lean/iA: A Lean Evolving Algebra Compiler

Bernhard Beckert! and Joachim Posegga?

' University of Karlsruhe, Tnstitute for Logic, Complexity and Deduction Systems,
76128 Karlsruhe, Germany; beckert@ira.uka.de
? Deutsche Telekom AG, Research Centre, 64276 Darmstadt, Germany;
poseggalfz.telekom.de

Abstract. The Prolog program
“term_expansion((define C as A with B), (C=>A:-B,!)).
term_expansion((transition E if C then D),
((transition E):-C,!,B,A, (transition _))) :-
rearrange(D,B,A).
rearrange((E,F),(C,D),(A,B)) :-
rearrange(E,C,B), rearrange(F,D,A).
rearrange(F:=G, ([G]=>*[E],F=..[C|D],D=>*B,A=..[CIBI]),
asserta(A=>E)).
[GIH]=>*[E|F] :-
(G=\E; G=..[C|D],D=>*B,A=..[C|B],A=>E), ! ,H=>%F.
[1=>*[1.
A=7B :- [A,B]=>%[D,C], D==C.”
implements an efficient and flexible simulator for evolving algebra spec-
ifications.

1 Introduction

Evolving algebras (EAs) (Gurevich, 1991; Gurevich, 1995) are abstract machines
used mainly for formal specification of algorithms. The main advantage of FAs
over classical formalisms for specifying operational semantics, like Turing ma-
chines for instance, 1s that they have been designed to be usable by human
beings: whilst the concrete appearance of a Turing machine has a solely math-
ematical motivation, EAs try to provide a user friendly and natural though
rigorous specification tool. The number of specifications using FAs is rapidly
growing; examples are specifications of the languages ANST C (Gurevich & Hug-
gins, 1993) and TSO Prolog (Borger & Rosenzweig, 1994), and of the virtual
architecture APE (Borger el al., 1994b). EA specifications have also heen used
to validate language implementations (e.g., Occam (Borger et al., 1994a)) and
distributed protocols (Gurevich & Mani, 1995).

When working with EAs, it 1s very handy to have a simulator at hand for run-
ning the specified algebras. This observation is of course not new and implemen-
tations of abstract machines for FAs already exist: Angelica Kappel describes
a Prolog-based implementation in (Kappel, 1993), and Jim Huggins reports an
implementation written in C. Both implementations are quite sophisticated and
offer a convenient language for specifying FAs.

In this paper, we describe a new approach to implementing a simulator for
evolving algebras; we focus on deterministic, sequential FAs. Our implementa-
tion differs from previous approaches in that it emphasizes on simplicity, flex-
ibility and elegance of the implementation, rather than on sophistication. We
present, a simple, Prolog-based approach for executing EAs. The underlying idea
18 to compile EA specifications into Prolog programs. Rather than programming
a machine explicitly, we turn the Prolog system itself into a virtual machine for
EA specifications: this is achieved by changing the Prolog reader, such that the
transformation of EAs into Prolog code takes place whenever the Prolog sys-
tem reads input. As a result, evolving algebra specifications can be treated like
ordinary Prolog programs.

The main advantage of our approach, which we call lean F/A, is its flexibility:
the Prolog program we discuss in the sequel® can easily be understood and
extended to the needs of concrete specification tasks (non-determinism, special
handling of undefined functions, etc.). Furthermore, its flexibility allows to easily
embed it into, or interface it with other systems.

The paper is organized as follows: Section 2 briefly explains how a determin-
istic, untyped EA can be programmed in lean E4; no mathematical treatment, is
given in this section, but it is explained what a user has to do in order to use EAs
with lean FA. The implementation of the basic version of lean E4 is explained in
parallel. This basic version is characterized mathematically in Section 4 by giving
the semantics of lean FA programs; Subsection 4.6 summarizes the differences to
the standard semantics of FAs, as defined in the Lipari Guide (Gurevich, 1995).

In Section 5, a number of purely syntactical extensions are added for the
sake of programming convenience, and more semantical extensions like includ-
ing typed algebras, or implementing non-deterministic evolving algebras are dis-
cussed. Section 6 introduces modularized FAs, where Prolog’s concept of mod-
ules 1s used to structure the specified algebras. Finally, we draw conclusions from
our research in Section 7.

Through the paper we assume the reader to be familiar with the basic ideas
behind evolving algebras, and with the basics of Prolog (see e.g. (O’Keefe, 1990)).

2 leanFA: the Program and its Use

An algebra can be understood as a formalism for describing static relations be-
tween things: there is a universe consisting of the objects we are talking about,
and a set of functions mapping members of the universe to other members. Fvolv-
ing algebras offer a formalism for describing changes as well: an evolving algebra
“moves” from one state to another, while functions are changed. leanEA4 is a
programming language that allows to program this behavior. From a declarative
point of view, a lean F'A program is a specification of an EA. Tn this section, we
explain the implementation of lean FA, and how it is used to specify FAs.

* The program is available on the World Wide Web. The URL for the lean EA home
page is http://i12www.ira.uka.de/leanea.

2.1 Overview

lean £A is an extension of standard Prolog, thus a lean KA program can be treated
like any other Prolog program, i.e., it can be loaded (or compiled) into the
underlying Prolog system (provided lean FA itself has heen loaded hefore).

lean A has two syntactical constructs for programming an EA: these are
function definitions of the form

define location as Value with Goal.
that specify the initial state of an EA | and fransition definitions
transition Name if Condition then Updates.

defining the EA’s evolving, i.e., the mapping from one state to another.

The syntax of these syntactical constructs is implemented by a couple of
Prolog operators as shown in Figure 1, Lines 1 6.7

The signature of K As is in our approach the set of all ground Prolog terms.
The (single) universe, that is not sorted, consists of ground Prolog terms, too;
it 1s not specified explicitly.

Furthermore, the final state(s) of the EA are not given explicitly in lean F4;
a state S 1s defined to be final if no transition is applicable in S or if a transition
fires that uses undefined functions in its updates.

A specified evolving algebra is started by calling the Prolog goal

transition _

lean FA then recursively searches for applicable transitions and executes them
until no more transitions are applicable, or an undefined term 1s evaluated.

2.2 Representation of States in lean F/A

Before explaining how function definitions set up the initial state of an EA| we
consider the lean FA internals for representing states: A state is given by the
mapping of locations to their values, i.e., elements of the universe. A location
fCuy, ... u,), n >0, consists of a functor f and arguments uy, ..., u, that are
members of the universe.

Frample 1. Assume that £ denotes a partial function mapping a pair of members
of the universe to a single element, and that 2 and 3 are members of the universe.
The application of £ to 2 and 3 is denoted by the Prolog term £(2,3). This
location either has a value in the current state, or it is undefined.

Technically, this mapping of locations to values is implemented with a dy-
namic Prolog predicate =>/2, (¢f. Fig. 1, Line 7) that hehaves as follows: The
goal “Loc => Val” succeeds if Loc is bound to a ground Prolog term that is a

* Note, that the precedences of operators (those pre-defined by lean 4 as well as others
used in a lean EA program) can influence the semantics of Prolog goals included in
lean FA programs.

11— op(1199,fy, (transition)), op(1180,xfx,(if)),

2 op(1192,fy, (define)), op(1185,xfy, (with)),
3 op(1190,xfy, (as)), op(1170,xfx, (then)),
4 op(900,xfx, (=>)), op(900,xfx, (=>%)),

5 op(900,xfx, (:=)), op(900,xfx,(=7)),

o op(100,fx, (\)).

7 - multifile (=>)/2.
s := dynamic (=>)/2.

s term_expansion((define Location as Value with Goal),
10 ((Location => Value) :—- Goal,!)).

11 term_expansion((transition Name if Condition then Updates),

12 (transition(Name) :-

13 (Condition,!,

14 FrontCode,BackCode,transition(_)))) :-
15 rearrange(Updates,FrontCode,BackCode) .

16 rearrange((A,B), (FrontA,FrontB), (BackB,BackA)) :-

17 rearrange(A,FrontA,BackA),

18 rearrange(B,FrontB,BackB).

19 rearrange ((LocTerm := Expr),

20 ([Expr] =># [Vall, LocTerm =.. [Func|Args],
21 Args =>* ArgVals, Loc =..[Func|ArgVals]),
22 asserta(Loc => Val)).

23 ([HIT] =>* [HVall|TVall) :-

24 (H = \HVal

25 ; H =.. [Func|Args], Args =>* ArgVals,
26 H1 =.. [Func|ArgVals], H1 => HVal

27), 0,

28 T =>% TVal.

20 [1 =>% [].

a0 (8 =7 T) :—- ([S,T] =>* [Vall,Val2]), Vall == Val2.

Fig. 1. lean FA: the Program

location in the algebra, and if a value is defined for this location; then Val is
bound to that value. The goal fails if no value is defined for Loc in the current
state of the algebra.

To evaluate a function call like, for example, £(£(2,3),3),lean F4 uses =>*/2
as an evaluation predicate: the relation # =>* v holds for ground Prolog terms
t and v if the value of £ where # is interpreted as a function call is o (in the
current, state of the algebra).

In general, the arguments of a function call are not necessarily elements of the
universe (contrary to the arguments of a location), but are expressions that are
recursively evaluated. For the sake of convenience, one can refer to members of
the universe in function calls explicitly: these are denoted by preceding them with
a backslash “\”; no evaluation of whatever Prolog term comes after a backslash
is performed. We will refer to this as guoting in the sequel.

For economical reasons, the predicate =>%/2 actually maps a list of function
calls to a list of values. Figure 1, Tines 23 28, shows the Prolog code for =>%:
if the term to be evaluated (bound to the first argument of the predicate) is
preceded with a backslash, the term itself 1s the result of the evaluation; other-
wise, all arguments are recursively evaluated and the value of the term is looked
up with the predicate =>/2. Fasing the evaluation of the arguments of terms is
the reason for implementing =>* over lists. The base step of the recursion is the
identity of the empty list (Line 29). =>* fails if the value of the function call is
undefined in the current state.

Frample 2. Consider again the binary function £, and assume it behaves like
addition in the current state of the algebra. Then both the goals

(£(\1,\2)]1 =>* [X] and [£(£(\0,\1),\2)] =>* [X]
succeed with binding X to 3. The goals
[£(\£(0,1),\2)] =>* [X] and [£(£(0,1),\2)] =>* [X]

will fail since, in the first case, the term £(0,1) is not an integer but a location,
and, in the second case, 0 and 1 are undefined constants (0-ary functions).

2.3 Function Definitions

The initial state of an EA is specified by a sequence of function definitions. They
define the initial values of locations by providing Prolog code to compute these
values. A construct of the form

define location as Value with Goal.

gives a procedure for computing the value of a location that matches the Prolog
term Location: if Goal succeeds, then Value is taken as the value of this location.
Function definitions set up the predicate => (and thus =>#) in the initial state.
One function definition can specify values for more than one functor of the
algebra. Tt is possible in principle, although quite inconvenient, to define all

functors within a single function definition. The value computed for a location
may depend on the additional Prolog code in a lean FA-program (code besides
function and transition definitions), since Goal may call any Prolog predicate.
Tf several function definitions define values for a single location, the (textually)
first definition 1s chosen.

lean EA translates a function definition into a Prolog clause

(Location => Value) :— Goal, V.

Since each definition is mapped into one such clause, Goal must not contain a
cut “1”; otherwise, the cut might prevent Prolog from considering subsequent
=> clauses that match a certain location.

Technically, the translation of define statements to a => clauses is imple-

mented by modifying the Prolog reader as shown in Figure 1, Lines 9 10.%

Examples for Function Definitions

Constants The following definition assigns the value 1 to the constant regi:
define regl as 1 with true.

Prolog Data Types Prolog Data Types are easily imported into the algebra. Here
is how to introduce lists:

define X as X with X=[1; X=[HIT].

This causes all lists to evaluate to themselves; thus a list in a transition refers
to the same list in the universe and needs not to be quoted. Similarly,

define X as X with integer(X).

introduces Prolog’s integers.

Fvaluating Functions by Calling Prolog Predicates The following example inter-
faces Prolog predicates with an evolving algebra:

define X+Y as Z with Z is X+Y.
define append(X,Y) as Result with append(X,Y,Result).

Input and Output Useful definitions for input and output are

define read as X with read(X).
define output(X) as X with write(X).

Whilst the purpose of read should be immediate, the returning of the argument
of output might not be clear: the idea is that the returned value can be used in
expressions. That is, an expression of the form £(\1,output(\2)) will print 2
while it is evaluated.

® Tn most Prolog dialects (e.g., SICStus Prolog and Quintus Prolog) the Prolog reader
is changed by adding clauses for the term_expansion/2 predicate. If a term #1s read,
and term_expansion(?,8) succeeds and binds the variable § to a term s, then the
Prolog reader replaces ¢ by s.

Necessary Conditions for Function Definitions The design of lean E4 con-
strains function definitions in several ways; 1t is important to understand these
restrictions, since they are not checked by lean FA. Thus, the programmer of an
EA has to ensure that:

1. All computed values are ground Prolog terms, and the goals for computing
them either fail or succeed (i.e.: terminate) for all possible instantiations that
might appear. Prolog exceptions that terminate execution must be avoided
as well %

2. The goals do not change the Prolog data base or have any side effects affect-
ing other computations.

3. The goals do not (syntactically) contain a cut “17.

4. The goals do not call the lean FA internal predicates transition/1, =>*/2,
and =>/2.

Violating these rules does not necessarily mean that lean FA will not function
properly; however, unless one is very well aware of what he/she is doing, we
strongly recommend against it.

2.4 Transition Definitions

Transitions specify the evolving of an EA. An applicable transition maps one
state of an EA to a new state by changing the value of locations. Transitions are
specified as:”

transition Name if Condition then Updates.

where

Name is an arbitrary Prolog term (usually an atom).

Condition is a Prolog goal that determines when the transition is applicable.
Tt usually contains calls to the predicate =?/2 (see Section 2.4 helow), and
often uses the logical Prolog operators “,” (conjunction), “;” (disjunction),
“=>” (implication), and “\+” (negation).

Updates is a comma-separated sequence of updates of the form

filri, o min,) =0,

foCrp, oo Thn,) 1= v

 Defining + by “define X+Y as Z with integer(X), integer(Y), Z is X+Y.” is,
for instance, safe in this respect.

7 Guarded multi-updates (if-then-else constructs that may be nested) make FEAs more
convenient; lean F/A can be extended to allow gnarded multi-npdates by changing the
predicate rearrange such that it (recursively) translates gnarded multi-updates into
Prolog’s if-then-else.

An update f;(ri1, ..., 7m,) 1= v; (1 < i < k) changes the value of the location
that consists of (a) the functor f; and (b) the elements of the universe that are
the values of the function calls r;, ... 7, ; the new value of this location is
determined by evaluating the function call v;. All function calls in the updates
are evaluated simultaneously (i.e., in the old state). Tf one of the function calls
is undefined, the assignment fails.®

A transition is applicable (fires) in a state, if Condition succeeds. For calcu-
lating the successor state, the (textually) first applicable transition is selected,
and its Updates are executed. If no transition fires or if one of the updates of
the first firing transition fails, the new state cannot be computed. In that case,
the evolving algebra terminates, i.e., the current state is final. Otherwise, the
computation continues iteratively with calculating further states of the algebra.

Technically, lean FA maps a transition of the above form into a Prolog clause

transition(Name) :—
Condition, ',
UpdateCode,

transition(.).

Tikewise to function definitions, this is achieved by modifying the Prolog reader
as shown in Figure 1, Lines 11 15.

Since the updates in transitions must be executed simultaneously, all function
calls have to be evaluated before the first assignment takes place. The auxiliary
predicate rearrange/3 (Lines 16 22) serves this purpose: it splits all updates
into evaluation code, that uses the predicate =>*/2, and into subsequent code for
storing the new values by asserting an appropriate =>/2 clause.” The sequential
code generated by rearrange thus simulates a simultaneous update.

The Equality Relation Besides logical operators, lean EA allows in the con-
dition of transitions the use of the pre-defined predicate =2/2 (Fig. 1, Line 30)
implementing the equality relation: the goal “s =7 ¢” succeeds if the function
calls s and 1 evaluate (in the current state) to the same element of the universe.
Tt fails, if one of the calls is undefined or if they evaluate to different elements.

2.5 An Example Algebra

We conclude this section with an example for an evolving algebra: Figure 2
shows a lean F'A program which is the specification of an EA for computing n!.

& Tf the left-hand side of an npdate is quoted by a preceding backslash, the npdate will
have no effect besides that the right-hand side is evaluated, i.e., attempts to change
the meaning of the backslash are ignored.

? To retract the old valne from the database and, thus, reduce the memory usage
during run-time, one conld insert the line

(clause((Loc => _),true),retract(Loc => _) ; true),

between Lines 21 and 22. (Note, that the default values specifying the initial state will
not be retracted, since these clanses have a non-empty body.) We favored, however,
the smaller and slightly faster version that does not retract old values.

The constant state is used for controlling the firing of transitions: in the initial
state, only the transition start fires and reads an integer; it assigns the input
value to regl. The transition step iteratively computes the factoral of regil’s
value by decrementing regl and storing the intermediate results in reg2. If
the value of regil is 1, the computation is complete, and the only applicable
transition result prints reg2. After this, the algebra halts since no further
transition fires and a final state is reached.

define state as initial with true.

define readint as X with read(X), integer(X).
define write(X) as X with write(X).

define X as X with integer(X).

define X-Y as R with integer(X),integer(Y),R is X-Y.
define X*Y as R with integer(X),integer(Y),R is X#Y.

transition step
if state =7 \running, \+(regl =7 1)
then regl := regl-1,

reg2 := (reg2*regl).

transition start
if state =7 \initial

then regl := readint,
reg?2 :=1,
state := \running.

transition result
if state =7 \running, regl =7 1
then reg2 := write(reg2),
state := \final.

Fig.2. An Evolving Algebra for Compnting n! (in lean EA Syntax)

3 Some Hints for Programmers

Final States. The basic version of lean FA does not have an explicit construct
for specifying the final state of an EA; instead, the algebra is in a final state
if no more transition is applicable. A more declarative way to halt an algebra
is to evaluate an undefined expression, like “stop := stop”.

Tracing Transitions. Programming in leanFA like in any other program-
ming language usually requires debugging. For tracing transitions, it is
often useful to include calls to write or trace at the end of conditions: the
code will be executed whenever the transition fires and it allows to provide
information about the state of the EA.

Tracing the Evaluation of Terms. A definition of the form
define f(X) as _ with write(f(X)), fail.

will trace the evaluation of functions: if the above function definition precedes
the “actual” definition of £(X), it will print the expression to be evaluated
whenever the evaluation takes place.

Examining States. All defined values of locations in the current state can be
listed by calling the Prolog predicate 1isting(=>). Note, that this does not
show any default values.

4 Semantics

This section formalizes the semantics of lean FA programs, in the sense that
it explains in detail which evolving algebra is specified by a concrete lean FA-
program.

Definition1. Tet P be a lean FA-program; then Dp denotes the sequence of
function definitions in P (in the order in which they occur in P), Tp denotes the
sequence of transition definitions in P (in the order in which they occur in P),
and Cp denotes the additional Prolog-code in P, i.e., P without Dp and 7Tp.

The function definitions Dp (that may call predicates from Cp) specify the
initial state of an evolving algebra, whereas the transition definitions specify how
the algebra evolves from one state to another.

The signature of evolving algebras is in our approach the set GTerms of
all ground Prolog terms. The (single) universe, that is not sorted, is a subhset
of GTerms.

Definition2. GTerms denotes the set of all ground Prolog terms; it is the
signature of the evolving algebra specified by a lean FA program.

We represent the states S of an algebra (including the initial state Sy) by an
evaluation function [], mapping locations to the universe. Section 4.1 explains
how [H]Sw i.e., the initial state, is derived from the function definitions D. Tn
what way the states evolve according to the transition definitions in 7 (which is
modeled by altering []) is the subject of Section 4.3.

The final state(s) are not given explicitly in lean FA. Tnstead, a state S is
defined to be final if no transition 1s applicable in S or if a transition fires that
uses undefined function calls in its updates (Def. 8).'°

4.1 Semantics of Function Definitions

A function definition “define F as R with (7.” gives a procedure for calcu-
lating the value of a location f(#y,...,1,) (n > 0). Procedurally, this works by

' The nser may, however, explicitly terminate the execution of a lean FA-program (see
Section 3).

instantiating F' to the location and executing (. If (7 succeeds, then R is taken
as the value of the location. If several definitions provide values for a single lo-
cation, we use the first one. Note, that the value of a location depends on the
additional Prolog code Cp in a lean FA-program P, since (7 may call predicates
from Cp.

Definition 3. T.et D be a sequence of function definitions and C be additional
Prolog code.
A function definition

D = define I as R with (5.
in D is succeeding for t € GTerms with answer r = Rr, if

1. there is a (most general) substitution ¢ such that Fo =;

2. Go succeeds (possibly using predicates from C);

3. 7is the answer substitution of G (the first answer substitution if Go is not
deterministic).

If no matching substitutions o exists or if Go fails, 1) s failing for 1.
The partial function

[lpc : GTerms — GTerms

is defined by

[[f]]v,c =T,
where 7 is the answer (for 1) of the first function definition D € D succeeding
for £. Tf no function definition 7 € D is succeeding for ¢, then [t], , is undefined.

The following definition formalizes the conditions function definitions have
to meet (see Section 2.3):

Definition4. A sequence D of function definitions and additional Prolog code C
are well defining if

1. no function definition D; € D is for some term ¢ € GGTerms neither succeed-
ing nor failing (i.e., not terminating), unless there is a definition D; € D,
j < i, 1n front of 1); that is succeeding for t;

2.1f D € D is succeeding for t € GTerms with answer r, then r € GTerms;

3. D does not (syntactically) contain a cut “17;"

4. the goals in D and the code C
(a) do not, change the Prolog data hase or have any other side effects;

(b) do not call the internal predicates transition/1, =>*/2, and =>/2.

Propositionb. If a sequence D of function definitions and additional Prolog
code C are well defining, then [o is a well defined partial function on GTerms
(a term mapping).

"' Prolog-negation and the Prolog-implication “->” are allowed.

A well-defined term mapping [] is the basis for defining the evaluation func-
tion of an evolving algebra, that is the extension of [] to function calls that are
not a location:

Definition6. Tet [] be a well defined term mapping. The partial function
1" : GTerms — GTerms

is defined for ¢ = f(r,...,7,) € GTerms (n > 0) as follows:

*_)8 it =\s
= { LF (LT, - - Ire])] otherwise

4.2 The Universe

A well-defined term mapping [[, o, enumerates the universe Up of the evolving
algebra specified by P; in addition, Up contains all quoted terms (without the
quote) occurring in P:

Definition7. If P is a leanFA program, and [],_ . is a well defined term
mapping, then the universe Up is the union of the co-domain of [H]Dp Cpo 1€

[GTerms)p, o, = A{llp, e, + 1€ GTerms, [t]p, o 1}

and the set
{t : t € GTerms, \l occurs in P} .

Note, that (obviously) the co-domain of []" is a subset of the universe, i.e.,
[GTermsly .. CUp .

The universe Up as defined above is not necessarily decidable. ITn practice,
however, one usually uses a decidable universe, 1.e., a decidable subset of GTerms
that is a superset of Up (e.g. GTerms itself). This can be achieved by adding

function definitions and thus expanding the universe.'?

4.3 Semantics of Transition Definitions

After having set up the semantics of the function definitions, which constitute
the initial evaluation function and thus the initial state of an evolving algebra,
we proceed with the dynamic part.

The transition definitions 7p of a lean FA-program P specify how a state S
of the evolving algebra represented by P maps to a new state S’.

2 Tt is also possible to change Definition 7; that, in its current form, defines the minimal
version of the universe.

Definition 8. Tet S be a state of an evolving algebra corresponding to a well
defined term mapping [], and let 7 be a sequence of transition definitions.
A transition

transition Name if Condition then Updates

is said to fire, if the Prolog goal Condilion succeeds in state S (possibly using
the predicate =7/2, Def. 10).

Let
file, o min,) 1=

felrpn, oo Thn,) 1= 0

(k > 1,n; > 0) be the sequence Updates of the first transition in 7 that fires.
Then the term mapping []o, and thus the state S’ are defined by

[v;]% if there is a smallest 4, 1 < i < k,

[t = such that t = fi([rale, .., [rin.]5)
[t]g otherwise

If [[]]’:; is undefined for one of the terms r;; or v;, 1 < ¢ <k, 1 <7 < n; of the
first transition in 7 that fires, or if no transition fires, then the state S is final

and [], is undefined.

Proposition9. If[]c, is a well defined term mapping, then []o, (as defined in
Def. 8) is well defined.

4.4 The Equality Relation

BResides “,” (and), “;” (or), “\+” (negation), and “=>” (implication) lean F4 al-
lows in conditions of transitions the pre-defined predicate =?7/2, that implements
the equality relation for examining the current state:

Definition 10. Tn a state S of an evolving algebra (that corresponds to the well
defined term mapping []s), for all #1,#2 € GTerms, the relation 1 =7 #5 holds
iff

[t:175 | and [ta]5 1, and [t 05 = Tt=ls-

4.5 Runs of lean FA-programs

A run of a lean FA-program P is a sequence of states Sy, 57,59, . . . of the specified
evolving algebra. Tts initial state Sy is given by

[H]Sn = [H]Dp,cp

(Def. 6). The following states are determined according to Definition 8 and using
Sn-l—1 = (Sn)/ (77 > 0) .

This process continues iteratively until a final state is reached.

Proposition11. lean FA implemenis the semantics as described in this section;
i.e., provided [p, o, 15 well defined,

1. in each state S of the run of a leanFA-program P the goal “[t] =>* [X]”
succeeds and binds the Prolog variable X to u aff [[7‘]]2 = u;
2. the execution of P terminates in a state S iff S 1s a final state;

3. the predicate =7 1mplements the equality relation.

4.6 Peculiarities of lean FA’s Semantics

The TLipari Guide (Gurevich, 1995) defines what is usually understood as the
standard semantics of EAs. Although lean FA is oriented at this semantics, there
are a couple of details where lean FA’s semantics differ. The reason for the differ-
ences 1s not that the standard semantics could not be implemented, but that we
decided to compromise for the sake of elegance and clearness of our program.

lean FA complies with the semantics given in (Gurevich, 1995) with the fol-
lowing exceptions:

Relations There are no special pre-defined elements denoting true and false
in the universe. The value of the relation =? (and similar pre-defined relations,
see Section 5.2) is represented by succeeding (resp. failing) of the corresponding
predicate.

Undefined Function Calls Similarly, there is no pre-defined element undef
in the universe, but evaluation fails if no value is defined. This, however, can be
changed by adding as the last function definition:

define _ as undef with true.

Internal and External Functions In lean ¥4 there is no formal distinction
between internal and external functions. Function definitions can be seen as
giving default values to functions; if the default values of a function remain
unchanged, then it can be regarded external (pre-defined). Tf no default value
is defined for a certain function, it is classically internal. Tf the default value of
a location is changed, this is what is called an external location in (Gurevich,
1995). The relation =? (and similar predicates) are static.

Since there is no real distinction, i1t is possible to mix internal and external
functions in function calls.

External functions are reiterated (i.e., evaluated multiply in one state) if
they occur multiply in a term being evaluated. If an external function is non-
deterministic (an oracle), this can lead to inconsistencies and should be avoided.

Importing and Discarding Elements lean ¥4 does not have constructs for
importing or discarding elements. The latter is not needed anyway. Tf this should
be needed for an application, “import v” can be simulated by “v := import”,
where import is defined by the function definition

define import as X with gensym(f,x).13

Local Non-determinism If the updates of a firing transition are inconsistent,
i.e., several updates define a new value for the same location, the first value is
chosen (this is called local non-determinism in (Gurevich, 1995)).

5 Extensions

5.1 The 1let Instruction

Tt is often useful to use local abbreviations in a transition. The possibility to do
so can be implemented by adding a clause

rearrange((let Var = Term),
([Term] =>* [Vall,Var = \Val), true).

to lean EA ' Then, in addition to updates, instructions of the form
let x =1

can be used in the update part of transitions, where z 1s a Prolog variable and ¢
a Prolog term. This allows to use 2 instead of £ in subsequent updates (and let
instructions) of the same transition. A variable 2 must be defined only once in a
transition using 1let. Note, that x is bound to the quoted term \[t]"; thus, using
an z inside another quoted term may lead to undesired results (see the first part
of Example 3).

Frample 3. “let X = \a, reg := \f(X)” is equivalent to “reg := \f(\a).”
(which is different from “reg := \f(a).”).

let X = \b,

let Y = £(X,X),
regl := g(¥,Y),
reg2(X) := X.

regl := g(£(\b,\b),£(\b,\b)),

is equivalent to reg2(\b) := \b.

Using let not only shortens updates syntactically, but also enhances effi-
ciency, because function calls that occur multiply in an update do not have to
be re-evaluated.

'* The Prolog predicate gensym generates a new atom every time it is called.
' And defining the operator let by adding “:-— op(910,fx, (let)).”.

5.2 Additional Relations

The Prolog predicate =7, that implements the equality relation (Def. 10), is the
only one that can be used in the condition of a transition (besides the logical
operators). Tt is possible to implement similar relations using the lean 4 internal
predicate =>* to evaluate the arguments of the relation:

A predicate p(ty,...,1,), n > 0, is implemented by adding the code

pr,..tn) o= Ty 8,1 =>% Doy, w1, Code.
to lean5A Y% Then the goal “p(fy,...,4,)” can be used in conditions of tran-
sitions instead of p'(ty,...,1,) =7 true”, where p’ is defined by the function
definition

define p'(xy,...,x,) as true with Code.

(which is the standard way of implementing relations using function definitions).
Note, that p fails, if one of [t1]5, ..., [tn]s is undefined in the current state S.

Erample 4. The predicate <> implements the is-not-equal relation: #; <> 15 suc-
ceeds iff [t1]° |, [t=]" |, and [1]" # [to]". <> is implemented by adding the

following clause to lean FA:

(A <> B) :- ([A,B] =>* [Vall,Val2], Vall \== Val2).

5.3 Non-determinism

Tt is not possible to define non-deterministic EAs in the basic version of lean F/A.
If more than one transition fire in a state, the first 1s chosen.

This behavior can be changed such that non-deterministic EAs can be
executed in the following way:

The cut from Line 13 has to be removed. Then, further firing transitions are
executed if backtracking occurs.
A “retract on backtrack” must be added to the transitions for removing
the effect of updates and restoring the previous state if backtracking occurs.
Tine 22 has to be changed to

(asserta(Loc => Val) ; (retract(Loc => Val),fail)).

Now, lean KA will enumerate all possible sequences of transitions. Backtrack-
ing is initiated, if a final state is reached, i.e., if the further execution of a lean F'A
program fails.

The user has to make sure that there 1s no infinite sequence of transitions
(e.g., by imposing a limit on the length of sequences).

Note, that usually the number of possible transition sequences grows expo-
nentially in their length, which leads to an enormous search space if one tries
to find a sequence that ends in a “successful” state by enumerating all possible

sequences.
5 , .-, n must be n distinct and nuninstantiated Prolog variables when =>%is called.
Thus, “(8 =7 T) := ([S,T] =>* [V1,V2]), V1 == V2.”, rather than “(8 =7 T)

:— ([8,T] =>* [V,V])” is needed for implementing “=7".

6 Modularized Evolving Algebras

One of the main advantages of K As is that they allow a problem-oriented for-
malization. This means, that the level of abstraction of an evolving algebra can
be chosen as needed. In the example algebra for computing n! in Section 2.5 for
instance, we simply used Prolog’s arithmetics over integers and did not bother
to specify what multiplication or subtraction actually means. In this section, we
demonstrate how such levels of abstraction can be integrated into lean FA; the
basic idea behind it is to exploit the module-mechanism of the underlying Prolog
implementation.

6.1 The Algebra Declaration Statement

In the modularized version of lean KA, each specification of an algebra will become
a Prolog module; therefore, each algebra must be specified in a separate file. For
this, we add an algebra declaration statement that looks as follows:

algebra Name(In, Out)
using [Include-List]
start Updates
stop Guard.

Name 1is an arbitrary Prolog atom that is used as the name of the predicate for
running the specified algebra, and as the name of the module. Tt is required
that Name.pl is also the file name of the specification and that the algebra-
statement 1s the first statement in this file.

In, Out are two lists containing the input and output parameters of the algebra.
The elements of Qut will be evaluated if the algebra reaches a final state (see
below).

Include-Tist 1s a list of names of sub-algebras used by this algebra.

Updates is a list of updates; it specifies that part of the initial state of the algebra
(see Section 2.4), that depends on the input In.

Guard is a condition that specifies the final state of the evolving algebra. Tf
Guard is satisfied in some state, the computation is stopped and the algebra
is halted (see Section 2.4).

Frample 5. As an example consider the algebra statement in Figure 3: an algebra
fak is defined that computes n!l. This is a modularized version of the algebra
shown in Section 2.5. The transitions start and result are now integrated into
the algebra statement.

The last function definition 1in the algebra is of particular interest: it shows
how the sub-algebra mult, included by the algebra statement, is called. Where
the earlier algebra for computing n! in Section 2.5 used Prolog’s built-in multi-
plication, a sub-algebra for carrying out multiplication is called. Tts definition
can be found in Figure 4.

algebra fak([N], [reg2])
using [mult]
start regl := N,
reg?2 :=1
stop regl =7 1.

define readint as X with read(X), integer(X).
define write(X) as X with write(X).

define X as X with integer(X).

define X-Y as R with integer(X),integer(Y),R is X-V.
define X*Y as R with mult([X,Y],[R]).

transition step
if \+(regl =7 1)
then regl := (regl-1),
reg2 := (reg2*regl).

Fig. 3. A Modularized EA for Computing n!

algebra mult([X,Y],[result])
using []
start regl X,

Y,

result := 0

reg? :
stop regl =7 0.

define write(X) as X with write(X).

define X as X with integer(X).

define X+Y as R with integer(X),integer(Y),R is X+VY.
define X-Y as R with integer(X),integer(Y),R is X-V.

transition step
if \+(regl =7 0)
then regl := (regl-1),
result := (result+reg?2).

Fig.4. A Modularized EA for Multiplication

6.2 Implementation of Modularized EAs

The basic difference between the basic version of lean FA and the modularized
version 18 that the algebra-statement at the beginning of a file containing an
EA specification is mapped into appropriate module and use_module statements
in Prolog. Since the algebra will be loaded within the named module, we also
need an evaluation function that is defined internally in this module. This allows
to use functions with the same name in different algebras without interference.

Figure 5 lists the modularized program. Tt defines four additional opera-

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

:— op(1199,fy, (transition)), op(1180,xfx,(if)),

op(1192,fy, (define)), op(1185,xfy, (with)),
op(1190,xfy, (as)), op(1170,xfx, (then)),
op(900,xfx, (=>)), op(900,xfx, (=>%)),
op(900,xfx, (:=)), op(900,xfx, (=7)),
op(100,fx,(\)), op(1199,fx, (algebra)),
op(1190,xfy, (start)), op(1170,xfx, (stop)),

op(1180,xfy, (using)).

term_expansion((algebra Head using Include_list
start Updates stop Guard),
[(:- module(Name, [Name/2])),
Name: (:— use_module(Include_list)),
(:~ dynamic (Name: (=>)/2)),
Name: (([H|T] =>% [HVal|TVall]) :-
(H =\Hval
; H =.. [Func|Args], Args =>* ArgVals,
H1 =.. [Func|ArgVals], H1 => HVal),!,
T =>% TVal),
Name: ([1 =>* [1),
Name: ((A =7 B) :— ([A,B] =>% [Vall,Val2]l),
Vall == Val2),
Name: (NewHead :- FrontCode,BackCode,!,
(transition _),0ut =>% Value),
Name: (transition(result) :- (Guard,!))]):-
Head =..[Name,In,0ut], NewHead =..[Name,In,Value],
rearrange (Updates,FrontCode,BackCode) .

term_expansion((define Location as Value with Goal),
((Location => Value) :—- Goal,!)).

term_expansion((transition Name if Condition then Updates),
(transition(Name) :-
(Condition,!,
FrontCode,BackCode,transition(_)))) :-
rearrange (Updates,FrontCode,BackCode) .

rearrange ((A,B), (FrontA,FrontB), (BackB,BackA)) :-
rearrange (A,FrontA,BackA),
rearrange (B,FrontB,BackB) .

rearrange ((LocTerm := Expr),
([Expr] =># [Vall, LocTerm =.. [Func|Args],
Args =>* ArgVals, Loc =..[Func|ArgVals]),

asserta(Loc => Val)).

Fig. 5. Modularized EAs: the Program

tors (algebra, start, stop, and using) that are needed for the algebra state-
ment. The first term_expansion clause (Tines 9 26) translates such a state-
ment into a Prolog module header, declares =>/2 to be dynamic in the module,
and defines the evaluation predicate =>* for this module.'® The effect of the
term_expansion-statement is probably best seen when setting an example: the
module declaration in Figure 3, for instance, is mapped into

:— module(fak, [fak/2]).
fak: (:-usemodule([mult])).
:— dynamic fak:(=>)/2.

plus the usual definition of =>%/2.

6.3 Running Modularized EAs

In contrast to the basic version of leanEA, a modularized EA has a defined
interface to the outside world: The algebra-statement defines a Prolog predicate
that can be used to run the specified EA. Thus, the user does not need to start
the transitions manually. Furthermore, the run of a modularized EA does not
end with failure of the starting predicate, but with success. This is the case since
a modularized EA has a defined final state. Tf the predicate succeeds, the final
state has been reached.

For the example algebra above (Figure 3), the run proceeds as follows:

| ?- compile([leanea,fak]).

{leanea.pl compiled, 190 msec 4768 bytes}

{compiled mult.pl in module mult, 120 msec 10656 bytes}
{compiled fak.pl in module fak, 270 msec 20944 bytes}
yes

| ?- fak(6,Result).
Result = [720] 7
yes

After compilinglean FA, the EA shown in Figure 3 is loaded from the file fak.pl,
which in turn loads the algebra for multiplication from mult.pl. The algebra is
then started and the result of 6! is returned. The computation takes roughly one

second on a Sun SPARC 10.'7

' This implementation is probably specific for STCStus Prolog and needs to be changed
to run on other Prolog systems. The “Name:”-prefix is required in STCStus, be-
canse a “:— module(...)"-declaration becomes effective after the current term was
processed.

'7 Recall that all multiplications are carried ont within the EA and not by Prolog’s

internal multiplication predicate.

7 Conclusion

We presented lean KA, an approach to simulation evolving algebra specifications.
The underlying idea i1s to modifying the Prolog reader, such that loading a
specification of an evolving algebra means compiling it into Prolog clauses. Thus,
the Prolog system itself is turned into an abstract machine for running EAs. The
contribution of our work is twofold:

Firstly, lean /A offers an efficient and very flexible framework for simulating
FAs. leanFA is open, in the sense that it is easily interfaced with other appli-
cations, embedded into other systems, or adapted to concrete needs. We believe
that this is a very important feature that is often underestimated: if a specifica-
tion system 1s supposed to be used in practice, then it must be embedded in an
appropriate system for program development. lean EA | as presented in this pa-
per, is surely more a starting point than a solution for this, but it demonstrates
clearly one way for proceeding.

Second, lean FA demonstrates that little effort is needed to implement a sim-
ulator for EAs. This supports the claim that EAs are a practically relevant tool,
and i1t shows a clear advantage of EAs over other specification formalisms: these
are often hard to understand, and difficult to deal with when implementing them.
FEAs, on the other hand, are easily understood and easily used. Thus, lean FA
shows that one of the major goals of K As, namely to “bridge the gap between
computation models and specification methods” (following Gurevich (1995)),
was achieved.

References

BoRrRGER, EGoN, & ROSENZWERIG, DEAN. 1994. A Mathematical Definition of
Full Prolog. Science of Computer Programming.

BoRrRGER, FGoN, DURDANOVIC, TGOR, & ROSENZWERIG, DEAN. 1994a. Occam:
Specification and Compiler Correctness. Pages 489 508 of: MONTANARI,
U., & OunkrroG, E.-R. (eds), Proceedings, TFIP Working Conference on
Programming Concepts, Methods and Calculi (PROCOMET 94). North-
Holland.

Borarr, EGoN, DEL CasTinro, GIuseEPPE, GravaN, P., & ROSENZWEIG,
DEan. 1994b. Towards a Mathematical Specification of the APE100 Archi-
tecture: The APESE Model. Pages 396 401 of: PEHRSON, B., & SIMON,
1. (eds), Proceedings, TFIP 13th World Computer Congress, vol. 1. Amster-
dam: Flsevier.

GUREVICH, YURI. 1991. Evolving Algebras. A Tutorial Introduction. Bulletin
of the FATCS, 43, 264 284.

GUREVICH, YURI. 1995. Evolving Algebras 1993: Lipari Guide. In: BORGER, F.
(ed), Specification and Validation Methods. Oxford University Press.

GUREVICH, YURI, & Huaains, Jim. 1993. The Semantics of the C Program-
ming Language. Pages 273 309 of: Proceedings, Computer Science Logic
(CSL). TNCS 702. Springer.

GUREVICH, YURI, & ManNT, RacHU. 1995. Group Membership Protocol: Speci-

fication and Verification. In: BORGER, E. (ed), Specification and Validation
Methods. Oxford University Press.

KaprprrL, AnNGELICA M. 1993. Executable Specifications based on Dynamic
Algebras. Pages 229 240 of: Proceedings, 4th International Conference

on Logic Programming and Automated Reasoning (LPAR), Si. Petersburg,
Russia. LNCS 698. Springer.

O’KerrE, RicHarD A. 1990. The Craft of Prolog. MIT Press.

