows the runtime required for finding a solution. The two graphs give the performance of lean and
of large deduction systems. We are better off with a system like lean7'P below a certain degree of problem
complexity: it is compact, easier adaptable to an application, and also faster because it has less overhead than
a huge system. Between a break-even point, where sophisticated systems become faster, and the point where
small systemsfail, itisnot immediately clear which approach to favor: adaptability can still be agood argument
for lean deduction. For really hard problems, a sophisticated deduction system is the only choice. This last
area, however, could indeed be neglectable, depending on the requirements of an application: if few time can
be alowed, we cannot treat hard problems by deduction at all. Thus, lean deduction can be superior in al
cases—depending on the concrete application.

4 Conclusion & Outlook

We showed the principle of lean deduction and presented lean7'P, an instance of it implemented in standard
Prolog. It wasargued that |ean deduction can ease integrating deductioninto applications, asit offersanew basis
for implementations: Rather than going for highly-sophisticated, high performance theorem provers, a flexible
and easily adaptable approach isused. For this, calculi based on semantic tableaux seem to be better suited than
resol ution-based systems.

L ean deductionlies somewhere between L ogic Programming and Theorem Proving: itisprogramminglogics,
rather than logic programming. Both Automated Deduction and Logic Programming can obviously contribute
alot toit: experience and know-how in implementing calculi can be gained from Automated Deduction, and
Logic Programming can provide the appropriate implementation basis. We used only standard Prolog, but it is
easy to see that we could take advantage of many enhancements to Prolog. It will be subject to future research
to explorethisto a greater extend.

References

BECKERT, B., & POSEGGA, J. 1994a. lean7"'P: Lean Tableau-Based Deduction. Journal of Automated Reasoning. (to
appear).

BECKERT, B., & POSEGGA, J. 1994b. lean7"'p: lean, tableau-based theorem proving. In: Proc. CADE-12. LNCS. Nancy,
France: Springer.

BECKERT, B., GERBERDING, S., HAHNLE, R., & KERNIG, W. 1992. The Tableau-Based Theorem Prover 37’4P for Multiple-
Valued Logics. In: Proc. CADE-11. LNCS. Albany, NY: Springer.

BECKERT, B., HAHNLE, R., & ScHMITT, P. H. 1993. The Even More Liberalized §-Rule in Free Variable Semantic Tableaux.
In: Proc., 3rd Kurt Godel Colloquium (KGC). LNCS. Brno, Czech Republic: Springer.

FITTING, M. 1990. First-Order Logic and Automated TheoremProving. Springer.

LETZ, R., SCHUMANN, J.,, BAYERL, S., & BIBEL, W. 1992. SETHEO: A High-Performance Theorem Prover. Journal of
Automated Reasoning, 8(2), 183-212.

MANTHEY, R., & BRY, F. 1988. SATCHMO: A Theorem Prover Implemented in Prolog. In: Proc. CADE-9. LNCS. Argonne,
ILL: Springer.

McCuUNE, W. W. 1990. Otter 2.0 Users Guide. Tech. rept. ANL—90/9. Argonne National Laboratories, Mathematics and
Computer Science Division.

PELLETIER, F. J. 1986. Seventy-Five Problemsfor Testing Automatic Theorem Provers. Journal of Automated Reasoning, 2,
191-216.

POSEGGA, J. 1993a. Compiling the Proof Searchin Semantic Tableaux. In: 7th 1ISMIS. LNCS. Trondheim, Norway: Springer.
POSEGGA, J. 1993b. Deduktion mit Shannongraphen firr Préadikatenlogik erster Sufe. St. Augustin, Germany: infix-Verlag.

POSEGGA, J., & SCHMITT, P. H. 1995. Implementing Tableau-based Deduction. In: Handbook of Tableau-based Methodsin
Automated Deduction. Oxford University Press. (to appear).

STICKEL, M. E. 1988. A Prolog Technology Theorem Prover. In: Proc. CADE-9. LNCS. Argonne, ILL: Springer.

