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we start in Section 3 with transforming arbitrary classical formulae in conjunc-tive normal form (CNF) into signed CNF formulae with at most two literals perclause. This provides an alternative proof of NP-hardness of signed 2-SAT (�rstproved by [15]) and creates the possibility to compare classical and signed deduc-tion procedures experimentally. In Section 4.1 we take the reverse direction andreduce signed Horn formulae based on certain partial orders to classical logic.In the case of lattice orders this yields the new result that generalized Hornproblems turn out to have still polynomial complexity with respect to formulasize and number of truth values (Section 4.2). We can also extract an e�cientdecision procedure based on generalized unit resolution (Section 4.4). A majoradvantage of our reduction to classical logic is that it scales up: we demonstratethis by sketching generalizations to in�nite orders in Section 4.5 and to partialorders that are not lattices in Section 4.6.2 Basic De�nitions2.1 Syntax of Signed LogicDe�nition 1. A truth value set N is a �nite set fi1; i2; : : : ; ing, where n 2 N.The cardinality of N is denoted by jN j.De�nition 2. Let � be a propositional signature, that is, a denumerable set ofpropositional variables. We de�ne the set of atomic signed formulae (or signedatoms for short) as the following set:fS : pi j S � N; pi 2 �g:De�nition 3. Given a signed atom S : p, then S is said to be its sign. Let �be a partial order on the truth value set N , let " i denote the set fj 2 N j j � igand let # i denote the set fj 2 N j j � ig. If a sign S is equal to either " i or # i,for some i 2 N , then it is called a regular sign. A signed atom with a regularsign is called a regular atom.De�nition 4. A signed clause C is an expression of the formS1 : p1; : : : ; Sk : pk ! S01 : q1; : : : ; S0l : qlwhere S1 : p1; : : : ; Sk : pk and S01 : q1; : : : ; S0l : ql are signed atoms and k; l � 0.The signed atoms S1 : p1; : : : ; Sk : pk are said to occur in C with negative po-larity, and the signed atoms S01 : q1; : : : ; S0l : ql are said to occur with positivepolarity. The expression on the left of ! is called the body of the clause andthe expression on the right is called the head. A signed formula in conjunctivenormal form (CNF) is a �nite set of signed clauses.A signed clause is called regular if (N;�) is a lattice and it only containsregular atoms with signs of the form " i.1 A signed CNF formula is called regularif it only contains regular clauses. A regular clause containing at most one atomwith positive polarity is a regular Horn clause. A regular CNF formula consistingsolely of regular Horn clauses is a regular Horn formula.1 Regular clauses could also be de�ned containing only signs of the form # i insteadof signs of the form " i. The results of this paper are also valid for regular clausesde�ned that way. 2



Note that in clauses both k = 0 and l = 0 is allowed; thus, p; q ! hi andhi ! p; q are signed clauses, and we represent them by p; q ! and ! p; q.When k = 0 and l = 0 we have the signed empty clause, denoted by 2.De�nition 5. The length of a signed atom S : p, denoted by jS : pj, is jSj+ 1,where jSj denotes the cardinality of S. The length of a signed clause C, denotedby jCj, is the sum of the lengths of the signed atoms occurring in C. The lengthof a signed CNF formula � , denoted by j� j, is the sum of the lengths of theclauses of � .2.2 Semantics of Signed LogicDe�nition 6. An interpretation is a mapping that assigns to every proposi-tional variable of � a truth value of N . An interpretation I satis�es a signedatom S : p, in symbols I j= S : p, i� I(p) 2 S. An interpretation I satis�es asigned clause C = S1 : p1; : : : ; Sk : pk ! S01 : q1; : : : ; S0l : ql, in symbols I j= C, i�the following condition holds: If I satis�es all the signed atoms S1 : p1; : : : ; Sk : pkthen I satis�es at least one of the signed atoms S01 : q1; : : : ; S0l : ql. A signed CNFformula � is satis�able i� there exists an interpretation I that satis�es all thesigned clauses in � . We say then that I is a model of � and we write I j= � .A signed CNF formula that is not satis�able is unsatis�able. The signed emptyclause is always unsatis�able and the signed empty CNF formula is always sat-is�able.Note that I satis�es ! S01 : q1; : : : ; S0l : ql i� it satis�es at least one of thesigned atoms S01 : q1; : : : ; S0l : ql and I satis�es S1 : p1; : : : ; Sk : pk ! i� it doesnot satisfy all the signed atoms S1 : p1; : : : ; Sk : pk.Observe that if we take N = ftrue; falseg, assuming true > false, and con-sider only regular atoms of the form " true : p, then we obtain the logic of classicalconjunctive normal forms: " true : p is equivalent to the classical atom p if it oc-curs with positive polarity, and to the negated classical atom :p if it occurs withnegative polarity. So, the classical clause p1; : : : ; pk ! q1; : : : ; ql is equivalent tothe regular clause " true : p1; : : : ; " true : pk ! " true : q1; : : : ; " true : ql. In thefollowing, when we refer to classical clauses we use the former notation.In classical propositional logic, clauses are also de�ned as a �nite disjunctionof literals (i.e. signed atoms or negated signed atoms). It is easy to see fromthe previous de�nitions that p1; : : : ; pk ! q1; : : : ; ql is logically equivalent to:p1 _ � � � _ :pk _ q1 _ � � � _ ql. So, classical atoms occurring with negative po-larity are implicitly negated. In our de�nition of signed clauses, signed atomsoccurring with negative polarity are also implicitly negated in the sense that asigned atom S : p with negative polarity is satis�ed by an interpretation I i�I 6j= S : p When we focus on the subclass of regular clauses we take the sameapproach: We consider regular atoms with a sign of the form " i and we havethat an occurrence of " i : p with negative polarity is satis�ed by an interpreta-tion I i� I 6j= " i : p. The same holds when regular clauses contain only atoms ofthe form # i :p. Nevertheless, we do not de�ne regular clauses as a disjunction ofregular atoms with arbitrary regular signs since, as we assume a partial order �on N , an occurrence of " i : p with negative polarity is not, in general, logicallyequivalent to # j :p for some j 2 N . If we assume a total order, then it holds andit is usual to represent regular clauses as a disjunction of regular atoms.3



2.3 Satis�ability ProblemsThe propositional satis�ability (SAT) problem is the problem of determiningwhether a classical CNF formula is satis�able, and is known for being the originalNP-complete problem [1]. However, there exist linear-time algorithms for solvingthe SAT problem when we consider Horn formulae (Horn SAT) [3] or CNFformulae with only two literals per clause (2-SAT) [6]. When the CNF formulahas three literals per clause (3-SAT), it is again an NP-complete problem.In the last years, some results about the complexity of the propositional sat-is�ability problem for signed CNF formulae (signed SAT) have been published.The signed SAT problem2 and the signed 2-SAT problem [15] are NP-complete,but when signs are singletons the signed 2-SAT problem (monosigned 2-SAT) [15]is polynomially solvable. Concerning the regular case, it is known that the regularHorn SAT problem [8, 4] and the regular 2-SAT problem [15] are both polyno-mially solvable when the partial order de�ned over the set of truth values istotal.3 Transforming Classical SAT into Signed 2-SAT3.1 The TransformationIn this section, we de�ne a mapping 0 transforming classical CNF formulae intosigned (non-regular) 2-CNF formulae; and we prove that it is a poly-time reduc-tion.The mapping 0 is de�ned as follows: Let � be a classical CNF formula withclauses C1; : : : ; Cr (r � 1) over a signature �. Assume that p1; : : : ; ps (s � 1)are the propositional variables occurring in � ; thus, the clauses in � are of theform3 Cm = pim;1; : : : ; pim;km ! pjm;1 ; : : : ; pjm;lm :We associate with � a signed 2-CNF formula � 0 over the truth value setN = fp�1 ; : : : ; p�s ; p+1 ; : : : ; p+s g and signature �0 = fp01; : : : ; p0rg, i.e., the truth val-ues are the classical atoms annotated with the two possible polarities � and +,and for each clause Cm in � there is a propositional variable p0m in �0. The ideais that p0m has the truth value p+i resp. p�i in a (non-classical) interpretation I 0 ifthe classical atom pi is the one that makes the clause Cm true in the correspond-ing classical interpretation I; that is, I 0(p0m) = p�i if pi is false in I and occurswith negative polarity in Cm, and I 0(p0m) = p+i if pi is true in I and occurs withpositive polarity in Cm. An atom can only have a single truth value whereas aclause Cm can be \made true" by more than one of its literals, in which case anarbitrary one may be chosen to be the truth value of p0m.For each clause Cm = pim;1 ; : : : ; pim;km ! pjm;1; : : : ; pjm;lm in � there is asingleton clause(C0m) ! fp�im;1 ; : : : ; p�im;km ; p+jm;1; : : : ; p+jm;lmg : p0min � 0.2 It is straightforward to see the NP-hardness of the signed SAT problem by provingthat the classical SAT problem is polynomially reducible to it.3 Note, that the atoms in � are actually signed atoms of the form " true :p; but, as saidin Section 2, the signs are not shown in representations of classical CNF formulae.4



The signed atom in C 0m represents the fact that Cm (the m-th clause of � )is made true. Thus � 0 represents only satisfying truth assignments of � .This is, of course, not enough. We must ensure that � 0 in fact representssolely such truth assignments for atoms in � which are consistent or, in usualterminology, which are well-de�ned interpretations. For this purpose, � 0 containsthe following additional clauses for all (classical) clauses Cm and Cn in � resp.for all propositional variables p0m and p0n in �0 (1 � m;n � r) and for all atomsresp. truth values pi (1 � i � s):(D0mni) fp+i g : p0m ! (fp�in;1 ; : : : ; p�in;kn ; p+j1;n; : : : ; p+jn;lng n fp�i g) : p0nThe signed clauses D0mni express that if an atom is used with positive polarity to\make true" some clause Cm of � , then it cannot be used with negative polarityto \make true" any other clause of � .The clause D0mni may be omitted from � 0 if pi does not occur with positivepolarity in Cm or does not occur with negative polarity in Cn,Instead of the clauses D0mni the clauses(E0mni) fp�i g : p0m ! (fp�in;1; : : : ; p�in;kn ; p+j1;n; : : : ; p+jn;lng n fp+i g) : p0ncan be used. The proof of Theorem 2 shows that it is indeed su�cient to eitheruse only the clauses D0mni or only the clauses E0mni.Example 1. Consider the classical CNF formula � consisting of the clauses(C1) p ! q(C2) q ! p(C3) ! p; qThe only model of � is the interpretation I with I(p) = I(q) = true. The result oftransforming � is a signed 2-SAT formula � 0 over the signature �0 = fp01; p02; p03gand using the truth value set N = fp�; q�; p+; q+g; � 0 consists of the clauses(C 01) ! fp�; q+g : p01(C 02) ! fq�; p+g : p02(C 03) ! fp+; q+g : p03(D0211) fp+g : p02 ! fq+g : p01(D0311) fp+g : p03 ! fq+g : p01(D0122) fq+g : p01 ! fp+g : p02(D0322) fq+g : p03 ! fp+g : p02In (non-classical) interpretations I 0 satisfying � 0, the truth value of p01 is q+,and the truth value of p02 is p+. The truth value of p3 can be either p+ or q+,according to the fact that both atoms in the clause C3 are satis�ed by theclassical interpretation I.3.2 ResultsThe size of � 0 is easily seen to beXm (km + lm + 1)| {z }=jC0mj + Xm;n;i (kn + ln + 2)| {z }=jD0mni j � j� j+ r + 2r2s5



where r is the number of clauses in � , and s is the number of di�erent atomsoccurring in � . As r; s < j� j, this places j� 0j in O(j� j3). Obviously, � 0 can beconstructed in time which is linear in its own size and, thus, the time complexityof its construction is in O(j� j3).Theorem 1. The transformation 0 is computable in cubic time.Signed (non-regular) 2-SAT was proven to be NP-hard in [15] by providing apoly-time reduction from 3-colourability of graphs to signed 2-CNF. As classicalSAT is NP-complete, the same result follows as a corollary from Theorem 1.Corollary 1. Signed 2-SAT is NP-complete.An additional bene�t of the transformation 0 is that it makes it possible tocompare classical decision procedures with speci�c procedures for signed CNF.3.3 CorrectnessThe following theorem states the correctness of the transformation 0:Theorem 2. A classical CNF formula � is satis�able if and only if � 0 is sat-is�able.Proof. 1. Only-if-part: Assume that the classical interpretation I satis�es � .De�ne the interpretation I 0 as follows. In each clause Cm 2 � there has to be anatom p such that (1) I(p) = true and p occurs positively in Cm or (2) I(p) = falseand p occurs negatively in Cm, because otherwise Cm were not satis�ed by I.If there is more than one such atom p in Cm, then choose an arbitrary one. If(1) holds for p, then de�ne I 0(p0m) = p+, otherwise (i.e., if (2) holds for p) de�neI 0(p0m) = p�.a. I 0 j= C 0m: If I 0(p0m) = p+ (resp. I 0(p0m) = p�), then p occurs positively (neg-atively) in Cm and, thus, p+ (resp. p�) is an element of the truth value signattached to p0m in C 0m.b. I 0 j= D0mni: Let 1 � m � r and 1 � i � s be arbitrary. If I 0(p0m) 6= p+i , thenD0mni is trivially satis�ed for all n. Otherwise, I(p0m) = p+i and we must showthat I 0(p0n) 2 fp�in;1 ; : : : ; p�in;kn ; p+j1;n; : : : ; p+jn;lng n fp�i g for all n. We know thatI 0(p0n) is in fp�in;1; : : : ; p�in;kn ; p+j1;n; : : : ; p+jn;lng, as I 0 j= Cn for all n. It remainsto be shown that I 0(p0n) 6= p�i ; to produce a contradiction, assume I 0(p0n) = p�ifor some n. By de�nition of I 0, this implies I(pi) = false. On the other hand, wehave I 0(p0m) = p+i implying I(pi) = true, which is a contradiction.2. If-part: Assume that the interpretation I 0 satis�es � 0. De�ne the classicalinterpretation I for all atoms p 2 � as follows: if there is an atom p0m (1 � m � r)such that I 0(p0m) = p+, then let I(p) = true; otherwise let I(p) = false. It remainsto be shown that I satis�es all clauses Cm in � .a. If I 0(p0m) = p+, then (1) p occurs with positive polarity in Cm (by de�nition of 0and because I 0 j= C 0m), and (2) I(p) = true (by de�nition of I). Thus, I j= Cm.b. Otherwise, if I 0(p0m) = p�, then (1) p occurs with negative polarity in Cm (forthe same reasons as in (a) above), but now (2) I(p) = false is harder to show.Assume the contrary, i.e., I(p) = true; that is only possible if there is an atom p0nsuch that I 0(p0n) = p+. But then the clause D0nmi (where p = pi) is not satis�edby I 0, which contradicts the assumption that I 0 j= � 0. Thus, (2) I(p) = falseholds; and (1) and (2) imply that I j= Cm. ut6



4 Transforming Regular Horn SAT into Classical HornSAT4.1 The TransformationIn this section, we de�ne a mapping � transforming lattice-based regular Hornformulae into classical Horn formulae; and we prove that it is linear in the sizeof the signature and quadratic in the size of the truth-value lattice.We assume in the following that the formula to be transformed does notcontain a signed atom of the form "? : p where ? is the bottom element of thetruth value lattice. This is not a real restriction, as such atoms are true in allinterpretations; they can be removed from a formula in linear time preservingsatis�ability as follows: (1) if a clause contains a negative occurrence of "? : p,then remove that occurrence from the clause; (2) if a clause contains a positiveoccurrence of "? : p, then remove the whole clause from the formula.The mapping � is de�ned as follows: Let � be a regular Horn formula overthe truth-value lattice (N;�) not containing the sign "?. Let C1; : : : ; Cr be theclauses in � (r � 1), let p1; : : : ; ps 2 � be the propositional variables occurringin � (s � 1).We associate with � a classical Horn formula � � over the signature�� = f" i : p j i 2 N; p 2 �g ;i.e., the signed atoms|includings their signs|are used as propositional vari-ables.The classical formula � � contains the clauses C�m = Cm from � (1 � m � r),which in � � are regarded as classical clauses over ��. In addition, � � contains,for all truth values i; j 2 N and all propositional variables pk occurring in �(1 � k � s),1. if (a) i > j and (b) there is no j0 2 N such that i > j0 > j, the clause(D�ijk) " i : pk ! " j : pk ;2. if neither i � j nor j � i, the clause(E�ijk) " i : pk; " j : pk ! " (i t j) : pk ;where i t j is the supremum of i and j in the truth value lattice.As � � contains the clauses from � , the classical interpretations satisfying � �satisfy � as well. The additional clauses D�ijk andE�ijk ensure that such a classicalinterpretation I� over the signature �� corresponds to a well de�ned interpre-tation I over the signature �.The clauses D�ijk represent the fact that, if I j= " i : pk, i.e., I(pk) � i andi > j, then I(pk) � j and I satis�es " j : pk as well.The clauses E�ijk, on the other hand, represent the fact that, if I satis�esboth " i : pk and " i : pk, i.e., I(pk) � i and I(pk) � j, then I(pk) � i t j and,thus, I j= " (i t j) : pk.The precondition (a) i > j for the inclusion of the clauses D�ijk in � � isnecessary for the correctness of the transformation; in case not i > j, the clausesD�ijk are (in general) not satis�ed by arbitrary interpretations. Contrary to that,7



the precondition (b) for the inclusion of the D�ijk and the precondition for theinclusion of the clauses E�ijk is only needed to avoid redundancies.The following lemma shows that clauses D�ijk for values of i; j violating pre-condition (b) are redundant. They are true in all interpretations satisfying � �.Therefore, their inclusion would not impose any further restriction on the modelsof � �.Lemma 1. Let � be a regular Horn formula over a signature �, let I� be aclassical interpretation satisfying � �, let p 2 �, and let j; j0 be truth values in Nsuch that j � j0 and I�(" j : p) = true; then I�(" j0 : p) = true.Proof. Since j � j0 there is a sequence of truth values j1; : : : ; jq 2 N , q � 1,such that j = j1 > � � � > jq = j0 and this sequence is maximal, i.e., for 1 � l � q,there is no j0l 2 N such that jl > j0l > jl+1. The proof of the lemma proceeds byinduction on q.q = 1: In this case j = j0, and the lemma is trivially true.q! q + 1: The induction hypothesis applies to the truth values j and jq. There-fore, I�(" jq : p) = true. Because jq > jq+1 = j0 and there is no j0q 2 N such thatjq > j0q > j0, the formula � � contains the clause Djqj0k (where p = pk), which issatis�ed by I� and, since I�(" jq : p) = true, this implies I�(" j0 : p) = true. utThe clauses E�ijk are tautological (and redundant) if i � j or j � i; in par-ticular, they are not needed if the ordering > on the truth value set N is total.According to the following lemma, it is not necessary to include in � � clausesof the form " i1 : p; : : : ; " iq : p ! "Ffi1; : : : ; iqg : p for q > 2:Lemma 2. Let � be a regular Horn formula over a signature �, let I� be a clas-sical interpretation satisfying � �, let p 2 �, and letM � N be a non-empty set oftruth values such that I�(" j : p) = true for all j 2M ; then I�("FM : p) = true.Proof. The lemma is proven by induction on the size of M .M = fjg: Since j is the only element of M , we have FM = j; and becauseI�(" j : p) = true for all j 2M this immediately implies I�("FM : p) = true.M !M [ fjg: By assumption I�(" j : p) = true. The induction hypothesis ap-plies to M ; thus, I�("FM : p) = true. If j � FM then F(M [ fjg) = j, and ifFM � j then F(M [ fjg) = FM ; in both cases, I�("F(M [ fjg) : p) = true.Otherwise, if neither j � FM nor FM � j, then � � contains the clause E�j;j0;k,where j0 = FM and p = pk. As the interpretation I� satis�es � �, it satis�es inparticular E�j;j0;k. Thus, I�(" (j tFM ) : p) = true. As j tFM = F(M [ fjg),this implies I�("F(M [ fjg) : p) = true. utExample 2. Assume that N = f?;>; true; falseg and the partial order over N isthe lattice shown on the right below. Given a regular Horn formula � (over sig-nature �), for each propositional variable p occurring in � we add the followingclassical Horn clauses (over the signature ��) to obtain � �:(D�1) "> : p ! " true : p(D�2) "> : p ! " false : p(D�3) " true : p ! "? : p(D�4) " false : p ! "? : p(E�1 ) " true : p; " false : p ! "> : p >true false?8



4.2 ResultsThe size of � � is easily seen to havej� j+ 3sjN j2as an upper bound where s is the number of di�erent atoms occurring in � .As s < j� j, this places j� �j in O(j� jjN j2); and, since the time complexity ofconstructing � � is linear in its size, the reduction � is in O(j� jjN j2).If the ordering � on the truth value set is total, the size of � � is bounded byj� j+ 2sjN j ;because in that case there are only jN j many clauses Dijk for each k in � �, andno clauses Eijk are needed. Then, � is in O(j� jjN j).Theorem 3. The transformation � is computable in time linear in the size ofthe transformed formula and quadratic in the size of the truth value set.If the ordering � is total, it is linear in both the size of the transformedformula and the size of the truth value set.Because classical Horn SAT is linear [3], we get the following new result as acorollary:Corollary 2. Regular Horn SAT can be solved in time linear in the size of theformula and quadratic in the size of the truth value lattice.In the special case of totally ordered truth values, regular Horn SAT is ofeven smaller complexity (which was already known, see [8]).Corollary 3. Regular Horn SAT with totally ordered truth values can be solvedin time linear in both the size of the formula and the size of the truth value set.4.3 CorrectnessThe following theorem states the correctness of the transformation �:Theorem 4. A (lattice-based) regular Horn formula � is satis�able if and onlyif � � is satis�able.Proof. 1. Only-if-part: Assume that the interpretation I satis�es � . De�ne theclassical interpretation I� as follows. For all i 2 N and all atoms p 2 �, ifI(p) � i (i.e., if I j= " i : p), let I�(" i : p) = true, otherwise let I�(" i : p) = false.Obviously, I� is a well de�ned classical interpretation for the signature ��; itremains to be shown that I� j= � �.a. I� j= Cm: By de�nition, the classical interpretation I� satis�es an atom " i:p 2� (regarded as an element of ��) if and only if the interpretation I satis�es " i :p(regarded as a signed atom). Thus, as I satis�es the clauses Cm, they are satis�edby I� as well.b. I� j= D�ijk: Let i; j 2 N be arbitrary truth values such that i > j and let pkbe an arbitrary atom occurring in � . Assume I�(" i : pk) = true; then I(pk) � iand, thus, I(pk) � j. Therefore, I�(" j : pk) = true; and I� satis�es the clauseD�ijk = " i : pk ! " j : pk. 9



c. I� j= E�ijk: Let i; j 2 N be arbitrary truth values and let pk be an arbitraryatomoccurring in � . Assume that both I�(" i : pk) = true and I�(" j : pk) = true;then I(pk) � i, I(pk) � j and, thus, I(pk) � i t j. Thus, I�(" i t j : pk) = true,which implies that I� satis�es the clause E�ijk.2. If-part: Assume that the classical interpretation I� satis�es � �. De�ne theinterpretation I for all propositional variables p 2 � byI(p) =Gfi 2 N j I�(" i : p) = trueg(by de�nition, F ; = ?). The interpretation I is well de�ned because in a latticethe supremum F is well de�ned.It remains to be shown that I j= � . For that is su�ces to show that, for alltruth values i 2 N n f?g and all atoms p occurring in � : I satis�es " i:p (regardedas a signed atom) if and only if I� satis�es " i : p (regarded as a classical atomin ��); because then, if C is an arbitrary clause in � and I satis�es all atomsin the body of C (otherwise C is trivially satis�ed by I), then I� satis�es allatoms in the body of C and, since I� j= C, it satis�es the head of C, which thenimplies that I satis�es the head of C and, therefore, the whole clause C.The case i = ? can be excluded, because we have made the assumption thatthe sign "? does not occur in � .a. To prove that I j= " i : p if I� j= " i : p, assume the latter, i.e., I�(" i : p) = true.Then, by de�nition of I, we have I(p) � i, which immediately implies thatI j= " i : p.b. To prove that I j= " i : p only if I� j= " i : p, assume the former, i.e., I(p) � i;by de�nition of I this implies FM � i where M = fj 2 N j I�(" j : p) = trueg.If M were empty, then FM = ? and, thus, ? � i; this, however, would im-ply i = ?, which contradicts the assumption i 6= ?. Thus M is non-empty, andLemma 2 applies toM ; thus, we have I�("FM : p) = true. Now, since FM � i,the Lemma 1 applies to the truth valuesFM and i. Therefore, I�(" i : p) = true,i.e., I� j= " i : p. ut4.4 Regular Unit ResolutionIn this section we de�ne a regular unit resolution calculus and prove its complete-ness for regular Horn clauses. The calculus is based on the following inferencerules:Positive Regular Unit Resolution (PRUR)! " i : p" i1 : p1; : : : ; " il : p; : : : ; " ik : pk ! " j : q" i1 : p1; : : : ; " il�1 : pl�1; " il+1 : pl+1; : : : ; " ik : pk ! " j : qprovided that i � il.Regular Reduction (RR) ! " i : p! " j : p! " (i t j) : pprovided that neither i � j nor j � i. 10



Theorem 5. A regular Horn formula � is unsatis�able if and only if there existsa derivation of the empty clause from � using the calculus formed by the PRURrule and the RR rule.Proof. Theorem 4 states that � is satis�able if and only if � � is satis�able.Thus, we know that � is unsatis�able if and only if there exists a derivationof the empty clause from � � using classical positive unit resolution (PUR),since this rule is refutation complete for classical Horn formulas. We prove, byinduction on the number n of deduction steps in that derivation using one of theadditional clauses that are in � � but not in � , that it is possible to constructfrom a classical (PUR) derivation of the empty clause from � � a deduction ofthe empty clause from � using the PRUR and RR rule.n = 0: In this case, the classical deduction using the PUR rule is a signeddeduction using the PRUR rule.n� 1! n: We concentrate on the last PUR deduction step involving one of theadditional clauses in � �; two situations can arise:1. In that step ! " j : p is deduced from ! " i : p and " i : p ! " j : p, wherei � j. This step is deleted from the derivation. To regain a proper deduction, inevery PUR rule application with ! " j : p as one of the premisses, this premissis replaced by ! " i : p, which yields a proper PRUR application.2. In that step " j : p ! " (i t j) : p is deduced from the clauses ! " i : p and" i : p; " j : p ! " (i t j) : p, where neither i � j nor j � i. This clause is onlyrelevant if it is used later on for deriving ! " (i t j) : p from ! " j : p and" j : p ! " (i t j) : p; otherwise we can delete this step. Both steps can be re-placed by an application of the RR rule to the clauses ! " i : p and ! " j : p.In both cases at least one critical usage of one the additional clauses in � � isremoved, and the induction hypothesis applies to the resulting derivation. utOur regular reduction rule can be seen as an improvement of the reductionrule presented in [9]. Whereas they provide a top down, Prolog-like proof pro-cedure, we have de�ned a bottom-up procedure based on unit resolution. Analternate solution with an extended notion of signs that avoids reduction rulesaltogether can be found in [10]. In [9,10], however, complexity issues are notdiscussed.4.5 In�nite Truth Value LatticesAll the results of this section so far have only been proven for �nite truth valuelattices; for example, it is essential for the proof of Lemma 2 that the set of truthvalues is �nite.Nevertheless, the results apply in many cases to in�nite truth value latticesas well, because it su�ces to consider the sub-lattice that is generated by thetruth values actually occurring in a formula and the bottom element.De�nition 7. Given a regular Horn formula � over a (possibly in�nite) truthvalue lattice (N;�), let (N� ;�) be the sub-lattice of (N;�) generated by theelements fi 2 N j i occurs in �g [ f?g11



The following theorem states that if the satis�ability of a formula � is to bechecked, it su�ces to only consider the truth value lattice (N� ;�). Thus, if N�is �nite and e�ectively computable for all � , then all results of this section canbe made use of by considering the lattice (N� ;�) instead of (N;�).Theorem 6. Let � be a regular Horn formula over a (possibly in�nite) truthvalue lattice (N;�). The formula � is satis�able by an interpretation over thelattice (N;�) if and only if it is satis�able over the lattice (N� ;�).Proof. The if-part of the theorem is trivially true, because every interpretationover (N� ;�) is an interpretation over (N;�) as well.To prove the only-if part, assume that the N -interpretation I satis�es � .De�ne the N� -interpretation I� for all atoms p 2 � by I� (p) = FMp whereMp = fi 2 N� j I(p) � ig. It su�ces to show that for all truth values i occurringin � (and thus in N� ): I j= " i : p if and only if I� j= " i : p.a. Assume that I j= " i : p, i.e., I(p) � i. Then, i 2Mp and, by de�nition of I� ,we have I� (p) � i and, thus, I� j= " i : p.b. Assume that I� j= " i : p, i.e., I� (p) � i. Since I(p) � j for all j 2Mp, wehave I(p) � FMp = I� (p) � i and, thus, I j= " i : p (note that the supremumoperator t is the same in both lattices). utSince the formula � is �nite, the set of elements generating (N� ;�) is �niteas well. Therefore, the sub-lattice (N� ;�) is �nite if (N;�) is locally �nite, i.e.,if every sub-lattice generated by a �nite subset is �nite. This is, for instance, thecase if the lattice (N� ;�) is distributive.4.6 Extension to Partial Orders with MaximumOne of the main advantages of our transformational approach to signed logic isthat it becomes completely transparent which additional deductive machinery isrequired as compared to the classical case. This becomes clearer even when wego beyond lattice-based regular Horn formulae.We start with two considerations that somewhat limit the terrain. A corefeature of any e�cient deduction procedure for Horn formulae is the possibility torepresent the conjunction of two unit clauses as a single unit clause as witnessedby the reduction rule in the previous section. This amounts to saying that signsof atoms must be closed under conjunction. When signs are upsets this conditioncan be expressed as:For all i; j 2 N there is a k 2 N such that " i \ " j = "k (1)It is easy to show that non-empty, �nite posets with (1) are already uppersemi-lattices. Therefore, it is inevitable to generalize the language of signs if wewant to go beyond lattices.Proof. Assume there was no m 2 N such that m � i and m � j. Then" i \ " j = ;, contradiction.Now assume i; j are covered by incomparable m;m0 2 N with m 6= m0 and" i \ " j = " k. Then fm;m0g � " k. As m;m0 are incomparable, k is di�erentfrom both. On the other hand, by de�nition of k, k � i and k � j, so m;m0 donot cover i; j. The proof is illustrated in Fig. 1. ut12



m m0ki jFig. 1.A natural candidate for an enriched language of signs are �nite unions ofupsets which can also be seen as �nitely generated �lters. In the following wewrite " fi1; : : : ; ikg instead of " i1 [ � � � [ " ik and similar for #. We extend ournotion of regularity (and hence of Horn formulae) as follows:De�nition 8. If a sign S is of the form " fi1; : : : ; ikg or #fi1; : : : ; ikg for somefi1; : : : ; ikg � N and k � 1, then it is called a regular sign.A signed clause is called regular if it contains regular atoms with signs onlyof the form "fi1; : : : ; ikg.4 A signed CNF formula is called regular if it onlycontains regular clauses. A regular clause containing at most one regular atomwith positive polarity is a regular Horn clause. A regular CNF formula consistingsolely of regular Horn clauses is a regular Horn formula.The next question is which partial orders can be captured if we want toretain an e�cient decision procedure for regular Horn formulae. One such nec-essary condition is that there must be a maximum >. To see this consider N =ffalse; trueg with false 6� true and true 6� false. In this case ffalseg = "ffalsegand ftrueg = " ftrueg, so each classical CNF clause can be expressed as a regularHorn clause. Given C = p1; : : : ; pk ! q1; : : : ; ql, simply rewrite C, for example,into:" ftrueg : p1; : : : ; "ftrueg : pk; "ffalseg : q1; : : : ; "ffalseg : ql�1 ! "ftrueg : qlHence, we cannot expect to obtain a polynomial decision procedure for suchHorn formulae. The problem is that by conjoining regular signs " false and " truewe can express falsity at any time on the object level which is as good as to admitcontrapositives of clauses.Finally, we sketch how partial orders with maximum lead to a reasonablenotion of generalized Horn formulae. This can be done via a reduction to lattice-based Horn formulae handled in the previous sections. For a partial order (N;�)with maximum > consider the lattice F+(N ) of its non-empty order �lters. Itselements can be represented as the non-empty anti-chains of (N;�), that isfS j ; 6= S � N; for all i; j 2 S : if i 6= j then i 6� j; j 6� ig :The order v on F+(N ) is de�ned as S v S0 i� * S � *S0, where *S is the�lter generated by S in N . To apply the results of the previous sections it issu�cient to show:Proposition 1. A regular literal "S : p is satis�able w.r.t. a poset with maxi-mum (N;�) i� it is satis�able w.r.t. the lattice F+(N ).54 The remark at the end of Section 2.2 applies here as well.5 In the latter case, of course, S is interpreted as a single lattice element in F+(N).13



Proof. Assume I j= "S : p in (N;�), say I(p) = i 2 "S. By a standard resulton posets [2], *S = * S0 for an anti-chain S0. Every singleton over N is an anti-chain, so fig is an element of F+(N ). Moreover, S0 v fig, therefore we haveI� j= "S : p in F+(N ), with I�(p) = fig.Vice versa, assume I j= "S : p in F+(N ), with I(p) = S0 2 "S : p, so*S0 � *S by de�nition. Let i 2 S0 be arbitrary. We have i 2 *S0 � *S, hencewith I�(p) = i we certainly have that I� j= "S : p in (N;�). utThere is a price to pay for the increased generality: The lattice F+(N ) canbe considerably larger than the poset (N;�), in the worst case exponentiallylarger. This proves:Theorem 7. Regular Horn SAT formulae based on posets with maximum canbe solved in time linear in the size of the formula and exponential in the size ofthe truth value set.Example 3. Consider the poset N depicted on the left in Fig. 2. The latticeF+(N ) is shown on the right. It can be seen as a lattice-completion of N .>i0 j0i j f>gfi0g fj0gfi0; j0gi jfi; jgFig. 2.From a deductive point of view it is important to compute the supremum tand v in F+(N ), because these are required in the reduction and unit resolutionrule, respectively.Let *S = * fi1; : : : ; ikg and *S0 = * fj1; : : : ; jlg be given. We denote withmax(i; j) the set of minimal elements above i and j in N w.r.t. �. Now S tS0 = * S \ * S0 = fk j k 2 max(i; j); i 2 S; j 2 S0g. From the resultingset any elements not minimal in it can be deleted to arrive at an anti-chainrepresentation. Finally, S v S0 i� *S � *S0 i� for all jr 2 S0 there is a is 2 Ssuch that is � jr .5 Future WorkAn investigation of the lattice theoretic aspects of lattice-based regular Hornformulae could lead to useful new results. In particular, the in�nite case, forwhich only �rst ideas have been presented in Section 4.5, representation theoryand dualities should be further studied.14
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