L ean Theorem Proving:
Maximal Efficiency from Minimal Means

Bernhard Beckert & Joachim Posegga

Universitat Karlsruhe
Institut fir Logik, Komplexitat und Deduktionssysteme
76128 Karlsruhe, Germany
{beckert| posegga}l@ra. uka. de

Researchers in Automated Reasoning often com- ; prove((A, B), UnExp, Lits, FreeV, VLim) :- !,

plainthat there are sparse appli cations of thetech- prove(A, [B| UnExp], Lits, FreeV, VLin).

niquesthey develop. Onereason mightbethatim- , prove((A B), UnExp, Lits, FreeV, VLin) :- !,

plementation-oriented research favors huge and prove(A UnExp, Lits, FreeV, VLim,

highly complex systems. It is hard to see how to prove(B, UnExp, Lits, FreeV, VLin).

apply these besides using them as a black box. ; prove(al | (X, Fni), UnExp, Lits, FreeV, VLim :- !,

Adaptability, however, is an important criterion \+ length(FreeV, VLim,

for applying techniques; this discrepancy can be copy_ternm((X Fm, FreeV), (X1, Fnl 1, FreeV)),

overcome by using lean theorem provers. append(UnExp, [al | (X, Fr)], UnExpl),
Theideaof lean theorem provingisto achieve prove(Fnl 1, UnExpl, Lits, [X1| FreeV], VLim).

maximal efficiency from minimal means. Every . prove(Lit, _, [L|Lits],_,_) :-

possible effort is made to €liminate overhead; ba (Lit = -Neg; -Lit = Neg) ->

sed on experience in implementing (complex) de- (unify(Neg, L); prove(Lit,[],Lits,_,_)).

duction systems, only the most important and ef- s prove(Lit, [Next| UnExp], Lits, FreeV,VLin) :-

ficient techniques and methods are implemented. prove(Next, UnExp, [Lit|Lits], FreeV, VLin.

Satchmo [4] can beregarded the earliest application of |ean theorem proving. The core of Satchmo isabout 15 lines
of Prolog code, and for implementing a refutation complete version another 15 lines are required. Unfortunately,
Satchmo worksonly for range-restricted formulaein clausal form (CNF).

Another instance of |ean theorem provingislisted on the upper right. This Prolog program, called lean7'P [2],
implements acompl ete and sound theorem prover for first-order |ogic, based on free-variabl e semantic tableaux [3]
(see the appendix for a detailed description). Whilst Satchmo extensively usesassert andr etract, lean7'P
relieson Prolog’ s clause indexing scheme and backtracking mechanism; it exploitsthe power of Prolog’sinference
engine as much as possible, without changing the database.

Although (or better: because) thisprover isso small, it shows striking performance: For example, nearly all of
Pelletier’s problems [5] can be solved (the only exceptions are Problem No. 34 “Andrew’s Challenge” and No. 47
“Schubert’s Steamroller”). Running on a SUN SPARC 10 workstation they are proven in less than 0.2sec, most
of them in less than 0.01sec. Some of the theorems, like Problem 38, are quite hard: the (complex) tableau-based
prover ﬂﬂP [1], for instance, needs more than ten times as long. If lean7'P can solve a problem, its performance
is in fact comparable to compilation-based systems that search for proofs by generating Prolog programs and
running them, see [7, 6].

This shows that afirst-order cal culus based on free-variabl e semantic tableaux can be efficiently implemented
in Prolog with minimal means. Moreover, lean'P can be further improved without breaking the rules of lean
theorem proving [2], e.g., by taking into account “universal variables’.

One could regard programs like Satchmo lean

and lean7'P as a Prol og hack. However, we
think they demonstrate more than tricky use of
Prolog: they show why the philosophy of “lean
theorem proving” is interesting: It is possible
toreach considerabl e performance by using ex-
tremely compact (and efficient) codeinstead of
elaborate heurigtics. One should not confuse
“lean” with “simple”: each line of a “lean”
prover has to be coded with a lot of careful
consideration.

It isinteresting to consider the principle of
lean deductionw.r.t. applications. Deduction systemslikeourshave their limits, inthat many problemsare solvable

with complex and sophisticated theorem provers but not with an approach like lean7P. However, when applying

tractability for applications

Runtime

swesAsable|

Use lean systems
Problem Complexity

deduction in practice, this might not be relevant at al: the above figure oversimplifies but shows the point;
the z-axis gives a virtual value of the complexity of a problem, and the y-axis shows the runtime required for
finding a solution. The two graphs give the performance of lean and of large deduction systems. We are better
off with a system like lean'P below a certain degree of problem complexity: it is compact, easier adaptable
to an application, and also faster because it has less overhead than a huge system. Between a break-even point,
where sophisticated systems become faster, and the point where small systems fail, it is not immediately clear
which approach to favor: adaptability can still be a good argument for lean deduction. For redlly hard problems, a
sophisticated deduction systemisthe only choice. Thislast area, however, could indeed be neglectable, depending
on the requirements of an application: if few time can be allowed, we cannot treat hard problems by deduction at
all. Thus, lean deduction can be superior in al cases—depending on the concrete application.

References

1. B. Beckert, S. Gerberding, R. Hahnle, and W. Kernig. The tableau-based theorem prover 37’4P for multiple-valued

logics. In Proc., CADE-11, Albany/NY, LNCS. Springer, 1992.

B. Beckert and J. Posegga. leanT"P: L ean tableau-based theorem proving. Submitted, 1993.

M. Fitting. First-Order Logic and Automated TheoremProving. Springer, 1990.

4. R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog. In Proc., CADE-9, Argonne, LNCS.
Springer, 1988.

5. F. J Pelletier. Seventy-five problems for testing automatic theorem provers. JAR, 2:191-216, 1986.

6. J. Posegga. Compiling proof search in semantic tableaux. In Proc., ISMIS-7, Trondheim, Norway, LNCS. Springer,
1993.

7. M. E. Stickel. A prolog technology theorem prover. In Proc., CADE-9, Argonne, LNCS. Springer, 1988.

w N

Appendix: The Theorem Prover lean?'p

We will briefly describethe tabl eau-based theorem prover leanT'P listed at the beginning and explain its behavior. We assume
familiarity with free-variable tableaux (e.g. [3]) and the basics of programming in Prolog.

For the sake of simplicity, we restrict our considerationsto first-order formulaein Skolemized negation normal form. This
is not a serious restriction; the prover can easily be extended to full first-order logic by adding the standard tableau rules.
However, Skolemization has to be implemented carefully to achieve the highest possible performance.*

We useProlog syntax for first-order formulee atomsare Prologterms, “- ” isnegation, “; " disjunction, and“, " conjunction.
Universal quantificationisexpressedasal | (X, F) , where XisaProlog variable and F isthe scope. Thus, afirst-order formula
is represented by a Prolog term (e.g., (p(0), al I (N, (- p(N); p(s(N))))) standsfor p(0) A (Vr(=p(n) V p(s(n))))).

A single Prolog predicate pr ove(Fm , UnExp, Li t's, FreeV, VLi n) implementsour prover; it succeedsif thereisa
closed tableau for the first-order formula bound to Fml . The proof proceeds by considering individual branches (from left to
right) of atableau; the parameters Fml , UnExp, and Li t s represent the current branch: Frmi is the formula being expanded,
UnExp holds alist of formuleenot yet expanded, and Li t s is alist of the literals present on the current branch. Fr eeV isa
list of the free variables on the branch (Prolog variables, which might be bound to aterm). A positive integer VLi misused to
initiate backtracking; it is an upper bound for the length of Fr eeV.

The prover is started with thegoal prove(Fm , []1,[1.[1, VLI m), which succeedsif Fm can be proven inconsistent
without using more than VLi mfree variables on each branch.

If a conjunction “A and B” is to be expanded, then “A” is considered first and “B” is put in the list of not yet expanded
formulae(Clause 1). For disjunctions we split the current branch and prove two new goals (Clause 2).

Handling universally quantified formulae (y-formulad requires a little more effort (Clause 3). We first check the number
of free variables on the branch. Backtrackingisinitiated if the depth bound VLi mis reached. Otherwise, we generate a*“fresh”
instance of the current v-formulaal | (X, Fm) with copy_t er m Fr eeV is used to avoid renaming the free variablesin
Fm . The original v-formula is put at the end of UnExp (putting it at the top of the list destroys completeness: the same
~-formula would be used over and over again until the depth bound is reached), and the proof search is continued with the
renamed instance FM 1 as the formula to be expanded next. The copy of the quantified variable, which is now free, is added
tothelist Fr eeV.

Clause 4 closes branches; it is the only one which is not determinate. Note, that it will only be entered with a literal asits
first argument. Neg is bound to the negated literal and sound unification is tried against the literals on the current branch. The
clause calls itself recursively and traverses the list in its second argument; no other clause will match since UnExp is set to
the empty list. Note, that the implication “- >" after binding Neg introduces an implicit cut: this prevents generating double
negation when backtracking.

Clause 5 isreached if Clause 4 cannot close the current branch. We add the current formula (alwaysalliteral) to thelist of
literals on the branch and pick a formula waiting for expansion.

leanT"P hastwo choice points: oneis selecting between the last two clauses, which means closing a branch or extending
it. The second choice point within the third clause enumerates closing substitutions during backtracking.

L A Prolog program for computing an optimized negation normal form, aswell as leanT"P’s source code, is available upon
request from the authors.

