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Abstract. In the last years two automated reasoning techniques for
clause normal form arose in which the use of labels are prominently
featured: signed logic and annotated logic programming, which can be
embedded into the first. The underlying basic idea is to generalize the
classical notion of a literal by adorning an atomic formula with a sign or
label which in general consists of a possibly ordered set of truth values.
In this paper we relate signed logic and classical logic more closely than
before by defining two new transformations between them. As a byprod-
uct we obtain a number of new complexity results and proof procedures
for signed logics.

1 Introduction

In the last years two automated reasoning techniques for clause normal form
arose in which the use of labels are prominently featured: from generic treat-
ments of many-valued logic, so-called signed logic emerged (see, for example, [7,
8,4,5,15,16]) while annotated logic programming (see, for example, [13,9,10])
was motivated by attempts to deal with inconsistency in deductive databases.
Both approaches are closely connected to each other [14,11] and to constraint
logic programming [12]. Tn fact, annotated logic can be embedded into signed
logic [14].

In any case the underlying basic idea is to generalize the classical notion of
a literal by adorning an atomic formula with a sign or label which in general
consists of a finite set of (truth) values. Whenever the values appearing in the
signs are partially ordered, polarities can be assigned to signed literals in a
natural way which gives rise to generalized notions of a Horn set. Tt turns out
that many problems can be represented more succinctly using formulae over
signed literals whose proof procedures and complexity are often (but not always)
similar as in classical logic.

In the present paper we relate signed logic and classical logic more closely
than 1t has been done before. This is done by defining two new transformations
between them. After formal definition of some basic notions in the next section
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we start in Section 3 with transforming arbitrary classical formulae in conjunc-
tive normal form (CNF) into signed CNF formulae with at most two literals per
clause. This provides an alternative proof of NP-hardness of signed 2-SAT (first
proved by [15]) and creates the possibility to compare classical and signed deduc-
tion procedures experimentally. In Section 4.1 we take the reverse direction and
reduce signed Horn formulae based on certain partial orders to classical logic.
In the case of lattice orders this yields the new result that generalized Horn
problems turn out to have still polynomial complexity with respect to formula
size and number of truth values (Section 4.2). We can also extract an efficient
decision procedure based on generalized unit resolution (Section 4.4). A major
advantage of our reduction to classical logic is that it scales up: we demonstrate
this by sketching generalizations to infinite orders in Section 4.5 and to partial
orders that are not lattices in Section 4.6.

2 Basic Definitions

2.1 Syntax of Signed Logic

Definition 1. A truth value sett N is a finite set {i1,4a,...,1n}, where n € N.
The cardinality of N is denoted by |N|.

Definition 2. et X be a propositional signature, that is, a denumerable set of
propositional variables. We define the set of atomic signed formulae (or signed
atoms for short) as the following set:

{S:pi

SCN,p e X}

Definition 3. Given a signed atom S :p, then S is said to be its sign. Let >
be a partial order on the truth value set N, let 14 denote the set {j € N | j > i}
and let |7 denote the set {j € N | j <i}. If a sign S is equal to either 11 or |1,
for some 1 € N, then it is called a regular sign. A signed atom with a reqular
sign is called a regular atom.

Definition 4. A signed clause (' is an expression of the form
Stipr, oo, Sk ipe — S’{ 1q1,...,Ag,{:q,

where Sy :pr, .., Sg:pr and S| qu, ..., 5] q are signed atoms and k1> 0.
The signed atoms Sy :py, ..., Sk :pi are said to occur in C' with negative po-
larity, and the signed atoms Sy :q1,...,S] :qi are said to occur with positive
polarity. The expression on the left of — is called the body of the clause and
the erpression on the right is called the head. A signed formula in conjunctive
normal form (CNF) is a finile set of signed clauses.

A signed clause is called regular if (N,>) is a lattice and it only contains
reqular atoms with signs of the form 14.' A signed ONF formula is called regular
if 1t only contains reqular clauses. A reqular clause containing at most one atom
with positive polarity is a regular Horn clause. A reqular CNF formula consisting
solely of reqular Horn clauses 1s a regular Horn formula.

! Regular clauses could also be defined containing only signs of the form | i instead
of signs of the form 1:1. The results of this paper are also valid for regular clauses
defined that way.



Note that in clauses both k=0 and | = 0 is allowed; thus, p,¢ — () and
() = p,q are signed clauses, and we represent them by p,¢g — and — p,q.
When k= 0 and [ = 0 we have the signed empty clause, denoted by 0.

Definition 5. The length of a signed atom S : p, denoted by |S : p|, is |S|+ 1,
S| denotes the cardinality of S. The length of a signed clause (', denoted
by |C|, is the sum of the lengths of the signed atoms occurring in C'. The length
of a signed CNF formula I", denoted by |I'|, is the sum of the lengths of the
clauses of T'.

where

2.2 Semantics of Signed Logic

Definition 6. An interpretation is a mapping that assigns to every proposi-
tional variable of X a truth value of N. An interpretation I satisfies a signed
atom S :p, in symbols T |= S :p, iff I(p) € S. An interpretation T satisfies a
signed clause C'= 57 tp1,..., Sk ip = Sy g1, ..., S tqu, in symbols T = C, iff
the following condition holds: If I satisfies all the signed atoms Sy 1 p1, ..., Sk : Pk
then T satisfies at least one of the signed atoms Sy : q1,..., 5] 1 qi. A signed CNF
formula T 1s satisfiable iff there exists an interpretation I that satisfies all the
signed clauses in I'. We say then that T is a model of T' and we write I = T.
A signed CNF formula that is not satisfiable 1s unsatisfiable. The signed empty
clause 1s always unsatisfiable and the signed empty CNF formula is always sat-

1sfiable.

Note that T satisfies — 7 :qq,...,5] ¢ iff it satisfies at least one of the
signed atoms S7 1 ¢1,...,5] : q; and T satisfies Sy :pr,..., Sk :pr — iff it does
not satisfy all the signed atoms Sy :p1,..., Sk : .

Observe that if we take N = {true, false}, assuming true > false, and con-
sider only regular atoms of the form 1 true : p, then we obtain the logic of classical
conjunctive normal forms: 1 true : p is equivalent to the classical atom p if it oc-
curs with positive polarity, and to the negated classical atom —p if 1t occurs with
negative polarity. So, the classical clause py, ..., pr — ¢1,...,q; 18 equivalent to
the regular clause 1 true:py,...,Ttrue:p, — tirue:qq,...,Ttrue:q. In the
following, when we refer to classical clauses we use the former notation.

In classical propositional logic, clauses are also defined as a finite disjunction
of literals (i.e. signed atoms or negated signed atoms). Tt is easy to see from
the previous definitions that py, ..., px — ¢1,...,q 18 logically equivalent to
apr V-V oopE Vg V-V ogr. So, classical atoms occurring with negative po-
larity are implicitly negated. Tn our definition of signed clauses, signed atoms
occurring with negative polarity are also implicitly negated in the sense that a
signed atom S : p with negative polarity is satisfied by an interpretation T iff
T~ S :p When we focus on the subclass of regular clauses we take the same
approach: We consider regular atoms with a sign of the form 17 and we have
that an occurrence of 14 : p with negative polarity is satisfied by an interpreta-
tion T iff T }£ 17 :p. The same holds when regular clauses contain only atoms of
the form | 7 :p. Nevertheless, we do not define regular clauses as a disjunction of
regular atoms with arbitrary regular signs since, as we assume a partial order >
on N, an occurrence of 717 :p with negative polarity is not, in general, logically
equivalent to | j: p for some j € N. If we assume a total order, then it holds and
it 1s usual to represent regular clauses as a disjunction of regular atoms.



2.3 Satisfiability Problems

The propositional satisfiability (SAT) problem is the problem of determining
whether a classical CNF formulais satisfiable, and 1s known for being the original
NP-complete problem [1]. However, there exist linear-time algorithms for solving
the SAT problem when we consider Horn formulae (Horn SAT) [3] or CNF
formulae with only two literals per clause (2-SAT) [6]. When the CNF formula
has three literals per clause (3-SAT), it is again an NP-complete problem.

In the last years, some results about the complexity of the propositional sat-
isfiability problem for signed CNF formulae (signed SAT) have been published.
The signed SAT problem? and the signed 2-SAT problem [15] are NP-complete,
but when signs are singletons the signed 2-SAT problem (monosigned 2-SAT) [15]
is polynomially solvable. Concerning the regular case, it 1s known that the regular
Horn SAT problem [8,4] and the regular 2-SAT problem [15] are both polyno-
mially solvable when the partial order defined over the set of truth values is
total.

3 Transforming Classical SAT into Signed 2-SAT

3.1 The Transformation

In this section, we define a mapping ’ transforming classical CNF formulae into
signed (non-regular) 2-CNF formulae; and we prove that it is a poly-time reduc-
tion.

The mapping ’ is defined as follows: Let I be a classical CNF formula with
clauses Cy,...,C, (r > 1) over a signature X. Assume that pi, ... ps (s> 1)
are the propositional variables occurring in 77; thus, the clauses in " are of the

form?

Cm, = pim,1 [ p7m,km - p,fm,,1 L p]'m,lm -

We associate with ' a signed 2-CNF formula 7/ over the truth value sef
N =Apy,...,p5,pf,...,p+} and signature 3 = {p),... p.}, i.e., the truth val-
ues are the classical atoms annotated with the two possible polarities — and +,
and for each clause C,, in I there is a propositional variable p/ in X’. The idea
is that pj,, has the truth value pf resp. p; in a (non-classical) interpretation I’ if
the classical atom p; is the one that makes the clause (U, true in the correspond-
ing classical interpretation T; that is, I'(pl,) = p; if p; is false in T and occurs
with negative polarity in C,, and '(pl,,) = pf if p; is true in T and occurs with
positive polarity in C,. An atom can only have a single truth value whereas a
clause (', can be “made true” by more than one of its literals, in which case an
arbitrary one may be chosen to be the truth value of p/,..

For each clanse Cpy =i 1\ - Pips, = Pjmas---sPjny,, 10 1 there is a
singleton clause ' '

(Crn) = Api, P PR e PE L Y,

in .

2 Tt is straightforward to see the NP-hardness of the signed SAT problem by proving
that the classical SAT problem is polynomially reducible to it.

? Note, that the atoms in I" are actually signed atoms of the form 1 true:p; but, as said
in Section 2, the signs are not shown in representations of classical CNF formulae.



The signed atom in (7, represents the fact that (), (the m-th clause of ')
is made true. Thus I represents only satisfying truth assignments of I

This is, of course, not enough. We must ensure that '’ in fact represents
solely such truth assignments for atoms in " which are consistent or, in usual
terminology, which are well-defined interpretations. For this purpose, '’ contains
the following additional clauses for all (classical) clauses €, and C,, in T resp.
for all propositional variables p/, and p, in ¥’ (1 < m,n < r) and for all atoms
resp. truth values p; (1 <i < s):

(Drani) APy o = (v, o--oomiy o Ph ool YNADT D) i
! ni €xpress that if an atom is used with positive polarity to
“make true” some clause (', of I, then it cannot be used with negative polarity
to “make true” any other clause of T

The clause D!

mni

The signed clauses 1)

may be omitted from '’ if p; does not occur with positive
polarity in (), or does not occur with negative polarity in (),
Tnstead of the clauses D! . the clauses

(Foani)  Apiyevh = (pi, oooomp, o opf oeoopd  INARTY 1),

can be used. The proof of Theorem 2 shows that 1t is indeed sufficient to either

use only the clauses 1’ /

foni OF only the clauses E/ ..

Erample 1. Consider the classical CNF formula I" consisting of the clauses

() p—gq
(Cy) g —p
(Cs) — P g

The only model of T is the interpretation T with I(p) = I(q) = true. The result of
transforming I is a signed 2-SAT formula I over the signature X' = {p!, p,, ph}
and using the truth value set N = {p~,¢~,p*,q*}; T’ consists of the clauses

C1) = {p ¢t}

5) — {a 7, p*}iph

%) — {p*, g}k
) Aptrioph = {gt}p

Diyy) Apthips = {ot)m
I Ul B A A
) ety = {pt)iph

Tn (non-classical) interpretations I’ satisfying I’ the truth value of pj is ¢,
and the truth value of pf, is p*. The truth value of p3 can be either p* or ¢,
according to the fact that both atoms in the clause (3 are satisfied by the
classical interpretation 7.

3.2 Results

The size of T is easily seen to be

S hm Al +1) + > (bn+l+2) < |T[+r+2%
N — N ——’

T S KDY

mn1,|



where r is the number of clauses in ', and s is the number of different atoms
occurring in I'. As r,s < |I'|, this places || in O(|T']*). Obviously, I'" can be
constructed in time which is linear in its own size and, thus, the time complexity
of its construction is in O(|T"]?).

Theorem 1. The transformation’ is computable in cubic time.

Signed (non-regular) 2-SAT was proven to be NP-hard in [15] by providing a
poly-time reduction from 3-colourability of graphs to signed 2-CNF. As classical
SAT is NP-complete, the same result follows as a corollary from Theorem 1.

Corollary 1. Signed 2-SAT is NP-complete.

An additional benefit of the transformation ’ is that it makes it possible to
compare classical decision procedures with specific procedures for signed CNF.

3.3 Correctness
The following theorem states the correctness of the transformation ’:

Theorem 2. A classical CNF formula I' is satisfiable if and only if T is sat-
1sfiable.

Proof. 1. Only-if-part: Assume that the classical interpretation T satisfies T.
Define the interpretation I’ as follows. In each clause ), € I' there has to be an
atom p such that (1) T(p) = true and p occurs positively in C,,, or (2) I(p) = false
and p occurs negatively in (,, because otherwise (U, were not satisfied by TI.
If there is more than one such atom p in C,,, then choose an arbitrary one. If
(1) holds for p, then define I'(pl,) = p*, otherwise (i.e., if (2) holds for p) define
I'(p,) =p"-

a. I'=CL T I'(pl,) =p* (resp. I'(pl,) = p), then p occurs positively (neg-
atively) in Oy, and, thus, p* (resp. p~) is an element of the truth value sign
attached to pl, in O}, .

b. "= D/,..: Let 1 <m <7 and 1 <i<s be arbitrary. If I'(p],) # p}, then
D...; is trivially satisfied for all n. Otherwise, 7(p},) = p and we must show
that T'(p)) € {P{w RERE p;,,,,k,,’p;:,n’ S p.;rn,zn} \ {p; } for all n. We know that
I'(pl) is in {;D;m1 e p;n’kn,p;:’n, R p;rn,ln}, as I' = C, for all n. Tt remains
to be shown that I'(p},) # p; ; to produce a contradiction, assume T'(pl,) = p;
for some n. By definition of I, this implies I(p;) = false. On the other hand, we

have I'(p},) = pf implying I(p;) = true, which is a contradiction.

2. If-part: Assume that the interpretation I’ satisfies 7. Define the classical
interpretation T for all atoms p € X as follows: if there is an atom p], (1 < m <)
such that I'(pl,,) = p*, then let I(p) = true; otherwise let, I(p) = false. Tt remains
to be shown that 7 satisfies all clauses (), in T".

a. Tt I'(pl,) = p*, then (1) p occurs with positive polarity in C,, (by definition of /
and because I' = (1), and (2) I(p) = true (by definition of T). Thus, T | Cy,.

b. Otherwise, if I'(p],,) = p~, then (1) p occurs with negative polarity in Cy, (for
the same reasons as in (a) above), but now (2) 7(p) = false is harder to show.
Assume the contrary, i.e., I(p) = true; that is only possible if there is an atom p/,
such that 7'(p!) = p*. But then the clause D, . (where p = p;) is not satisfied
by ', which contradicts the assumption that I’ = T, Thus, (2) I(p) = false
holds; and (1) and (2) imply that T = C,,. O



4 Transforming Regular Horn SAT into Classical Horn
SAT

4.1 The Transformation

In this section, we define a mapping * transforming lattice-based regular Horn
formulae into classical Horn formulae; and we prove that it is linear in the size
of the signature and quadratic in the size of the truth-value lattice.

We assume in the following that the formula to be transformed does not
contain a signed atom of the form 1 — : p where — is the bottom element of the
truth value lattice. This is not a real restriction, as such atoms are true in all
interpretations; they can be removed from a formula in linear time preserving
satisfiability as follows: (1) if a clause contains a negative occurrence of 1 — : p,
then remove that occurrence from the clause; (2) if a clause contains a positive
occurrence of 1 — : p, then remove the whole clause from the formula.

The mapping * is defined as follows: Let " be a regular Horn formula over
the truth-value lattice (N, >) not containing the sign 1 —. Let (4, ..., C, be the
clauses in I" (r > 1), let py,...,ps € £ be the propositional variables occurring
in T (s> 1).

We associate with " a classical Horn formula I'™ over the signature

Lr={ti:plie N,pe X},

i.e., the signed atoms includings their signs are used as propositional vari-
ables.

The classical formula I'* contains the clauses CF, = C\, from I' (1 < m < r),
which in 7™ are regarded as classical clauses over X*. In addition, 7™ contains,
for all truth values 7,57 € N and all propositional variables p; occurring in I
(1 S k S 8)7

1. if (a) i > j and (b) there is no j' € N such that i > j' > j, the clause
(Diik) tiipr = ik,
2. 1f neither 2 > 7 nor j > i, the clause

(Fiik) ticpe,tiips = TEUY) ps
where 711 7 is the supremum of 7 and j in the truth value lattice.

As I'* contains the clauses from I, the classical interpretations satisfying 7'
satisfy " as well. The additional clauses D;‘jk and E:‘M ensure that such a classical
interpretation I* over the signature X* corresponds to a well defined interpre-
tation [ over the signature 3.

The clauses D7, represent the fact that, if [ E1i:pg, e, I(pg) > i and
i> 7, then I(pg) > j and T satisfies 17 : pr as well.

The clauses E;}k, on the other hand, represent the fact that, if T satisfies
both 14 :pg and 14 :pg, i.e, T(pg) > i and I(py) > j, then T(pg) > illj and,
thus, T E1(iLj) :pg.

The precondition (a) i > j for the inclusion of the clauses Dy in I s
necessary for the correctness of the transformation; in case not i > j, the clauses
D;‘jk are (in general) not satisfied by arbitrary interpretations. Contrary to that,



the precondition (b) for the inclusion of the D;‘jk and the precondition for the
inclusion of the clauses E:‘M is only needed to avoid redundancies.

The following lemma shows that clauses ;. for values of 4, j violating pre-
condition (b) are redundant. They are true in all interpretations satisfying I'*.
Therefore, their inclusion would not impose any further restriction on the models
of 1.

Lemma 1. Let " be a reqular Horn formula over a signature X, let T* be a
classical interpretation satisfying I'*, let p € X, and let 7, j' be truth values in N
such that j > 7" and T*(1j : p) = true; then T* (17 :p) = true.

Proof. Since j > j' there is a sequence of truth values ji,...,j, € N, ¢ > 1,
such that j = j1 > --- > j, = j" and this sequence is maximal,i.e., for 1 <[ < g,
there is no j; € N such that j; > j/ > jig1. The proof of the lemma proceeds by
induction on g¢.

g = 1: In this case 7 = j/, and the lemma is trivially true.

¢ — ¢ + 1: The induction hypothesis applies to the truth values j and j,. There-
fore, I" (1 jq : p) = true. Because j, > jo41 = j' and there is no ji € N such that
Jq > jg > 7', the formula I'* contains the clause D; ;i (where p = py), which is
satisfied by 7™ and, since T*(1j, : p) = true, this implies I* (17" : p) = true. O

The clauses Ef;,. are tautological (and redundant) if ¢ > j or j > i; in par-
ticular, they are not needed if the ordering > on the truth value set N is total.

According to the following lemma, it is not necessary to include in I'* clauses
of the form 14y 1p, ..., Tig:p = T Hér, ... i} i p for ¢ > 2

Lemma 2. Let I’ be a reqular Horn formula over a signature X, let T* be a clas-
stcal interpretation satisfying I'*, let p € X, and let M C N be a non-empty set of
truth values such that T* (1 j : p) = true forall j € M ; then T* (1| | M : p) = true.

Proof. The lemma. is proven by induction on the size of M.

M = {j}: Since j is the only element of M, we have | |M = j; and because
I*(1j :p) = true for all j € M this immediately implies T*(1| | M :p) = true.

M — M U{j}: By assumption I*(1j:p) = true. The induction hypothesis ap-
plies to M; thus, I* (1] |M :p) = true. 16 § > | | M then | [(M U {j}) = j, and if
|| M > j then | [(M U{j}) = || M; in both cases, I*(1| (M U{j}):p) = true.
Otherwise, if neither j > | | M nor | | M > j, then I'* contains the clause E;j’,k’
where j' =| | M and p = pg. As the interpretation I™ satisfies I'*, it satisfies in
particular £ ., . Thus, I* (TGULIM):p)=true. As jU| M = |(MU{j}),

this implies T (T LI(M U{j}) :p) = true. O

Erample 2. Assume that N = {— T, true, false} and the partial order over N is
the lattice shown on the right below. Given a regular Horn formula I (over sig-
nature X), for each propositional variable p occurring in I we add the following
classical Horn clauses (over the signature £*) to obtain I'*:

TT:p — Ttrue:p

TT:p — tTfalse:p
Ttrue:p — T —:p
Tfalse:p = 1 —:p

ttrue :p,Tfalse :p — 1t T :p

AN
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4.2 Results

The size of '™ is easily seen to have
||+ 35| N|?

as an upper bound where s is the number of different atoms occurring in 7.

As s < |T'|, this places |I'*| in O(|T'||N]?); and, since the time complexity of
constructing '™ is linear in its size, the reduction * is in O(|T'[|N]?).

If the ordering > on the truth value set is total, the size of 7' 18 bounded by

[T+ 25N

because in that case there are only |N| many clauses D, for each kin ' and
no clauses Fj;;i are needed. Then, * is in O(|T'||N]).

Theorem 3. The transformation ™ is computable in time linear in the size of

the transformed formula and quadratic in the size of the truth value set.
If the ordering > 1is total, it 1s linear in both the size of the transformed
formula and the size of the truth value set.

Because classical Horn SAT is linear [3], we get the following new result as a
corollary:

Corollary 2. Regular Horn SAT can be solved in time linear in the size of the
formula and quadratic in the size of the truth value lattice.

In the special case of totally ordered truth values, regular Horn SAT 18 of
even smaller complexity (which was already known, see [8]).

Corollary 3. Regular Horn SAT with totally ordered truth values can be solved
i time linear in both the size of the formula and the size of the truth value set.

4.3 Correctness
The following theorem states the correctness of the transformation *

Theorem 4. A (lattice-based) reqular Horn formula T' is satisfiable if and only
of T 1s satisfiable.

Proof. 1. Only-if-part: Assume that the interpretation T satisfies I'. Define the
classical nterpretation I* as follows. For all i € N and all atoms p e 3, if
I(p) > i (ie, if T E1i:p), let I*(1i:p) = true, otherwise let I*(1i:p) = false.
Obviously, 7* is a well defined classical interpretation for the signature 3*; it
remains to be shown that * |= .

a. I* = C, : By definition, the classical interpretation 7* satisfies an atom 1i:p €
X (regarded as an element of £*) if and only if the interpretation T satisfies 1i:p
(regarded as a signed atom). Thus, as I satisfies the clauses (U, , they are satisfied
by I'* as well.

b. I* | D;‘M: Tet 7,7 € N be arbitrary truth values such that 7 > 7 and let pg
be an arbitrary atom occurring in I". Assume T*(1i:pg) = true; then T(pg) > @
and, thus, T(pg) > j. Therefore, I*(1j :pg) = true; and T* satisfies the clause

D::}k =tiipe = 1TJpe



c. I* | E:‘M Tet 7,7 € N be arbitrary truth values and let p; be an arbitrary
atom occurring in I'. Assume that both 7*(11i : pg) = true and T*(1j : pr) = true;
then T(pg) > 1, I(px) > j and, thus, T(pg) > iU j. Thus, I*(Tillj:pg) = true,
which implies that 7* satisfies the clause E:‘M

2. If-part: Assume that the classical interpretation 7™ satisfies I'™*. Define the
interpretation T for all propositional variables p € 3 by

T(p) :|_|{i€ N | T*(1i:p) = true}

(by definition, | | = —). The interpretation 7 is well defined because in a lattice
the supremum | | is well defined.

Tt remains to be shown that T |= I". For that is suffices to show that, for all
truth valuesi € N \ {—} and all atoms p occurring in T': T satisfies 1 i:p (regarded
as a signed atom) if and only if T* satisfies 17 : p (regarded as a classical atom
in £*); because then, if ' is an arbitrary clause in T and T satisfies all atoms
in the body of ' (otherwise ' is trivially satisfied by T), then T* satisfies all
atoms in the body of C' and, since I* |= (U, it safisfies the head of ', which then
implies that T satisfies the head of (' and, therefore, the whole clause C.

The case 1 = — can be excluded, because we have made the assumption that
the sign T — does not occur in I,

a. To prove that T |= 1i:pif I* =114 :p, assume the latter, i.e., I* (14 :p) = true.
Then, by definition of T, we have I(p) >, which immediately implies that
ITEti:p.

b. To prove that T =1i:p only if T* =11 : p, assume the former, i.e., T(p) > i
by definition of T this implies | | M > i where M = {j € N | I"(1j :p) = true}.
If M were empty, then | [ M = — and, thus, — > 4; this, however, would im-
ply ¢ = —, which contradicts the assumption i # —. Thus M is non-empty, and
TLemma 2 applies to M; thus, we have I* (1| | M : p) = true. Now, since | | M > 1,
the TLemma 1 applies to the truth values | | M and i. Therefore, I*(11i : p) = true,
e, I* =1i:p. O

4.4 Regular Unit Resolution

In this section we define a regular unit resolution calculus and prove its complete-
ness for regular Horn clauses. The calculus is based on the following inference
rules:

Positive Regular Unit Resolution (PRUR)

— Ti:p
Th :p17"'7Til:p7"'7Tik:pk — T]q
Toipn, Mo = T o, T e = i g

provided that ¢ > 4.
Regular Reduction (RR)

— Ti:p
—tj:p
= 1) :p

provided that neither 7 > j nor j > 1.
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Theorem 5. A reqular Horn formula I is unsatisfiable of and only if there erists
a derivation of the empty clause from I' using the calculus formed by the PRUR
rule and the RR rule.

Proof. Theorem 4 states that T is satisfiable if and only if '™ is satisfiable.
Thus, we know that ' is unsatisfiable if and only if there exists a derivation
of the empty clause from I'* using classical positive unit resolution (PUR),
since this rule is refutation complete for classical Horn formulas. We prove, by
induction on the number n of deduction steps in that derivation using one of the
additional clauses that are in I'* but not in I, that it is possible to construct
from a classical (PUR) derivation of the empty clause from I'* a deduction of
the empty clause from 7" using the PRUR, and RR rule.

n = 0: Tn this case, the classical deduction using the PUR rule is a signed
deduction using the PRUR rule.

n— 1 = n: We concentrate on the last PUR deduction step involving one of the
additional clauses in 7™ two situations can arise:

1. Tn that step — 17 :pis deduced from — ti:pand ti:p — 17 :p, where
2 > j. This step 1s deleted from the derivation. To regain a proper deduction, in
every PUR rule application with — 1j : p as one of the premisses, this premiss
is replaced by — 117 :p, which yields a proper PRUR, application.

2. Tn that step 17 :p — 1 (iU j) :p is deduced from the clauses — 17:p and
ti:p,tji:p — t(iUj) :p, where neither ¢ > j nor j > 4. This clause is only
relevant if it is used later on for deriving — (iU j):p from — 1j:p and
17:p — 1(iUJ) : p; otherwise we can delete this step. Both steps can be re-
placed by an application of the RR rule to the clauses — ti:pand — 1j5:p.

In both cases at least one critical usage of one the additional clauses in '™ is
removed, and the induction hypothesis applies to the resulting derivation. 0

Our regular reduction rule can be seen as an improvement of the reduction
rule presented in [9]. Whereas they provide a top down, Prolog-like proof pro-
cedure, we have defined a bottom-up procedure based on unit resolution. An
alternate solution with an extended notion of signs that avoids reduction rules
altogether can be found in [10]. Tn [9,10], however, complexity issues are not
discussed.

4.5 Infinite Truth Value Lattices

All the results of this section so far have only been proven for finite truth value
lattices; for example, it is essential for the proof of Lemma 2 that the set of truth
values is finite.

Nevertheless, the results apply in many cases to infinite truth value lattices
as well, because it suffices to consider the sub-lattice that is generated by the
truth values actually occurring in a formula and the bottom element.

Definition 7. Given a regular Horn formula ' over a (possibly infinite) truth
value lattice (N,>), let (N, ,>) be the sub-lattice of (N,>) generated by the
elements

{i € N |ioccursin '} U{—}

11



The following theorem states that if the satisfiability of a formula 7" is to be
checked, it suffices to only consider the truth value lattice (N, |, >). Thus, if N,

is finite and effectively computable for all 7', then all results of this section can
be made use of by considering the lattice (N, ,>) instead of (N, >).

Theorem 6. Let T' be a reqular Horn formula over a (possibly infinite) truth
value lattice (N,>). The formula T' is satisfiable by an interpretation over the
lattice (N, >) if and only if it is satisfiable over the lattice (N, ,>).

Proof. The if-part of the theorem is trivially true, because every interpretation
over (N ,>) is an interpretation over (N, >) as well.

To prove the only-f part, assume that the N-interpretation [ satisfies T.
Define the N, -interpretation I, for all atoms p € X by I, (p) =| | M, where
M, ={i € N, | I(p) > i}. Tt suffices to show that for all truth values i occurring
in I (and thusin N, ): TE=fi:pifand onlyif I, E1i:p.

a. Assume that T }=1i:p, i.e., I(p) > i. Then, i € M, and, by definition of I, |
we have I, (p) > i and, thus, I, = 1i:p.

b. Assume that 7, =1i:p, i.e, I, (p) > 4. Since I(p) > j for all j € M,, we
have I(p) > | |M, = I, (p) > ¢ and, thus, T = 1i:p (note that the supremum
operator Ll is the same in both lattices). 0

Since the formula T is finite, the set of elements generating (N, |, >) is finite
as well. Therefore, the sub-lattice (N, , >) is finite if (N, >) is locally finite, i.e.,

if every sub-lattice generated by a finite subset is finite. This is, for instance, the
case if the lattice (N, ,>) is distributive.

4.6 Extension to Partial Orders with Maximum

One of the main advantages of our transformational approach to signed logic 1s
that it becomes completely transparent which additional deductive machinery is
required as compared to the classical case. This becomes clearer even when we
go beyond lattice-based regular Horn formulae.

We start with two considerations that somewhat limit the terrain. A core
feature of any efficient deduction procedure for Horn formulae is the possibility to
represent the conjunction of two unit clauses as a single unit clause as witnessed
by the reduction rule in the previous section. This amounts to saying that signs
of atoms must be closed under conjunction. When signs are upsets this condition
can be expressed as:

For all 7,7 € N there is a k € N such that tintj =1k (1)

Tt is easy to show that non-empty, finite posets with (1) are already upper
semi-lattices. Therefore, 1t 1s inevitable to generalize the language of signs if we
want to go beyond lattices.

Proof. Assume there was no m € N such that m > ¢ and m > j. Then
tintj =0, contradiction.

Now assume 7, j are covered by incomparable m,m’ € N with m # m’ and
tiNtj="1%. Then {m,m'} C Tk. As m, m’ are incomparable, k is different
from both. On the other hand, by definition of k, k >4 and k > j, so m, m’ do
not cover 4, j. The proof 1s illustrated in Fig. 1. 0

12
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A natural candidate for an enriched language of signs are finite unions of
upsets which can also be seen as finitely generated filters. In the following we
write 1{71,...,7x} instead of 147 U ---U 14, and similar for . We extend our
notion of regularity (and hence of Horn formulae) as follows:

Definition 8. If a sign S s of the form T {i1, ... i} or L{i1, ... ix} for some
{i1, ..., i} C N and k > 1, then it is called a regular sign.

A signed clause is called regular if it contains reqular atoms with signs only
of the form 1t1{iy, ... ix}.* A signed CNF formula is called reqular if it only
contains reqular clauses. A reqular clause containing at most one reqular atom
with positive polarity is a regular Horn clause. A reqular CNF formula consisting
solely of reqular Horn clauses 1s a regular Horn formula.

The next question is which partial orders can be captured if we want to
retain an efficient decision procedure for regular Horn formulae. One such nec-
essary condition is that there must be a maximum T. To see this consider N =
{false, true} with false < true and true £ false. Tn this case {false} = 1{false}
and {true} = 1 {true}, so each classical CNF clause can be expressed as a regular
Horn clause. Given C' = py,...,pr — ¢1,...,q;, simply rewrite (, for example,
nto:

titruet s pr, .. T {truet s pe, M false} g, . M {false} g1 — T {true} 1 ¢

Hence, we cannot expect to obtain a polynomial decision procedure for such
Horn formulae. The problem is that by conjoining regular signs 1 false and 1 frue
we can express falsity at any time on the object level which is as good as to admit
contrapositives of clauses.

Finally, we sketch how partial orders with maximum lead to a reasonable
notion of generalized Horn formulae. This can be done via a reduction to lattice-
based Horn formulae handled in the previous sections. For a partial order (N, <)
with maximum T consider the lattice F+¥(N) of its non-empty order filters. Tts
elements can be represented as the non-empty anti-chains of (N, <), that is

{S|10ASCN, foralli,jeS: ifi#jtheniLy, jLi} .

The order C on FT(N) is defined as S T S iff 15D 45, where ft S is the
filter generated by S in N. To apply the results of the previous sections it is
sufficient to show:

Proposition 1. A reqular literal 15 : p is satisfiable w.r.t. a poset with maxi-
mum (N, <) iff it is satisfiable w.r.t. the lattice FT(N).?

* The remark at the end of Section 2.2 applies here as well.
5 In the latter case, of course, S is interpreted as a single lattice element in T+(N).
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Proof. Assume T =15 :pin (N,<), say I(p) =i € 1 5. By a standard result
on posets [2], 1.5 =15 for an anti-chain S’. Every singleton over N is an anti-
chain, so {i} is an element, of FT(N). Moreover, S’ T {i}, therefore we have
I E1S:pin FH(N), with I*(p) = {i}.

Vice versa, assume [ = 15 : pin FH(N), with I(p) = ' € +5 : p, so
18" C IS by definition. Let i € S’ be arbitrary. We have i € 1.5 C !} S, hence
with 7*(p) = i we certainly have that I* =15 :pin (N, <). O

There is a price to pay for the increased generality: The lattice FT(N) can
be considerably larger than the poset (N, <), in the worst case exponentially
larger. This proves:

Theorem 7. Regular Horn SAT formulae based on posets with marimum can
be solved in time linear in the size of the formula and exponential in the size of
the truth value set.

Frample 3. Consider the poset N depicted on the left in Fig. 2. The lattice
FT(N) is shown on the right. Tt can be seen as a lattice-completion of N.

T {T}
1/ \7 {1?’}/ \{j’}
N
? 7 17/ \j
Nt

Fig. 2.

From a deductive point of view it is important to compute the supremum LI
and C in FT(N), because these are required in the reduction and unit resolution
rule, respectively.

Tet 1S =N {ir,...,it and ¥5" = N1 {j1,..., 751} be given. We denote with
max(i,j) the set of minimal elements above i and j in N w.r.t. <. Now S LU
ST =N0NSnNNS = {k | k € max(i,j), i € S, j € S'}. From the resulting
set any elements not minimal in it can be deleted to arrive at an anti-chain
representation. Finally, S C S iff S D 4.5 iff for all j. € S’ there isa i, € S
such that 7, < j,.

5 Future Work

An investigation of the lattice theoretic aspects of lattice-based regular Horn
formulae could lead to useful new results. ITn particular, the infinite case, for
which only first ideas have been presented in Section 4.5, representation theory
and dualities should be further studied.
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As another line of work, experiments should be carried out to compare specific
decision procedures for regular Horn formulae with procedures based on applying
the transformation * defined in Section 4 and then using a procedure for classical
Horn formulae.
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