
A Dynami
 Logi
 for Java CardBernhard Be
kertUniversity of KarlsruheInstitute for Logi
, Complexity and Dedu
tion SystemsD-76128 Karlsruhe, Germanyi12www.ira.uka.de/~be
kertAbstra
t. In this paper, I des
ribe a Dynami
 Logi
 for Java Card and outline a sequent
al
ulus for this logi
 that axiomatises Java Card. The purpose of the logi
 is to pro-vide a framework for software veri�
ation that
an be integrated into real-world softwaredevelopment pro
esses.1 Introdu
tionDesign prin
iples and goals. The work that is reported in this paper has been
arried outas part of the KeY proje
t [1℄. The goal of KeY is to enhan
e a
ommer
ial CASE tool withfun
tionality for formal spe
i�
ation and dedu
tive veri�
ation and, thus, to integrate formalmethods into real-world software development pro
esses. A

ordingly, the design prin
iples forthe software veri�
ation
omponent of the KeY system are:{ The programs that are veri�ed should be written in a \real" obje
t-oriented programminglanguage.{ The logi
al formalism should be as easy as possible to use for software developers and pro-grammers (that do not have years of training in formal methods).Java Card. We use Java Card [13, 6℄ (soon to be repla
ed by Java 2 Mi
ro Edition, J2ME)as the target programming language. Java Card is a \real" obje
t-oriented language and has,a

ordingly, features that are diÆ
ult to handle su
h as dynami
 data stru
tures, ex
eptions,and initialisation; but it la
ks some
ru
ial
ompli
ations of the full Java language su
h asthreads and dynami
 loading of
lasses. Java smart
ards are an extremely suitable appli
ationfor software veri�
ation:{ Java Card appli
ations are small (Java smart
ards
urrently o�er 16K memory for
ode);{ at the same time, Java Card appli
ations are embedded into larger program systems orbusiness pro
esses whi
h should be modeled (though not ne
essarily formally veri�ed);{ Java Card appli
ations are often se
urity-
riti
al, giving in
entive to apply formal methods;{ the high number of deployed smart
ards
onstitutes a new motivation for formal veri�
ation,as arbitrary updates are not feasible.Dynami
 Logi
. We use Dynami
 Logi
 (DL) [7℄, whi
h is an extension of Hoare logi
 [3℄,as the logi
al basis of the KeY system's software veri�
ation
omponent. We believe that thisis a good
hoi
e be
ause dedu
tion in DL is based on symboli
 program exe
ution and simpleprogram transformations and is, thus,
lose to a programmer's understanding of Java Card.DL has been su

essfully used in the KIV software veri�
ation system [12℄ for a programminglanguage that is not obje
t-oriented; and Poetzs
h-He�ter and Mueller's de�nition of a Hoarelogi
 for a Java subset [11℄ shows that there are no prin
ipal obsta
les to adapt the DL/Hoareapproa
h to typed obje
t-oriented languages.DL
an be seen as a modal predi
ate logi
 with a modality hpi for every program p (we allowp to be any legal Java Card program); hpi refers to the su

essor worlds (
alled states in the1

DL framework) that are rea
hable by running the program p. In
lassi
al DL there
an be severalsu
h states (worlds) be
ause the programs
an be non-deterministi
; but here, sin
e Java Cardprograms are deterministi
, there is exa
tly one su
h world|if p terminates|or there is no su
hworld|if p does not terminate. The formula hpi� expresses that the program p terminates in astate in whi
h � holds. A formula �! hpi is valid if for every state s satisfying pre
ondition �a run of the program p starting in s terminates, and in the terminating state the post
ondition holds.Thus, the formula �! hpi is similar to the Hoare triple f�gpf g. But in
ontrast to Hoarelogi
, the set of formulas of DL is
losed under the usual logi
al operators: In Hoare logi
, theformulas � and are pure �rst-order formulas, whereas in DL they
an
ontain programs. DLallows to involve programs in the des
riptions � resp. of states. For example, using a program,it is easy to spe
ify that a data stru
ture is not
y
li
, whi
h is impossible in pure �rst-orderlogi
. Also, Java
onstru
ts su
h as instan
eof are available in DL for the des
ription of states.It is, therefore, not ne
essary to de�ne an abstra
t data type state and to represent states asterms of that type (as has, for example been done in [11℄); instead DL formulas
an be used togive a (partial) des
ription of states, whi
h is a more
exible te
hnique and allows to
on
entrateon the relevant properties of a state.In
omparison to
lassi
al DL (that uses a simple \arti�
ial" programming language), a DLfor a \real" obje
t-oriented programming language like Java Card has to
ope with the following
ompli
ations:{ A program state does not only depend on the value of program variables but also on thevalues of the attributes of all existing obje
ts.{ The evaluation of a Java expression may have side e�e
ts; thus, there is a di�eren
e betweenan expression and a logi
al term.{ Language features su
h as built-in data types, ex
eption handling, and obje
t initialisationhave to be handled.2 Syntax of Java Card DLThe non-dynami
 part of our DL is basi
ally a typed �rst-order predi
ate logi
. To de�ne itssyntax, we have to spe
ify its sets of variables, its types, and its terms (whi
h we often
all \logi
alterms" in the following to emphasise that they are di�erent from Java expressions). Then, wede�ne what the programs of the DL are. In the programs that are part of a DL formula, we allowan extension of Java Card, where logi
al terms may o

ur in pla
e of expressions of the sametype. Finally, the syntax of DL formulas and sequents is de�ned.Context. We do not allow
lass de�nitions in the programs that are part of DL formulas, butde�ne syntax and semanti
s of DL formulas w.r.t. a given Java Card program (the
ontext),i.e., a sequen
e of
lass de�nitions. With the following restri
tions any synta
ti
ally legal JavaCard program may be used: A
ontext must not
ontain o

urren
es of lo
al inner
lasses ;and break and
ontinue must be used with (expli
it) labels. These restri
tions are \harmless"be
ause any Java Card program
an easily be transformed a

ordingly.We assume that the following methods and �elds are impli
itly de�ned for ea
h
lass Cls inthe
ontext and
an a

ordingly be used in DL formulas (but not in the
ontext). They allow toa

ess information about the program state that is otherwise ina

essible in Java: a list of allexisting obje
ts of a
lass and information on whether a
lass resp. its obje
ts are initialised. Theobje
ts of a
ertain
lass are
onsidered to be organised into an in�nite ordered list; this list isused by new to \
reate" obje
ts (intuitively, new
hanges the attributes lastCreatedObj of the
lass and sets the attribute
reated of the new obje
t to true, see Se
tion 4).publi
 stati
 Cls firstObj; // the �rst obje
t in the list,// whether already
reated or notpubli
 stati
 Cls lastCreatedObj; // the last
reated obje
t,// null if no obje
t exists2

publi
 Cls prevObj; // the previous obje
t in the list;// null if for the �rst obje
tpubli
 Cls nextObj; // the next obje
t in the listpubli
 boolean beforeObj(Cls obj); // returns true if this// is before obj in the listpubli
 boolean
reated; // true if the obje
t has already been//
reated with new, and false otherwisepubli
 stati
 boolean
lassInitialised; // true if the
lass is initialisedpubli
 boolean objInitialised; // true if the obje
t is initialisedVariables. In
lassi
al DL there is only one type of variables. Here however, to avoid
onfusion,we here use two kinds of variables:{ Program variables are denoted with x, y, z, : : : Their value
an di�er from state to stateand
an be
hanged by programs. Program variables
annot be quanti�ed and they
annotbe instantiated with terms.{ Logi
al variables are denoted with x, y, z, : : : They are assigned the same values in all states;a statement su
h as \x = 1;", whi
h tries to
hange the value of the logi
al variable x, isillegal. Logi
al variables must be bound by a quanti�er, free o

urren
es are not allowed;they
an be instantiated with terms (preserving synta
ti
al
orre
tness of a formula but notne
essarily its satis�ability or validity).Types. The set of types of our DL
ontains for (a) ea
h primitive type of Java Card (boolean,byte, short), (b) ea
h
lass de�ned in the
ontext, and (
) ea
h built-in
lass su
h as String:(1) the primitive type itself resp. the type of obje
ts of the
lass, (2) a pointer type, (3) an arraytype, and (4) a pointer to array type. In addition, there are user-de�ned types; typi
ally theseare abstra
t data types (ADTs). There is no type hiera
hy, i.e., no sub-typing
on
ept.Terms. Logi
al terms are
onstru
ted as usual from program variables, logi
al variables, andthe
onstant and fun
tion symbols of all types. The set of terms in
ludes in parti
ular all JavaCard literals for the primitive types, string literals, and the null referen
e.In addition, (1) if o is a term of
lass type C (i.e., denotes an obje
t) and a is a �eld (attribute)of
lass C, then o.a is a term. (2) If Class is a
lass name and a is a stati
 �eld of Class , thenClass.a is a term. (3) If a is an array type term and i is a term of type byte, then a[i℄ is a term.The spe
ial post�x operator "
an be applied to all terms of pointer type; it allows to \de-refen
e" a pointer and a

ess the obje
t it points to.Programs. The programs in DL formulas are exe
utable
ode; as said above, they are notallowed to
ontain
lass de
larations. The (basi
) programs are the legal Java Card state-ments, in
luding: (1) expression statements su
h as \x = 1;" (assignments), \m(1);" (method
alls), \i++;", \new Cls;", lo
al variable de
larations (whi
h restri
t the \visibility" of programvariables); (2) blo
ks and
ompound statements built with if-else, swit
h, while, do-while,and for; (3) statements with ex
eption handling using try-
at
h-finally; (4) statements thatabruptly redire
t the
ontrol
ow (throw, return, break,
ontinue); (5) labelled statements;(6) the empty statement.The te
hnique for handling method
alls in a DL
al
ulus is to synta
ti
ally repla
e the
allby the method's implementation. To handle the return statement in the right way, it is ne
essaryto re
ord the program variable or attribute that the result is to be bound to and to mark theboundaries of the implementation when it is substituted for the method
all. For that purpose,statements of the form
all(x=m(arg1,: : :,argn)){prog}
an be used in DL programs.In addition, we allow programs in DL formulas (not in the
ontext) to
ontain logi
al terms.Wherever a Java Card expression
an be used, a term of the same type as the expression
anbe used as well. A

ordingly, expressions
an
ontain terms (but not vi
e versa).3

Formulas. Formulas are built as usual from the (logi
al) terms, the predi
ate symbols of allthe types and the equality predi
ate :=, the logi
al
onne
tives :, ^, _, !, the quanti�ers 8and 9 (that
an be applied to logi
al variables but not to program variables), and the modaloperator hp i, i.e., if p is a program and � is a formula, then hp i� is a formula as well.If o is a variable of some
lass type C, then a quanti�
ation su
h as (8o)�(o) ranges overthe (in�nite) set of all obje
ts of type C whether they have been
reated or not. The fa
t thatall
reated obje
ts of
lass C have a
ertain property �
an be expressed using the formula(8o)(o:
reated := true! �(o)).To simplify notation, we allow updates of the form fx tg resp. fo:a tg to be atta
hedto terms and formulas, where x is a program variable, o is a term denoting an obje
t withattribute a , and t is a term. The intuitive meaning of an update is that the term or formula thatit is atta
hed to is to be evaluated after
hanging the state a

ordingly, i.e., �fx tg has the samesemanti
s as hx =ti�.Sequents. A sequent is of the form �1; : : : ; m ` 1; : : : ; n (m;n � 0), where the �i and jare DL formulas. The meaning of a sequent is that the
onjun
tion of the �i's implies thedisjun
tion of the j 's.3 Semanti
s of Java Card DLTo de�ne the semanti
s of Java Card DL we use the semanti
s of the Java Card programminglanguage. In
ase of doubt, we refer to the pre
ise formal semanti
s of Java de�ned by B�orgerand S
hulte [5℄ using Abstra
t State Ma
hines.1The models of DL are Kripke stru
tures
onsisting of possible worlds that are
alled states.All states of a model share the same universe
ontaining an in�nite number of elements of ea
htype.The fun
tion and predi
ate symbols that are not user-de�ned|su
h as the equality predi
ate,the de-referen
ing operator ", and the fun
tion symbols of the primitive Java Card types|havea �xed interpretation. In all models they are interpreted a

ording to their intended semanti
sresp. their meaning in the Java Card language.Logi
al variables are interpreted using a (global) variable assignment; they have the samevalue in all states of a model.States. In ea
h state a (possibly di�erent) value (an element of the universe) of the appropriatetype is assigned to: (1) the program variables, (2) the attributes (�elds) of all obje
ts, (3) the
lass attributes (stati
 �elds) of all
lasses in the
ontext, and (4) the spe
ial referen
e this.Variables and attributes of pointer types
an be assigned the spe
ial value null.In addition, the pointer elements in the universe|whi
h are used to interpret program vari-ables and attributes with pointer types|are assigned an obje
t element of the appropriate type.Sin
e this assignment
an be
hanged with Java Card statements, it is part of the states (and
an di�er from state to state). For example, after the exe
ution of \obj1 = obj2;", the pointerelements that are the interpretations of the program variables obj1 resp. obj2 are assigned thesame obje
t element.Note, that states do not
ontain any information on
ontrol
ow su
h as a program
ounteror the fa
t that an ex
eption has been thrown.Programs and Formulas The semanti
s of a program p is a state transition, i.e., it assignsto ea
h state s the set of all states that
an be rea
hed by running p starting in s. Sin
e JavaCard is deterministi
, that set either
ontains exa
tly one state or is empty. The set of states1 Following another approa
h, Nipkow and von Oheimb have obtained a pre
ise semanti
s of a Javasublanguage by embedding it into Isabelle/HOL; they also use an axiomati
 semanti
s [9℄.4

of a model must be
losed under the rea
hability relation for all programs p , i.e., all states thatare rea
hable must exist in a model (other models are not
onsidered).The semanti
s of a logi
al term t o

urring in a program is the same as that of an expressionwhose evaluation is free of side-e�e
ts and gives the same value as t.For formulas � that do not
ontain programs, the notion of � being satis�ed by a state isde�ned as usual in �rst-order logi
. A formula hp i� is satis�ed by a state if the program p, whenstarted in s, terminates in a state s0 in whi
h � is satis�ed. A formula is satis�ed by a model M ,if it is satis�ed by one of the states of M . A formula is valid in a model M if it is satis�ed by allstates of M ; and a formula is valid if it is valid in all models.We
onsider programs that terminate abnormally to be non-terminating. Examples are aprogram that throws an un
aught ex
eption and a return statement that is not within theboundaries of a method invo
ation. Thus, for example, hthrow x;i� is unsatis�able for all �.Sequents. The semanti
s of a sequent �1; : : : ; m ` 1; : : : ; n is the same as that of theformula (�1 ^ : : : ^ m)! (1 _ : : : _ n).4 A Sequent Cal
ulus for Java Card DLIn this se
tion we outline the ideas behind the sequent
al
ulus for Java Card DL, and wepresent some of the basi
 rules.2The DL rules of our
al
ulus operate on the �rst a
tive
ommand p of a program �p!. Thenon-a
tive pre�x �
onsists of an arbitrary sequen
e of opening bra
es \{", labels, beginnings\try{" of try-
at
h blo
ks, and beginnings \
all(: : :){" of method invo
ation blo
ks. Thepre�x is needed to keep tra
k of the blo
ks that the (�rst) a
tive
ommand is part of, su
h thatthe
ommands throw, return, break, and
ontinue that abruptly
hange the
ontrol
ow
anbe handled appropriatly.3Assignment Rule. The assignment rule is the most important rule of the DL
al
ulus:� fx
g; x := expr fx
g ` �; �fx
g� ` hx = expr;i�; � where
 is a new
onstant (1)In
lassi
al DL rule (1) is always appli
able; here however, we have to impose a restri
tion: thisrule
an only be used if the expression expr is a logi
al term. Otherwise, other rules have tobe applied �rst to evaluate expr (as that evaluation may have side e�e
ts). For example, theserules repla
e the formula hx = ++i;i� by hi = i+1; x = i;i�.Moreover, the handling of updates is more diÆ
ult in Java Card DL: In
lassi
al DL �fx ygis equivalent to the formula that is
onstru
ted from � by synta
ti
ally repla
ing x by y. Nowhowever, be
ause several pointers may point to the same obje
t, more
omplex rules for thesimpli�
ation of �fx yg have to be used.Rule for Creating Obje
ts. The new statement is treated by the
al
ulus as if it were im-plemented as follows (this implementation a

esses the �elds that are impli
itly de�ned for all
lasses, see the explanation in Se
tion 2):2 These are simpli�ed versions of the a
tual rules. In parti
ular, initialisation of obje
ts and
lasses isnot
onsidered.3 In
lassi
al DL, where no pre�xes are needed, any formula of the form hp q i�
an be repla
ed byhp ihq i�. In our
al
ulus, splitting of h�pq!i� into h�p ihq!i� is not possible (unless the pre�x �is empty) be
ause �p is not a valid program; and the formula h�p!ih�q!i�
annot be used eitherbe
ause its semanti
s is in general di�erent from that of h�pq!i�.5

publi
 stati
 \
dv{Cls} new() {if (lastCreatedObj == null)lastCreatedObj = firstObj;elselastCreatedObj = lastCreatedObj.nextObj;lastCreatedObj.
reated = true;return lastCreatedObj;}Rules for Loops. The following rules allow to \unwind" while loops (these are simpli�edversions of the rules that do not work if prg
ontains a
ontinue statement); similar rules arede�ned for do-while and for loops.� ` hx =
nd;i(x := true); � � ` h� prg;while (
nd) prg; !i�; �� ` h� while (
nd) prg ; !i�; � (2)� ` hx =
nd;i(x := false); � � ` �; �� ` h� while (
nd) prg ; !i�; � (3)These rules allow to handle loops if used together with indu
tion s
hemata for the primitive andthe user de�ned types, su
h as:� ` �(
); � � ` (8x)(�(x) ! �(f(x))); �� ` (8x)�(x); � (4)(where the type of x is generated by
 and f).Rules for Handling Ex
eptions. The following rules allow to handle try-
at
h-finallyblo
ks and the throw statement. Again, these are simpli�ed versions of the a
tual rules; they areonly appli
able if the statements break,
ontinue, and return do not o

ur.� ` h� try{ei = x ; qi}finally{r } !i�; �� ` h� try{throw x ; p }
at
h(T 1 e 1){q 1}: : :
at
h(T n e n){q n}finally{r } !i�; � (5)� ` h� r ; throw x ; !i�; �� ` h� try{throw x ; p }
at
h(T 1 e 1){q 1}: : :
at
h(T n e n){q n}finally{r } !i�; � (6)� ` h� r !i�; �� ` h� try{}
at
h(T 1 e 1){q 1}: : :
at
h(T n e n){q n}finally{r } !i�; � (7)The rule (5) applies if an ex
eption x is thrown that is an instan
e of one of the
lasses T 1; : : : ; T nand T i is the �rst su
h
lass, i.e., the ex
eption is
aught; otherwise, if the ex
eption is not
aught,rule (6) applies. Rule (7) applies if the try blo
ks terminates normally.Referen
es1. Wolfgang Ahrendt, Thomas Baar, Bernhard Be
kert, Martin Giese, Elmar Habermalz, ReinerH�ahnle, Wolfram Menzel, and Peter H. S
hmitt. The KeY approa
h: Integrating obje
t orienteddesign and formal veri�
ation. Te
hni
al Report 2000/4, University of Karlsruhe, Department ofComputer S
ien
e, January 2000.2. Jim Alves-Foss, editor. Formal Syntax and Semanti
s of Java. LNCS 1523. Springer, 1999.3. K. R. Apt. Ten years of Hoare logi
: A survey { part I. ACM Transa
tions on ProgrammingLanguages and Systems, 1981.4. Thomas Baar. Experien
es with the UML/OCL-approa
h to pre
ise software modeling: A reportfrom pra
ti
e. Submitted. Available at i12www.ira.uka.de/~key, 2000.6

5. Egon B�orger and Wolfram S
hulte. A programmer friendly modular de�nition of the semanti
s ofJava. In Alves-Foss [2℄, pages 353{404.6. U. Hansmann, M. S. Ni
klous, T. S
h�a
k, and F. Seliger. Smart Card Appli
ation DevelopmentUsing Java. Springer, 2000.7. Dexter Kozen and Jerzy Tiuryn. Logi
 of programs. In J. van Leeuwen, editor, Handbook of The-oreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,
hapter 14, pages 789{840.Elsevier, Amsterdam, 1990.8. James Martin and James J. Odell. Obje
t-Oriented Methods: A Foundation, UML Edition. Prenti
e-Hall, 1997.9. Tobias Nipkow and David von Oheimb. Ma
hine-
he
king the Java spe
i�
ation: Proving type safety.In Alves-Foss [2℄, pages 119{156.10. Obje
t Management Group, In
., Framingham/MA, USA, www.omg.org. OMG Uni�ed ModelingLanguage Spe
i�
ation, Version 1.3, June 1999.11. Arnd Poetzs
h-He�ter and Peter M�uller. A programming logi
 for sequential Java. In S. D. Swierstra,editor, Pro
eedings, Programming Languages and Systems (ESOP), Amsterdam, The Netherlands,LNCS 1576, pages 162{176. Springer, 1999.12. W. Reif. The KIV-approa
h to software veri�
ation. In M. Broy and S. J�ahni
hen, editors, KORSO:Methods, Languages, and Tools for the Constru
tion of Corre
t Software { Final Report, LNCS 1009.Springer, 1995.13. Sun Mi
rosystems, In
., Palo Alto/CA, USA. Java Card 2.1 Appli
ation Programming Interfa
es,Draft 2, Release 1.3, 1998.

7

