
leanEA: A Lean Evolving Algebra CompilerBernhard Beckert1 and Joachim Posegga21 University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,76128 Karlsruhe, Germany; beckert@ira.uka.de2 Deutsche Telekom AG, Research Centre, 64276 Darmstadt, Germany;posegga@fz.telekom.deAbstract. The Prolog program\term_expansion((define C as A with B), (C=>A:-B,!)).term_expansion((transition E if C then D),((transition E):-C,!,B,A,(transition _))) :-rearrange(D,B,A).rearrange((E,F),(C,D),(A,B)) :-rearrange(E,C,B), rearrange(F,D,A).rearrange(F:=G, ([G]=>*[E],F=..[C|D],D=>*B,A=..[C|B]),asserta(A=>E)).[G|H]=>*[E|F] :-(G=\E; G=..[C|D],D=>*B,A=..[C|B],A=>E), !,H=>*F.[]=>*[].A=?B :- [A,B]=>*[D,C], D==C."implements an e�cient and
exible simulator for evolving algebra spec-i�cations.1 IntroductionEvolving algebras (EAs) (Gurevich, 1991; Gurevich, 1995) are abstract machinesused mainly for formal speci�cation of algorithms. The main advantage of EAsover classical formalisms for specifying operational semantics, like Turing ma-chines for instance, is that they have been designed to be usable by humanbeings: whilst the concrete appearance of a Turing machine has a solely math-ematical motivation, EAs try to provide a user friendly and natural|thoughrigorous|speci�cation tool. The number of speci�cations using EAs is rapidlygrowing; examples are speci�cations of the languages ANSI C (Gurevich & Hug-gins, 1993) and ISO Prolog (B�orger & Rosenzweig, 1994), and of the virtualarchitecture APE (B�orger et al., 1994b). EA speci�cations have also been usedto validate language implementations (e.g., Occam (B�orger et al., 1994a)) anddistributed protocols (Gurevich & Mani, 1995).When working with EAs, it is very handy to have a simulator at hand for run-ning the speci�ed algebras. This observation is of course not new and implemen-tations of abstract machines for EAs already exist: Angelica Kappel describesa Prolog-based implementation in (Kappel, 1993), and Jim Huggins reports animplementation written in C. Both implementations are quite sophisticated ando�er a convenient language for specifying EAs.

In this paper, we describe a new approach to implementing a simulator forevolving algebras; we focus on deterministic, sequential EAs. Our implementa-tion di�ers from previous approaches in that it emphasizes on simplicity,
ex-ibility and elegance of the implementation, rather than on sophistication. Wepresent a simple, Prolog-based approach for executing EAs. The underlying ideais to compile EA speci�cations into Prolog programs. Rather than programminga machine explicitly, we turn the Prolog system itself into a virtual machine forEA speci�cations: this is achieved by changing the Prolog reader, such that thetransformation of EAs into Prolog code takes place whenever the Prolog sys-tem reads input. As a result, evolving algebra speci�cations can be treated likeordinary Prolog programs.The main advantage of our approach, which we call leanEA, is its
exibility:the Prolog program we discuss in the sequel3 can easily be understood andextended to the needs of concrete speci�cation tasks (non-determinism, specialhandling of unde�ned functions, etc.). Furthermore, its
exibility allows to easilyembed it into, or interface it with other systems.The paper is organized as follows: Section 2 brie
y explains how a determin-istic, untyped EA can be programmed in leanEA; no mathematical treatment isgiven in this section, but it is explained what a user has to do in order to use EAswith leanEA. The implementation of the basic version of leanEA is explained inparallel. This basic version is characterized mathematically in Section 4 by givingthe semantics of leanEA programs; Subsection 4.6 summarizes the di�erences tothe standard semantics of EAs, as de�ned in the Lipari Guide (Gurevich, 1995).In Section 5, a number of purely syntactical extensions are added for thesake of programming convenience, and more semantical extensions like includ-ing typed algebras, or implementing non-deterministic evolving algebras are dis-cussed. Section 6 introduces modularized EAs, where Prolog's concept of mod-ules is used to structure the speci�ed algebras. Finally, we draw conclusions fromour research in Section 7.Through the paper we assume the reader to be familiar with the basic ideasbehind evolving algebras, and with the basics of Prolog (see e.g. (O'Keefe, 1990)).2 leanEA: the Program and its UseAn algebra can be understood as a formalism for describing static relations be-tween things: there is a universe consisting of the objects we are talking about,and a set of functions mappingmembers of the universe to other members.Evolv-ing algebras o�er a formalism for describing changes as well: an evolving algebra\moves" from one state to another, while functions are changed. leanEA is aprogramming language that allows to program this behavior. From a declarativepoint of view, a leanEA program is a speci�cation of an EA. In this section, weexplain the implementation of leanEA, and how it is used to specify EAs.3 The program is available on the World Wide Web. The URL for the leanEA homepage is http://i12www.ira.uka.de/leanea.

2.1 OverviewleanEA is an extension of standard Prolog, thus a leanEA program can be treatedlike any other Prolog program, i.e., it can be loaded (or compiled) into theunderlying Prolog system (provided leanEA itself has been loaded before).leanEA has two syntactical constructs for programming an EA: these arefunction de�nitions of the formdefine Location as Value with Goal.that specify the initial state of an EA, and transition de�nitionstransition Name if Condition then Updates.de�ning the EA's evolving, i.e., the mapping from one state to another.The syntax of these syntactical constructs is implemented by a couple ofProlog operators as shown in Figure 1, Lines 1{6.4The signature of EAs is in our approach the set of all ground Prolog terms.The (single) universe, that is not sorted, consists of ground Prolog terms, too;it is not speci�ed explicitly.Furthermore, the �nal state(s) of the EA are not given explicitly in leanEA;a state S is de�ned to be �nal if no transition is applicable in S or if a transition�res that uses unde�ned functions in its updates.A speci�ed evolving algebra is started by calling the Prolog goaltransition _leanEA then recursively searches for applicable transitions and executes themuntil no more transitions are applicable, or an unde�ned term is evaluated.2.2 Representation of States in leanEABefore explaining how function de�nitions set up the initial state of an EA, weconsider the leanEA internals for representing states: A state is given by themapping of locations to their values, i.e., elements of the universe. A locationf(u1; : : : ; un), n � 0, consists of a functor f and arguments u1; : : : ; un that aremembers of the universe.Example 1. Assume that f denotes a partial function mapping a pair of membersof the universe to a single element, and that 2 and 3 are members of the universe.The application of f to 2 and 3 is denoted by the Prolog term f(2,3). Thislocation either has a value in the current state, or it is unde�ned.Technically, this mapping of locations to values is implemented with a dy-namic Prolog predicate =>/2, (cf. Fig. 1, Line 7) that behaves as follows: Thegoal \Loc => Val" succeeds if Loc is bound to a ground Prolog term that is a4 Note, that the precedences of operators (those pre-de�ned by leanEA as well as othersused in a leanEA program) can in
uence the semantics of Prolog goals included inleanEA programs.

1 :- op(1199,fy,(transition)), op(1180,xfx,(if)),2 op(1192,fy,(define)), op(1185,xfy,(with)),3 op(1190,xfy,(as)), op(1170,xfx,(then)),4 op(900,xfx,(=>)), op(900,xfx,(=>*)),5 op(900,xfx,(:=)), op(900,xfx,(=?)),6 op(100,fx,(\)).7 :- multifile (=>)/2.8 :- dynamic (=>)/2.9 term_expansion((define Location as Value with Goal),10 ((Location => Value) :- Goal,!)).11 term_expansion((transition Name if Condition then Updates),12 (transition(Name) :-13 (Condition,!,14 FrontCode,BackCode,transition(_)))) :-15 rearrange(Updates,FrontCode,BackCode).16 rearrange((A,B),(FrontA,FrontB),(BackB,BackA)) :-17 rearrange(A,FrontA,BackA),18 rearrange(B,FrontB,BackB).19 rearrange((LocTerm := Expr),20 ([Expr] =>* [Val], LocTerm =.. [Func|Args],21 Args =>* ArgVals, Loc =..[Func|ArgVals]),22 asserta(Loc => Val)).23 ([H|T] =>* [HVal|TVal]) :-24 (H = \HVal25 ; H =.. [Func|Args], Args =>* ArgVals,26 H1 =.. [Func|ArgVals], H1 => HVal27),!,28 T =>* TVal.29 [] =>* [].30 (S =? T) :- ([S,T] =>* [Val1,Val2]), Val1 == Val2.Fig. 1. leanEA: the Program

location in the algebra, and if a value is de�ned for this location; then Val isbound to that value. The goal fails if no value is de�ned for Loc in the currentstate of the algebra.To evaluate a function call like, for example, f(f(2,3),3), leanEA uses =>*/2as an evaluation predicate: the relation t =>* v holds for ground Prolog termst and v if the value of t|where t is interpreted as a function call|is v (in thecurrent state of the algebra).In general, the arguments of a function call are not necessarily elements of theuniverse (contrary to the arguments of a location), but are expressions that arerecursively evaluated. For the sake of convenience, one can refer to members ofthe universe in function calls explicitly: these are denoted by preceding them witha backslash \\"; no evaluation of whatever Prolog term comes after a backslashis performed. We will refer to this as quoting in the sequel.For economical reasons, the predicate =>*/2 actually maps a list of functioncalls to a list of values. Figure 1, Lines 23{28, shows the Prolog code for =>*:if the term to be evaluated (bound to the �rst argument of the predicate) ispreceded with a backslash, the term itself is the result of the evaluation; other-wise, all arguments are recursively evaluated and the value of the term is lookedup with the predicate =>/2. Easing the evaluation of the arguments of terms isthe reason for implementing =>* over lists. The base step of the recursion is theidentity of the empty list (Line 29). =>* fails if the value of the function call isunde�ned in the current state.Example 2. Consider again the binary function f, and assume it behaves likeaddition in the current state of the algebra. Then both the goals[f(\1,\2)] =>* [X] and [f(f(\0,\1),\2)] =>* [X]succeed with binding X to 3. The goals[f(\f(0,1),\2)] =>* [X] and [f(f(0,1),\2)] =>* [X]will fail since, in the �rst case, the term f(0,1) is not an integer but a location,and, in the second case, 0 and 1 are unde�ned constants (0-ary functions).2.3 Function De�nitionsThe initial state of an EA is speci�ed by a sequence of function de�nitions. Theyde�ne the initial values of locations by providing Prolog code to compute thesevalues. A construct of the formdefine Location as Value with Goal.gives a procedure for computing the value of a location that matches the Prologterm Location: if Goal succeeds, then Value is taken as the value of this location.Function de�nitions set up the predicate => (and thus =>*) in the initial state.One function de�nition can specify values for more than one functor of thealgebra. It is possible in principle, although quite inconvenient, to de�ne all

functors within a single function de�nition. The value computed for a locationmay depend on the additional Prolog code in a leanEA-program (code besidesfunction and transition de�nitions), since Goal may call any Prolog predicate.If several function de�nitions de�ne values for a single location, the (textually)�rst de�nition is chosen.leanEA translates a function de�nition into a Prolog clause(Location => Value) :- Goal,!.Since each de�nition is mapped into one such clause, Goal must not contain acut \!"; otherwise, the cut might prevent Prolog from considering subsequent=> clauses that match a certain location.Technically, the translation of de�ne statements to a => clauses is imple-mented by modifying the Prolog reader as shown in Figure 1, Lines 9{10.5Examples for Function De�nitionsConstants The following de�nition assigns the value 1 to the constant reg1:define reg1 as 1 with true.Prolog Data Types Prolog Data Types are easily imported into the algebra. Hereis how to introduce lists:define X as X with X=[]; X=[H|T].This causes all lists to evaluate to themselves; thus a list in a transition refersto the same list in the universe and needs not to be quoted. Similarly,define X as X with integer(X).introduces Prolog's integers.Evaluating Functions by Calling Prolog Predicates The following example inter-faces Prolog predicates with an evolving algebra:define X+Y as Z with Z is X+Y.define append(X,Y) as Result with append(X,Y,Result).Input and Output Useful de�nitions for input and output aredefine read as X with read(X).define output(X) as X with write(X).Whilst the purpose of read should be immediate, the returning of the argumentof output might not be clear: the idea is that the returned value can be used inexpressions. That is, an expression of the form f(\1,output(\2)) will print 2while it is evaluated.5 In most Prolog dialects (e.g., SICStus Prolog and Quintus Prolog) the Prolog readeris changed by adding clauses for the term expansion/2 predicate. If a term t is read,and term expansion(t,S) succeeds and binds the variable S to a term s, then theProlog reader replaces t by s.

Necessary Conditions for Function De�nitions The design of leanEA con-strains function de�nitions in several ways; it is important to understand theserestrictions, since they are not checked by leanEA. Thus, the programmer of anEA has to ensure that:1. All computed values are ground Prolog terms, and the goals for computingthem either fail or succeed (i.e.: terminate) for all possible instantiations thatmight appear. Prolog exceptions that terminate execution must be avoidedas well.62. The goals do not change the Prolog data base or have any side e�ects a�ect-ing other computations.3. The goals do not (syntactically) contain a cut \!".4. The goals do not call the leanEA internal predicates transition/1, =>*/2,and =>/2.Violating these rules does not necessarily mean that leanEA will not functionproperly; however, unless one is very well aware of what he/she is doing, westrongly recommend against it.2.4 Transition De�nitionsTransitions specify the evolving of an EA. An applicable transition maps onestate of an EA to a new state by changing the value of locations. Transitions arespeci�ed as:7transition Name if Condition then Updates.whereName is an arbitrary Prolog term (usually an atom).Condition is a Prolog goal that determines when the transition is applicable.It usually contains calls to the predicate =?/2 (see Section 2.4 below), andoften uses the logical Prolog operators \," (conjunction), \;" (disjunction),\->" (implication), and \\+" (negation).Updates is a comma-separated sequence of updates of the formf1(r11; : : : ; r1n1) := v1,...fk(rk1; : : : ; rknk) := vk6 De�ning + by \define X+Y as Z with integer(X), integer(Y), Z is X+Y." is,for instance, safe in this respect.7 Guarded multi-updates (if-then-else constructs that may be nested) make EAs moreconvenient; leanEA can be extended to allow guarded multi-updates by changing thepredicate rearrange such that it (recursively) translates guarded multi-updates intoProlog's if-then-else.

An update fi(ri1; : : : ; rini) := vi (1 � i � k) changes the value of the locationthat consists of (a) the functor fi and (b) the elements of the universe that arethe values of the function calls ri1; : : : ; rini; the new value of this location isdetermined by evaluating the function call vi. All function calls in the updatesare evaluated simultaneously (i.e., in the old state). If one of the function callsis unde�ned, the assignment fails.8A transition is applicable (�res) in a state, if Condition succeeds. For calcu-lating the successor state, the (textually) �rst applicable transition is selected,and its Updates are executed. If no transition �res or if one of the updates ofthe �rst �ring transition fails, the new state cannot be computed. In that case,the evolving algebra terminates, i.e., the current state is �nal. Otherwise, thecomputation continues iteratively with calculating further states of the algebra.Technically, leanEA maps a transition of the above form into a Prolog clausetransition(Name) :-Condition, !,UpdateCode,transition().Likewise to function de�nitions, this is achieved by modifying the Prolog readeras shown in Figure 1, Lines 11{15.Since the updates in transitions must be executed simultaneously, all functioncalls have to be evaluated before the �rst assignment takes place. The auxiliarypredicate rearrange/3 (Lines 16{22) serves this purpose: it splits all updatesinto evaluation code, that uses the predicate =>*/2, and into subsequent code forstoring the new values by asserting an appropriate =>/2 clause.9 The sequentialcode generated by rearrange thus simulates a simultaneous update.The Equality Relation Besides logical operators, leanEA allows in the con-dition of transitions the use of the pre-de�ned predicate =?/2 (Fig. 1, Line 30)implementing the equality relation: the goal \s =? t" succeeds if the functioncalls s and t evaluate (in the current state) to the same element of the universe.It fails, if one of the calls is unde�ned or if they evaluate to di�erent elements.2.5 An Example AlgebraWe conclude this section with an example for an evolving algebra: Figure 2shows a leanEA program which is the speci�cation of an EA for computing n!.8 If the left-hand side of an update is quoted by a preceding backslash, the update willhave no e�ect besides that the right-hand side is evaluated, i.e., attempts to changethe meaning of the backslash are ignored.9 To retract the old value from the database and, thus, reduce the memory usageduring run-time, one could insert the line(clause((Loc =>),true),retract(Loc =>) ; true),between Lines 21 and 22. (Note, that the default values specifying the initial state willnot be retracted, since these clauses have a non-empty body.) We favored, however,the smaller and slightly faster version that does not retract old values.

The constant state is used for controlling the �ring of transitions: in the initialstate, only the transition start �res and reads an integer; it assigns the inputvalue to reg1. The transition step iteratively computes the factorial of reg1'svalue by decrementing reg1 and storing the intermediate results in reg2. Ifthe value of reg1 is 1, the computation is complete, and the only applicabletransition result prints reg2. After this, the algebra halts since no furthertransition �res and a �nal state is reached.define state as initial with true.define readint as X with read(X), integer(X).define write(X) as X with write(X).define X as X with integer(X).define X-Y as R with integer(X),integer(Y),R is X-Y.define X*Y as R with integer(X),integer(Y),R is X*Y.transition stepif state =? \running, \+(reg1 =? 1)then reg1 := reg1-1,reg2 := (reg2*reg1).transition startif state =? \initialthen reg1 := readint,reg2 := 1,state := \running.transition resultif state =? \running, reg1 =? 1then reg2 := write(reg2),state := \final.Fig. 2. An Evolving Algebra for Computing n! (in leanEA Syntax)3 Some Hints for ProgrammersFinal States. The basic version of leanEA does not have an explicit constructfor specifying the �nal state of an EA; instead, the algebra is in a �nal stateif no more transition is applicable. A more declarative way to halt an algebrais to evaluate an unde�ned expression, like \stop := stop".Tracing Transitions. Programming in leanEA|like in any other program-ming language|usually requires debugging. For tracing transitions, it isoften useful to include calls to write or trace at the end of conditions: thecode will be executed whenever the transition �res and it allows to provideinformation about the state of the EA.

Tracing the Evaluation of Terms. A de�nition of the formdefine f(X) as with write(f(X)), fail.will trace the evaluation of functions: if the above function de�nition precedesthe \actual" de�nition of f(X), it will print the expression to be evaluatedwhenever the evaluation takes place.Examining States. All de�ned values of locations in the current state can belisted by calling the Prolog predicate listing(=>). Note, that this does notshow any default values.4 SemanticsThis section formalizes the semantics of leanEA programs, in the sense thatit explains in detail which evolving algebra is speci�ed by a concrete leanEA-program.De�nition1. Let P be a leanEA-program; then DP denotes the sequence offunction de�nitions in P (in the order in which they occur in P), TP denotes thesequence of transition de�nitions in P (in the order in which they occur in P),and CP denotes the additional Prolog-code in P , i.e., P without DP and TP .The function de�nitions DP (that may call predicates from CP) specify theinitial state of an evolving algebra, whereas the transition de�nitions specify howthe algebra evolves from one state to another.The signature of evolving algebras is in our approach the set GTerms ofall ground Prolog terms. The (single) universe, that is not sorted, is a subsetof GTerms.De�nition2. GTerms denotes the set of all ground Prolog terms; it is thesignature of the evolving algebra speci�ed by a leanEA program.We represent the states S of an algebra (including the initial state S0) by anevaluation function [[]]S , mapping locations to the universe. Section 4.1 explainshow [[]]S0 , i.e., the initial state, is derived from the function de�nitions D. Inwhat way the states evolve according to the transition de�nitions in T (which ismodeled by altering [[]]) is the subject of Section 4.3.The �nal state(s) are not given explicitly in leanEA. Instead, a state S isde�ned to be �nal if no transition is applicable in S or if a transition �res thatuses unde�ned function calls in its updates (Def. 8).104.1 Semantics of Function De�nitionsA function de�nition \define F as R with G." gives a procedure for calcu-lating the value of a location f(t1; : : : ; tn) (n � 0). Procedurally, this works by10 The user may, however, explicitly terminate the execution of a leanEA-program (seeSection 3).

instantiating F to the location and executing G. If G succeeds, then R is takenas the value of the location. If several de�nitions provide values for a single lo-cation, we use the �rst one. Note, that the value of a location depends on theadditional Prolog code CP in a leanEA-program P , since G may call predicatesfrom CP .De�nition3. Let D be a sequence of function de�nitions and C be additionalProlog code.A function de�nitionD = define F as R with G.in D is succeeding for t 2 GTerms with answer r = R� , if1. there is a (most general) substitution � such that F� = t;2. G� succeeds (possibly using predicates from C);3. � is the answer substitution of G� (the �rst answer substitution if G� is notdeterministic).If no matching substitutions � exists or if G� fails, D is failing for t.The partial function [[]]D;C : GTerms �! GTermsis de�ned by [[t]]D;C = r ;where r is the answer (for t) of the �rst function de�nition D 2 D succeedingfor t. If no function de�nition D 2 D is succeeding for t, then [[t]]D;C is unde�ned.The following de�nition formalizes the conditions function de�nitions haveto meet (see Section 2.3):De�nition4. A sequence D of function de�nitions and additional Prolog code Care well de�ning if1. no function de�nition Di 2 D is for some term t 2 GTerms neither succeed-ing nor failing (i.e., not terminating), unless there is a de�nition Dj 2 D,j < i, in front of Di that is succeeding for t;2. if D 2 D is succeeding for t 2 GTerms with answer r, then r 2 GTerms;3. D does not (syntactically) contain a cut \!";114. the goals in D and the code C(a) do not change the Prolog data base or have any other side e�ects;(b) do not call the internal predicates transition/1, =>*/2, and =>/2.Proposition5. If a sequence D of function de�nitions and additional Prologcode C are well de�ning, then [[]]D;C is a well de�ned partial function on GTerms(a term mapping).11 Prolog-negation and the Prolog-implication \->" are allowed.

A well-de�ned term mapping [[]] is the basis for de�ning the evaluation func-tion of an evolving algebra, that is the extension of [[]] to function calls that arenot a location:De�nition6. Let [[]] be a well de�ned term mapping. The partial function[[]]� : GTerms �! GTermsis de�ned for t = f(r1; : : : ; rn) 2 GTerms (n � 0) as follows:[[t]]� = � s if t = \s[[f([[r1]]�; : : : ; [[rn]]�)]] otherwise4.2 The UniverseA well-de�ned termmapping [[]]DP ;CP enumerates the universe UP of the evolvingalgebra speci�ed by P ; in addition, UP contains all quoted terms (without thequote) occurring in P :De�nition7. If P is a leanEA program, and [[]]DP ;CP is a well de�ned termmapping, then the universe UP is the union of the co-domain of [[]]DP ;CP , i.e.,[[GTerms]]DP ;CP = f[[t]]DP ;CP : t 2 GTerms, [[t]]DP ;CP #g ;and the set ft : t 2 GTerms, \t occurs in Pg :Note, that (obviously) the co-domain of [[]]� is a subset of the universe, i.e.,[[GTerms]]�DP ;CP � UP :The universe UP as de�ned above is not necessarily decidable. In practice,however, one usually uses a decidable universe, i.e., a decidable subset of GTermsthat is a superset of UP (e.g. GTerms itself). This can be achieved by addingfunction de�nitions and thus expanding the universe.124.3 Semantics of Transition De�nitionsAfter having set up the semantics of the function de�nitions, which constitutethe initial evaluation function and thus the initial state of an evolving algebra,we proceed with the dynamic part.The transition de�nitions TP of a leanEA-program P specify how a state Sof the evolving algebra represented by P maps to a new state S0.12 It is also possible to change De�nition 7; that, in its current form, de�nes the minimalversion of the universe.

De�nition8. Let S be a state of an evolving algebra corresponding to a wellde�ned term mapping [[]]S , and let T be a sequence of transition de�nitions.A transitiontransition Name if Condition then Updatesis said to �re, if the Prolog goal Condition succeeds in state S (possibly usingthe predicate =?/2, Def. 10).Let f1(r11; : : : ; r1n1) := v1...fk(rk1; : : : ; rknk) := vk(k � 1; ni � 0) be the sequence Updates of the �rst transition in T that �res.Then the term mapping [[]]S0 and thus the state S0 are de�ned by[[t]]S0 =8<: [[vi]]�S if there is a smallest i, 1 � i � k,such that t = fi([[ri1]]�S ; : : : ; [[rini]]�S)[[t]]S otherwiseIf [[]]�S is unde�ned for one of the terms rij or vi, 1 � i � k, 1 � j � ni of the�rst transition in T that �res, or if no transition �res, then the state S is �naland [[]]S0 is unde�ned.Proposition9. If [[]]S0 is a well de�ned term mapping, then [[]]S0 (as de�ned inDef. 8) is well de�ned.4.4 The Equality RelationBesides \," (and), \;" (or), \\+" (negation), and \->" (implication) leanEA al-lows in conditions of transitions the pre-de�ned predicate =?/2, that implementsthe equality relation for examining the current state:De�nition10. In a state S of an evolving algebra (that corresponds to the wellde�ned term mapping [[]]S), for all t1; t2 2 GTerms, the relation t1 =? t2 holdsi� [[t1]]�S # and [[t2]]�S #, and [[t1]]�S = [[t2]]�S .4.5 Runs of leanEA-programsA run of a leanEA-programP is a sequence of states S0; S1; S2; : : : of the speci�edevolving algebra. Its initial state S0 is given by[[]]S0 = [[]]DP ;CP(Def. 6). The following states are determined according to De�nition 8 and usingSn+1 = (Sn)0 (n � 0) :This process continues iteratively until a �nal state is reached.

Proposition11. leanEA implements the semantics as described in this section;i.e., provided [[]]DP ;CP is well de�ned,1. in each state S of the run of a leanEA-program P the goal \[t] =>* [X]"succeeds and binds the Prolog variable X to u i� [[t]]�S = u;2. the execution of P terminates in a state S i� S is a �nal state;3. the predicate =? implements the equality relation.4.6 Peculiarities of leanEA's SemanticsThe Lipari Guide (Gurevich, 1995) de�nes what is usually understood as thestandard semantics of EAs. Although leanEA is oriented at this semantics, thereare a couple of details where leanEA's semantics di�er. The reason for the di�er-ences is not that the standard semantics could not be implemented, but that wedecided to compromise for the sake of elegance and clearness of our program.leanEA complies with the semantics given in (Gurevich, 1995) with the fol-lowing exceptions:Relations There are no special pre-de�ned elements denoting true and falsein the universe. The value of the relation =? (and similar pre-de�ned relations,see Section 5.2) is represented by succeeding (resp. failing) of the correspondingpredicate.Unde�ned Function Calls Similarly, there is no pre-de�ned element undefin the universe, but evaluation fails if no value is de�ned. This, however, can bechanged by adding as the last function de�nition:define _ as undef with true.Internal and External Functions In leanEA there is no formal distinctionbetween internal and external functions. Function de�nitions can be seen asgiving default values to functions; if the default values of a function remainunchanged, then it can be regarded external (pre-de�ned). If no default valueis de�ned for a certain function, it is classically internal. If the default value ofa location is changed, this is what is called an external location in (Gurevich,1995). The relation =? (and similar predicates) are static.Since there is no real distinction, it is possible to mix internal and externalfunctions in function calls.External functions are reiterated (i.e., evaluated multiply in one state) ifthey occur multiply in a term being evaluated. If an external function is non-deterministic (an oracle), this can lead to inconsistencies and should be avoided.

Importing and Discarding Elements leanEA does not have constructs forimporting or discarding elements. The latter is not needed anyway. If this shouldbe needed for an application, \import v" can be simulated by \v := import",where import is de�ned by the function de�nitiondefine import as X with gensym(f,X).13Local Non-determinism If the updates of a �ring transition are inconsistent,i.e., several updates de�ne a new value for the same location, the �rst value ischosen (this is called local non-determinism in (Gurevich, 1995)).5 Extensions5.1 The let InstructionIt is often useful to use local abbreviations in a transition. The possibility to doso can be implemented by adding a clauserearrange((let Var = Term),([Term] =>* [Val],Var = \Val), true).to leanEA.14 Then, in addition to updates, instructions of the formlet x = tcan be used in the update part of transitions, where x is a Prolog variable and ta Prolog term. This allows to use x instead of t in subsequent updates (and letinstructions) of the same transition. A variable x must be de�ned only once in atransition using let. Note, that x is bound to the quoted term \[[t]]�; thus, usingan x inside another quoted term may lead to undesired results (see the �rst partof Example 3).Example 3. \let X = \a, reg := \f(X)" is equivalent to \reg := \f(\a)."(which is di�erent from \reg := \f(a).").let X = \b,let Y = f(X,X),reg1 := g(Y,Y),reg2(X) := X. is equivalent to reg1 := g(f(\b,\b),f(\b,\b)),reg2(\b) := \b.Using let not only shortens updates syntactically, but also enhances e�-ciency, because function calls that occur multiply in an update do not have tobe re-evaluated.13 The Prolog predicate gensym generates a new atom every time it is called.14 And de�ning the operator let by adding \:- op(910,fx,(let)).".

5.2 Additional RelationsThe Prolog predicate =?, that implements the equality relation (Def. 10), is theonly one that can be used in the condition of a transition (besides the logicaloperators). It is possible to implement similar relations using the leanEA internalpredicate =>* to evaluate the arguments of the relation:A predicate p(t1; : : : ; tn), n � 0, is implemented by adding the codep(t1; : : : ; tn) :- [t1; : : : ; tn] =>* [x1; : : : ; xn], Code.to leanEA.15 Then the goal \p(t1; : : : ; tn)" can be used in conditions of tran-sitions instead of p0(t1; : : : ; tn) =? true", where p0 is de�ned by the functionde�nitiondefine p0(x1; : : : ; xn) as true with Code.(which is the standard way of implementing relations using function de�nitions).Note, that p fails, if one of [[t1]]�S ; : : : ; [[tn]]�S is unde�ned in the current state S.Example 4. The predicate <> implements the is-not-equal relation: t1 <> t2 suc-ceeds i� [[t1]]� #, [[t2]]� #, and [[t1]]� 6= [[t2]]�. <> is implemented by adding thefollowing clause to leanEA:(A <> B) :- ([A,B] =>* [Val1,Val2], Val1 \== Val2).5.3 Non-determinismIt is not possible to de�ne non-deterministic EAs in the basic version of leanEA.If more than one transition �re in a state, the �rst is chosen.This behavior can be changed|such that non-deterministic EAs can beexecuted|in the following way:{ The cut from Line 13 has to be removed. Then, further �ring transitions areexecuted if backtracking occurs.{ A \retract on backtrack" must be added to the transitions for removingthe e�ect of updates and restoring the previous state if backtracking occurs.Line 22 has to be changed to(asserta(Loc => Val) ; (retract(Loc => Val),fail)).Now, leanEA will enumerate all possible sequences of transitions. Backtrack-ing is initiated, if a �nal state is reached, i.e., if the further execution of a leanEAprogram fails.The user has to make sure that there is no in�nite sequence of transitions(e.g., by imposing a limit on the length of sequences).Note, that usually the number of possible transition sequences grows expo-nentially in their length, which leads to an enormous search space if one triesto �nd a sequence that ends in a \successful" state by enumerating all possiblesequences.15 x1; : : : ; xn must be n distinct and uninstantiated Prolog variables when =>* is called.Thus, \(S =? T) :- ([S,T] =>* [V1,V2]), V1 == V2.", rather than \(S =? T):- ([S,T] =>* [V,V])" is needed for implementing \=?".

6 Modularized Evolving AlgebrasOne of the main advantages of EAs is that they allow a problem-oriented for-malization. This means, that the level of abstraction of an evolving algebra canbe chosen as needed. In the example algebra for computing n! in Section 2.5 forinstance, we simply used Prolog's arithmetics over integers and did not botherto specify what multiplication or subtraction actually means. In this section, wedemonstrate how such levels of abstraction can be integrated into leanEA; thebasic idea behind it is to exploit the module-mechanism of the underlying Prologimplementation.6.1 The Algebra Declaration StatementIn the modularized version of leanEA, each speci�cation of an algebra will becomea Prolog module; therefore, each algebra must be speci�ed in a separate �le. Forthis, we add an algebra declaration statement that looks as follows:algebra Name(In,Out)using [Include-List]start Updatesstop Guard.Name is an arbitrary Prolog atom that is used as the name of the predicate forrunning the speci�ed algebra, and as the name of the module. It is requiredthat Name.pl is also the �le name of the speci�cation and that the algebra-statement is the �rst statement in this �le.In, Out are two lists containing the input and output parameters of the algebra.The elements of Out will be evaluated if the algebra reaches a �nal state (seebelow).Include-List is a list of names of sub-algebras used by this algebra.Updates is a list of updates; it speci�es that part of the initial state of the algebra(see Section 2.4), that depends on the input In.Guard is a condition that speci�es the �nal state of the evolving algebra. IfGuard is satis�ed in some state, the computation is stopped and the algebrais halted (see Section 2.4).Example 5. As an example consider the algebra statement in Figure 3: an algebrafak is de�ned that computes n!. This is a modularized version of the algebrashown in Section 2.5. The transitions start and result are now integrated intothe algebra statement.The last function de�nition in the algebra is of particular interest: it showshow the sub-algebra mult, included by the algebra statement, is called. Wherethe earlier algebra for computing n! in Section 2.5 used Prolog's built-in multi-plication, a sub-algebra for carrying out multiplication is called. Its de�nitioncan be found in Figure 4.

algebra fak([N],[reg2])using [mult]start reg1 := N,reg2 := 1stop reg1 =? 1.define readint as X with read(X), integer(X).define write(X) as X with write(X).define X as X with integer(X).define X-Y as R with integer(X),integer(Y),R is X-Y.define X*Y as R with mult([X,Y],[R]).transition stepif \+(reg1 =? 1)then reg1 := (reg1-1),reg2 := (reg2*reg1).Fig. 3. A Modularized EA for Computing n!algebra mult([X,Y],[result])using []start reg1 := X,reg2 := Y,result := 0stop reg1 =? 0.define write(X) as X with write(X).define X as X with integer(X).define X+Y as R with integer(X),integer(Y),R is X+Y.define X-Y as R with integer(X),integer(Y),R is X-Y.transition stepif \+(reg1 =? 0)then reg1 := (reg1-1),result := (result+reg2).Fig. 4. A Modularized EA for Multiplication6.2 Implementation of Modularized EAsThe basic di�erence between the basic version of leanEA and the modularizedversion is that the algebra-statement at the beginning of a �le containing anEA speci�cation is mapped into appropriate module and use module statementsin Prolog. Since the algebra will be loaded within the named module, we alsoneed an evaluation function that is de�ned internally in this module. This allowsto use functions with the same name in di�erent algebras without interference.Figure 5 lists the modularized program. It de�nes four additional opera-

1 :- op(1199,fy,(transition)), op(1180,xfx,(if)),2 op(1192,fy,(define)), op(1185,xfy,(with)),3 op(1190,xfy,(as)), op(1170,xfx,(then)),4 op(900,xfx,(=>)), op(900,xfx,(=>*)),5 op(900,xfx,(:=)), op(900,xfx,(=?)),6 op(100,fx,(\)), op(1199,fx,(algebra)),7 op(1190,xfy,(start)), op(1170,xfx,(stop)),8 op(1180,xfy,(using)).9 term_expansion((algebra Head using Include_list10 start Updates stop Guard),11 [(:- module(Name,[Name/2])),12 Name:(:- use_module(Include_list)),13 (:- dynamic(Name:(=>)/2)),14 Name:(([H|T] =>* [HVal|TVal]) :-15 (H = \HVal16 ; H =.. [Func|Args], Args =>* ArgVals,17 H1 =.. [Func|ArgVals], H1 => HVal),!,18 T =>* TVal),19 Name:([] =>* []),20 Name:((A =? B) :- ([A,B] =>* [Val1,Val2]),21 Val1 == Val2),22 Name:(NewHead :- FrontCode,BackCode,!,23 (transition _),Out =>* Value),24 Name:(transition(result) :- (Guard,!))]):-25 Head =..[Name,In,Out], NewHead =..[Name,In,Value],26 rearrange(Updates,FrontCode,BackCode).27 term_expansion((define Location as Value with Goal),28 ((Location => Value) :- Goal,!)).29 term_expansion((transition Name if Condition then Updates),30 (transition(Name) :-31 (Condition,!,32 FrontCode,BackCode,transition(_)))) :-33 rearrange(Updates,FrontCode,BackCode).34 rearrange((A,B),(FrontA,FrontB),(BackB,BackA)) :-35 rearrange(A,FrontA,BackA),36 rearrange(B,FrontB,BackB).37 rearrange((LocTerm := Expr),38 ([Expr] =>* [Val], LocTerm =.. [Func|Args],39 Args =>* ArgVals, Loc =..[Func|ArgVals]),40 asserta(Loc => Val)).Fig. 5. Modularized EAs: the Program

tors (algebra, start, stop, and using) that are needed for the algebra state-ment. The �rst term expansion clause (Lines 9{26) translates such a state-ment into a Prolog module header, declares =>/2 to be dynamic in the module,and de�nes the evaluation predicate =>* for this module.16 The e�ect of theterm expansion-statement is probably best seen when setting an example: themodule declaration in Figure 3, for instance, is mapped into:- module(fak,[fak/2]).fak:(:-use module([mult])).:- dynamic fak:(=>)/2.plus the usual de�nition of =>*/2.6.3 Running Modularized EAsIn contrast to the basic version of leanEA, a modularized EA has a de�nedinterface to the outside world: The algebra-statement de�nes a Prolog predicatethat can be used to run the speci�ed EA. Thus, the user does not need to startthe transitions manually. Furthermore, the run of a modularized EA does notend with failure of the starting predicate, but with success. This is the case sincea modularized EA has a de�ned �nal state. If the predicate succeeds, the �nalstate has been reached.For the example algebra above (Figure 3), the run proceeds as follows:| ?- compile([leanea,fak]).{leanea.pl compiled, 190 msec 4768 bytes}{compiled mult.pl in module mult, 120 msec 10656 bytes}{compiled fak.pl in module fak, 270 msec 20944 bytes}yes| ?- fak(6,Result).Result = [720] ?yesAfter compiling leanEA, the EA shown in Figure 3 is loaded from the �le fak.pl,which in turn loads the algebra for multiplication from mult.pl. The algebra isthen started and the result of 6! is returned. The computation takes roughly onesecond on a Sun SPARC 10.1716 This implementation is probably speci�c for SICStus Prolog and needs to be changedto run on other Prolog systems. The \Name:"-pre�x is required in SICStus, be-cause a \:- module(.. .)"-declaration becomes e�ective after the current term wasprocessed.17 Recall that all multiplications are carried out within the EA and not by Prolog'sinternal multiplication predicate.

7 ConclusionWe presented leanEA, an approach to simulation evolving algebra speci�cations.The underlying idea is to modifying the Prolog reader, such that loading aspeci�cation of an evolving algebra means compiling it into Prolog clauses. Thus,the Prolog system itself is turned into an abstract machine for running EAs. Thecontribution of our work is twofold:Firstly, leanEA o�ers an e�cient and very
exible framework for simulatingEAs. leanEA is open, in the sense that it is easily interfaced with other appli-cations, embedded into other systems, or adapted to concrete needs. We believethat this is a very important feature that is often underestimated: if a speci�ca-tion system is supposed to be used in practice, then it must be embedded in anappropriate system for program development. leanEA, as presented in this pa-per, is surely more a starting point than a solution for this, but it demonstratesclearly one way for proceeding.Second, leanEA demonstrates that little e�ort is needed to implement a sim-ulator for EAs. This supports the claim that EAs are a practically relevant tool,and it shows a clear advantage of EAs over other speci�cation formalisms: theseare often hard to understand, and di�cult to deal with when implementing them.EAs, on the other hand, are easily understood and easily used. Thus, leanEAshows that one of the major goals of EAs, namely to \bridge the gap betweencomputation models and speci�cation methods" (following Gurevich (1995)),was achieved.ReferencesB�orger, Egon, & Rosenzweig, Dean. 1994. A Mathematical De�nition ofFull Prolog. Science of Computer Programming.B�orger, Egon, Durdanovic, Igor, & Rosenzweig, Dean. 1994a. Occam:Speci�cation and Compiler Correctness. Pages 489{508 of: Montanari,U., & Olderog, E.-R. (eds), Proceedings, IFIP Working Conference onProgramming Concepts, Methods and Calculi (PROCOMET 94). North-Holland.B�orger, Egon, Del Castillo, Giuseppe, Glavan, P., & Rosenzweig,Dean. 1994b. Towards a Mathematical Speci�cation of the APE100 Archi-tecture: The APESE Model. Pages 396{401 of: Pehrson, B., & Simon,I. (eds), Proceedings, IFIP 13th World Computer Congress, vol. 1. Amster-dam: Elsevier.Gurevich, Yuri. 1991. Evolving Algebras. A Tutorial Introduction. Bulletinof the EATCS, 43, 264{284.Gurevich, Yuri. 1995. Evolving Algebras 1993: Lipari Guide. In: B�orger, E.(ed), Speci�cation and Validation Methods. Oxford University Press.Gurevich, Yuri, & Huggins, Jim. 1993. The Semantics of the C Program-ming Language. Pages 273{309 of: Proceedings, Computer Science Logic(CSL). LNCS 702. Springer.

Gurevich, Yuri, & Mani, Raghu. 1995. Group Membership Protocol: Speci-�cation and Veri�cation. In: B�orger, E. (ed), Speci�cation and ValidationMethods. Oxford University Press.Kappel, Angelica M. 1993. Executable Speci�cations based on DynamicAlgebras. Pages 229{240 of: Proceedings, 4th International Conferenceon Logic Programming and Automated Reasoning (LPAR), St. Petersburg,Russia. LNCS 698. Springer.O'Keefe, Richard A. 1990. The Craft of Prolog. MIT Press.

