
leanEA: A Lean Evolving Algebra CompilerBernhard Beckert� and Joachim Posegga�Abstract. The Prolog program\term_expansion((define C as A with B), (C=>A:-B,!)).term_expansion((transition E if C then D),((transition E):-C,!,B,A,(transition _))) :-serialize(D,B,A).serialize((E,F),(C,D),(A,B)) :- serialize(E,C,B), serialize(F,D,A).serialize(F:=G, ([G]=>*[E],F=..[C|D],D=>*B,A=..[C|B]), asserta(A=>E)).[G|H]=>*[E|F] :- (G=\E; G=..[C|D],D=>*B,A=..[C|B],A=>E), !,H=>*F.[]=>*[].A=?B :- [A,B]=>*[D,C], D==C."implements a virtual machine for evolving algebras. It o�ers an e�cient and very 
exible frameworkfor their simulation.1 IntroductionEvolving algebras (EAs) [Gur91, Gur94] are abstract machines used mainly for formal spe-ci�cation of algorithms. The main advantage of EAs over classical formalisms for specifyingoperational semantics, like Turing machines for instance, is that they have been designed tobe usable by human beings: whilst the concrete appearance of a Turing machine has a solelymathematical motivation, EAs try to provide a user friendly and natural|though rigorous|speci�cation tool. The number of speci�cations using EAs is rapidly growing;1 examples arespeci�cations of the languages ANSI C [GH93] and ISO Prolog [BR94], and of the virtualarchitecture APE [BDGR94]. EA speci�cations have also been used to validate languageimplementations (e.g., Occam [BDR94]) and distributed protocols [GM94].There is little sense in implementing a Turing machine (besides for pedagogical reasons);however, an implementation of a machine for executing EAs can help a person working withthis formalism a lot, as the level of abstraction in an EA speci�cations is problem-oriented.This observation is of course not new and implementations of abstract machines for EAsalready exist: Angelica Kappel describes a Prolog-based implementation in [Kap93], and JimHuggins reports an implementation in C. Both implementations are quite sophisticated ando�er a convenient language for specifying EAs.In this paper, we describe an approach to implementing an abstract machine for EAswhich is di�erent, in that it emphasizes on simplicity and elegance of the implementation,rather than on sophistication. We present a simple, Prolog-based approach for executingEAs. The underlying idea is to map EA speci�cations into Prolog programs. Rather than�Universit�at Karlsruhe, Institut f�ur Logik, Komplexit�at und Deduktionssysteme, Am Fasanengarten 5,76128 Karsruhe, Germany. fbeckert;poseggag@ira.uka.de, http://i12www.ira.uka.de1See http://www.eecs.umich.edu/ealgebras for a a collection of papers on EAs.



programming a machine explicitly, we turn the Prolog system itself into a virtual machinefor EA speci�cations: this is achieved by changing the Prolog reader, such that the transfor-mation of EAs into Prolog code takes place whenever the Prolog system reads input. As aresult, evolving algebra speci�cations can be treated like ordinary Prolog programs.The main advantage of our approach, which we call leanEA, is that it is very 
exible: theProlog program we discuss in the sequel can easily be understood and extended to the needs ofconcrete speci�cation tasks (non-determinism, special handling of unde�ned functions, etc.).Furthermore, its 
exibility allows to easily embed it into, or interface it with other systems.The paper is organized as follows: in Section 2, we start with explaining how a determi-nistic, untyped EA can be programmed in leanEA; this section is written pragmatically, inthe sense that we do not present a mathematical treatment, but explain what a user has todo in order to use EAs with leanEA. The implementation of leanEA is explained in parallel.An extended example of using leanEA is given in Section 3. In Section 4 we make some re-marks regardings semantics of leanEA speci�cations. We draw conclusions from our researchin Section 5.2 Programming EAs in leanEA2.1 The Basics of leanEAAn algebra can be understood as a formalism for describing static relations between things:there is a universe consisting of the objects we are talking about, and a set of functionsmapping members of the universe to other members. Evolving algebras o�er a formalism fordescribing changes as well: an algebra can be \moved" from one state to another, in that thefunctions can be changed.leanEA is a programming language that allows to program this behaviour. From a decla-rative point of view, a leanEA program is a speci�cation of an EA. Here, however, we willnot argue declaratively, but operationally by describing how statements of leanEA set up anEA and move it from one state to another.leanEA is an extension of standard Prolog2, thus a leanEA program can be treated likeany other Prolog program, i.e., it can simply be loaded (or compiled) into the underlyingProlog system (provided leanEA itself has been loaded before).leanEA has two syntactical constructs for programming an EA: the �rst are functionde�nitions of the formdefine Location as Value with Goal.which specify the initial state of an EA.The second construct are transition de�nitions which de�ne the EA's evolving, i.e., themapping from one state to the next:transition Name if Condition then Updates.The signature of EAs is in our approach the set of all ground Prolog terms. The (single)universe, that is not sorted, consists of ground Prolog terms, too; it is not speci�ed explicitly.Also, the �nal state(s) of the EA are not given explicitly in leanEA. Instead, a state S isde�ned to be �nal if no transition is applicable in S or if a transition �res that uses unde�nedfunctions in its updates.2We assume the reader to be familiar with Prolog. An introduction can be found in [O'K90].2



The computation of the speci�ed evolving algebra is started by calling the Prolog goal\transition _".2.2 Representation of States in leanEABefore explaining how function de�nitions set up the initial state of an EA, we take a lookat the leanEA internals for representing states: A state is given by the mapping of locationsto their values, i.e., elements of the universe. A location f(u1; : : : ; un), n � 0, consists of afunctor f and arguments u1; : : : ; un that are members of the universe.Example 1 Assume, for instance, that there is a partial function denoted by f that mapsa pair of members of the universe to a single element, and that 2 and 3 are members ofthe universe. The application of f to 2 and 3 is denoted by the Prolog term f(2,3). Thislocation can either have a value in the current state, or it can be unde�ned.A state in leanEA is represented by the values of all de�ned locations. Technically, thisis achieved by de�ning a Prolog predicate =>/2,3 that behaves as follows: The goal \Loc =>Val" succeeds if Loc is bound to a ground Prolog term that is a location in the algebra, andif a value is de�ned for this location; then Val is bound to that value. The goal fails if novalue is de�ned for Loc in the current state of the algebra.To evaluate a function call like f(f(2,3),3), leanEA uses the evaluation predicate =>*/2:the relation t =>* v holds for ground Prolog terms t and v if the value of t|where t isinterpreted as a function call|is v (in the current state of the algebra).In general, the arguments of a function call are not elements of the universe (contraryto the arguments of a location). They are recursively evaluated. To make it possible to usemembers of the universe in function calls explicitly, they can be denoted by preceding themwith a backslash \\": this disables the evaluation of whatever Prolog term comes after thebackslash. We will refer to this as quoting in the sequel.For economical reasons, the predicate =>*/2 actually maps a list of function calls to alist of values. Figure 1, Lines 27{34, shows the Prolog code for =>*, which is more or lessstraightforward: if the term to be evaluated is preceded with a backslash, the term itself isthe result of the evaluation; otherwise, all arguments are recursively evaluated and the valueof the term is looked up with the predicate =>/2. Easing the evaluation of the argumentsof terms is the reason for implementing =>* over lists. The base step of the recursion is theidentity of the empty list (Line 34). =>* fails, if the value of the function call is unde�ned inthe current state.Example 2 As an example, consider again the binary function f, and assume it behaves likeaddition in the current state of the algebra. Then both the goals \[f(\1,\2)] =>* [X]"and \[f(f(\0,\1),\2)] =>* [X]" succeed with binding X to 3.The goal \[f(\f(0,1)},\2)] =>* [X]", however, will fail since addition is unde�ned on theterm f(0,1), which is not an integer.After exploring the leanEA internals for evaluating expressions, we come back to program-ming in leanEA. The rest of this section will explain the purpose of function and transitionde�nitions, and how they a�ect the internal predicates just explained.3Note, that =>/2 is de�ned to be dynamic such that it can be changed by transitions (Fig. 1, Line 8).3



2.3 Function De�nitionsThe initial state of an EA is speci�ed by a sequence of function de�nitions. They de�ne theinital values of locations by giving Prolog code to compute these values. A construct of theform define Location as Value with Goal.gives a procedure for computing the value of a location that matches the Prolog term Location:if Goal succeeds, then Value is taken as the value of this location. Function de�nitions setup the predicate => (and thus =>*) in the initial state. One function de�nition can specifyvalues for more than one functor of the algebra. It is possible in principle, although quiteinconvenient, to de�ne all functors within a single function de�nition. The value computedfor a location may depend on the additional Prolog code in a leanEA-program (code besidesfunction and transition de�nitions), since Goal may call predicates from the additional code.If several function de�nitions de�ne values for a single location, the (textually) �rst is chosen.A function de�nition is translated into the Prolog clause(Location => Value) :- Goal,!.Since each de�nition is mapped into one such clause, Goal must not contain a cut \!";otherwise, the cut might prevent Prolog from considering subsequent => clauses that matcha certain location.The translation of a de�ne statement to a => clause is implemented by modifying theProlog reader as shown in Figure 1, Lines 10{11.4Example 3 Examples for function de�nitions are:define register1 as 1 with true. Assigns the value 1 to the constant (0-ary location)register1.define X as X with (X=[]; X=[H|T]). This de�nes that all lists evaluate to themselves;thus, it is not necessary to quote lists in function calls with a backslash. Similarly,define X as X with integer(X). de�nes that Prolog integers are in the universe and eva-luate to themselves.define X+Y as Z with Z is X+Y. This de�nition shows how Prolog predicates can be usedfor calculating the value of (external) functions within an EA.The user is responsible that the Prolog goals for calculation values meet certain conditions:the computed values have to be ground Prolog terms, and the goals must either fail or succeed(i.e., terminate) for all possible instantiations that might appear.5 In addition, the goals mustnot change the Prolog data base or have any other side e�ects;6 and they must not call theleanEA internal predicates transition/1, =>*/2, and =>/2.4In most Prolog dialects (e.g., SICStus Prolog and Quintus Prolog) this is done by adding clauses for theterm expansion/2 predicate. If a term t is read, and term expansion(t,S) succeeds and binds the variable Sto a term s, then the Prolog reader replaces t by s.5Prolog exceptions that terminate execution have to be avoided as well. Thus, it is advisable to formulatethe de�nition of + as:define X+Y as Z with integer(X),integer(Y),Z is X+Y.6Side e�ects that do not in
uence other computations are harmless and often useful; an example are thede�nitions for input and output of the EA in Section 3.4



2.4 Transition De�nitionsA transition, if applicable, maps one state of an EA to a new state by changing the value ofcertain locations. Transitions have the following syntax:transition Name if Condition then Updates.whereName is an arbitrary Prolog term (usually an atom).Condition is a Prolog goal containing calls to the predicate =?/2 (see below), or combinationsthereof that are built using the logical Prolog operators \," (conjunction), \;" (dis-junction), \->" (implication), and \\+" (negation).Updates is a comma-separated sequence of updates of the formf1(r11; : : : ; r1n1) := v1,...fk(rk1; : : : ; rknk) := vkAn update fi(ri1; : : : ; rini) := vi (1 � i � k) changes the value of the location that consistsof (a) the functor fi and (b) the elements of the universe that are the values of the functioncalls ri1; : : : ; rini ; the new value of this location is determined by evaluating the functioncall vi. All function calls in the updates are evaluated simultaneously (i.e., in the old state).If one of the function calls is unde�ned, the assignment fails.If the left-hand side of an update is quoted by a preceding backslash, the update will haveno e�ect besides that the right-hand side is evaluated; the meaning of the backslash cannotbe changed.A transition is applicable (�res) in a state, if Condition succeeds. For calculating thesuccessor state, the (textually) �rst applicable transition is selected. Then the Updates ofselected transition are executed. If no transition �res or if one of the updates of the �rst �ringtransition fails, the the new state cannot be computed. In that case, the evolving algebraterminates, i.e., the current state is �nal. Else the computation continues iteratively withcalculating further states of the algebra.A transition is transformed into the clausetransition(Name) :-Condition, !,UpdateCode,transition( ).This is done by modifying the Prolog reader as shown in Figure 1, Lines 13{16. Since updatesmust be executed simultaneously, all function calls are evaluated before the �rst assignmenttakes place. The auxiliary predicate serialize/3 (Lines 18{25) serves this purpose: it splitsall updates into evaluation code, that uses the predicate =>*/2, and into code for storing thenew values by asserting an appropriate =>/2 clause.Besides logical operators, leanEA allows in the condition of transitions the pre-de�nedpredicate =?/2 (Fig. 1, Line 36) implementing the equality relation: the goal \s =? t" suc-ceeds if the function calls s and t evaluate (in the current state) to the same element of theuniverse. It fails, if one of the calls is unde�ned or if they evaluate to di�erent elements.5



It is possible to implement similar relations using the leanEA internal predicate =>* toevaluate the arguments of the relation: A predicate p(t1; : : : ; tn) (n � 0) is implemented byadding the codep(t1; : : : ; tn) :-[t1; : : : ; tn] =>* [x1; : : : ; xn],Code.to leanEA.7 Then the goal \p(t1; : : : ; tn)" can be used in conditions of transitions instead ofp0(t1; : : : ; tn) =? true", where p0 is de�ned by the function de�nitiondefine p0(x1; : : : ; xn) as true with Code.(which is the standard way of implementing relations using function de�nitions). Note, thatp fails, if one of the function calls t1; : : : ; tn is unde�ned in the current state.Example 4 The is-not-equal relation is implemented by adding the clause(A <> B) :- ([A,B] =>* [Val1,Val2], Val1 \== Val2).for the predicate <>/2 to leanEA.2.5 leanEA's OperatorsTo make it possible to use the syntax for function and transition de�nitions as describedin the previous sections, a couple of Prolog operators have to be de�ned with appropriatepreferences; they are shown in Figure 1, Lines 1{6.Note, that the preferences of operators (those pre-de�ned by leanEA as well as othersused in a leanEA program) can in
uence the semantics of Prolog terms and thus of functioncalls.3 An Example AlgebraThe following program speci�es an EA for computing n!:define state as initial with true.define readint as X with read(X), integer(X).define write(X) as X with write(X).define X as X with integer(X).define X-Y as R with integer(X),integer(Y),R is X-Y.define X*Y as R with integer(X),integer(Y),R is X*Y.transition stepif state =? \running, \+(reg1 =? 1)then reg1 := reg1-1,reg2 := (reg2*reg1).transition start7x1; : : : ; xn must be n distinct Prolog variables and must not be instantiated when =>* is called. Thus,\(A =? B) :- ([A,B] =>* [V,V])." must not be used to implement =?, but \(A =? B) :- ([A,B] =>*[V1,V2]), V1 == V2.". 6



if state =? \initialthen reg1 := readint,reg2 := 1,state := \running.transition resultif state =? \running, reg1 =? 1then reg2 := write(reg2),state := \final.The constant state is used for controlling the �ring of transitions: in the initial state, only thetransition start �res and reads an integer; it assigns the input value to reg1. The transitionstep iteratively computes the faculty of reg1's value by decrementing reg1 and storing theintermediate results in reg2. If the value of reg1 is 0, the computation is complete, and theonly applicable transition result prints reg2. After this, the algebra halts since no furthertransition �res and a �nal state is reached.4 Some Remarks Regarding SemanticsRelations There are no special pre-de�ned elements denoting true and false in the universe.The value of the relation =? (and similar pre-de�ned relations) is represented by succeeding(resp. failing) of the corresponding predicate.Unde�ned Functions Calls Similarly, there is no pre-de�ned element undef in the uni-verse, but evaluation fails if no value is de�ned. This, however, can be changed by addingdefine _ as undef with true.as the last function de�nition.Internal and External Functions In leanEA there is no formal distinction between in-ternal and external functions. Function de�nitions can be seen as giving default values tofunctions; if the default values of a function remain unchanged, then it can be regarded exter-nal (pre-de�ned). If no default value is de�ned for a certain function, it is classically internal.If the default value of a location is changed, this is what is called an external location in[Gur94]. The relation =? (and similar predicates) are static.Since there is no real distinction, it is possible to mix internal and external functions infunction calls.Importing and Discarding Elements leanEA does not have constructs for importing ordiscarding elements. The latter is not needed anyway. If the former useful for an application,the user can simulate \import v" by the \v := import", where import is de�ned by thefunction de�nitiondefine import as X with gensym(f,X).88The Prolog predicate gensym generates a new atom every time it is called.7



Local Nondeterminism If the updates of a �ring transition are inconsitent, i.e., severalupdates de�ne a new value for the same location, the �rst value is chosen (this is called localnondeterminism in [Gur94]).5 ConclusionWe presented leanEA, an approach to implementing an abstract machine for evolving algebras.The underlying idea is to modifying the Prolog reader, such that loading a speci�cation ofan evolving algebra means compiling it into Prolog clauses. Thus, the Prolog system itself isturned into an abstract machine for running EAs. The contribution of our work is twofold:Firstly, leanEA o�ers an e�cient and very 
exible framework for simulating EAs. leanEAis open, in the sense that it is easily interfaced with other applications, embedded into othersystems, or adapted to concrete needs. We believe that this is a very important feature thatis often underestimated: if a speci�cation system is supposed to be used in practice, then itmust be embedded in an appropriate system for program development. leanEA, as presentedin this paper, is surely more a starting point than a solution for this, but it demonstratesclearly one way for proceeding.Second, leanEA demonstrates that little e�ort is needed to implement a simulator forEAs. This supports the claim that EAs are a practically relevant tool, and it shows a clearadvantage of EAs over other speci�cation formalisms: these are often hard to understand, anddi�cult to deal with when implementing them. EAs, on the other hand, are easily understoodand easily used. Thus, leanEA shows that one of the major goals of EAs, namely to \bridgethe gap between computation models and speci�cation methods" (following [Gur94]), wasachieved.References[BDGR94] E. B�orger, G. Del Castillo, P. Glavan, and D. Rosenzweig. Towards a mathemati-cal speci�cation of the APE100 architecture: The APESE model. In B. Pehrsonand I. Simon, editors, Proceedings, IFIP 13th World Computer Congress, vo-lume 1, pages 396{401, Amsterdam, 1994. Elsevier.[BDR94] E. B�orger, I. Durdanovic, and D. Rosenzweig. Occam: Speci�cation and compi-ler correctness. In U. Montanari and E.-R. Olderog, editors, Proceedings, IFIPWorking Conference on Programming Concepts, Methods and Calculi (PROCO-MET 94), pages 489{508. North-Holland, 1994.[BR94] Egon B�orger and Dean Rosenzweig. A mathematical de�nition of full Prolog.Science of Computer Programming, 1994.[GH93] Yuri Gurevich and Jim Huggins. The semantics of the C programming language.In Proceedings, Computer Science Logic (CSL), LNCS 702, pages 273{309. Sprin-ger, 1993.[GM94] Yuri Gurevich and Raghu Mani. Group membership protocol: Speci�cation andveri�cation. In E. B�orger, editor, Speci�cation and Validation Methods. OxfordUniversity Press, 1994. 8



[Gur91] Yuri Gurevich. Evolving algebras. A tutorial introduction. Bulletin of the EATCS,43:264{284, 1991.[Gur94] Yuri Gurevich. Evolving algebras 1993: Lipari Guide. In E. B�orger, editor,Speci�cation and Validation Methods. Oxford University Press, 1994.[Kap93] Angelica M. Kappel. Executable Speci�cations based on Dynamic Algebras. InProceedings, 4th International Conference on Logic Programming and AutomatedReasoning (LPAR), St. Petersburg, Russia, LNCS 698, pages 229{240. Springer,July 1993.[O'K90] Richard A. O'Keefe. The Craft of Prolog. MIT Press, 1990.

9



1 :- op(1199,fy,(transition)), op(1180,xfx,(if)),2 op(1192,fy,(define)), op(1185,xfy,(with)),3 op(1190,xfy,(as)), op(1170,xfx,(then)),4 op(900,xfx,(=>)), op(900,xfx,(=>*)),5 op(900,xfx,(:=)), op(900,xfx,(=?)),6 op(100,fx,(\)).78 :- dynamic (=>)/2.910 term_expansion((define Term as Res with Code),11 ((Term => Res) :- Code,!)).1213 term_expansion((transition Name if Cond then Update),14 (transition(Name) :-15 (Cond,!,FrontCode,BackCode,transition(_)))) :-16 serialize(Update,FrontCode,BackCode).1718 serialize((A,B),(FrontA,FrontB),(BackB,BackA)) :-19 serialize(A,FrontA,BackA),20 serialize(B,FrontB,BackB).2122 serialize((LocTerm := Expr),23 ([Expr] =>* [Val], LocTerm =.. [Func|Args],24 Args =>* ArgVals, Loc =..[Func|ArgVals]),25 asserta(Loc => Val)).2627 ([H|T] =>* [HVal|TVal]) :-28 ( H = \HVal29 ; H =.. [Func|Args], Args =>* ArgVals,30 H1 =.. [Func|ArgVals], H1 => HVal31 ),!,32 T =>* TVal.3334 [] =>* [].3536 (A =? B) :- ([A,B] =>* [Val1,Val2]), Val1 == Val2.Figure 1: leanEA: the program
10


