
Incremental Theory Reasoning Methods forSemantic TableauxBernhard Beckert & Christian PapeInstitute for Logic, Complexity and Deduction SystemsUniversity of KarlsruheAm Fasanengarten 5, 76128 Karlsruhe, Germanyfbeckert;papeg@ira.uka.de, http://i12.www.ira.uka.de/~beckertAbstract. Theory reasoning is an important technique for increasingthe e�ciency of automated deduction systems. In this paper we presentincremental theory reasoning, a method that improves the interactionbetween the foreground reasoner and the background (theory) reasonerand, thus, the e�ciency of the combined system. The use of incrementaltheory reasoning in free variable semantic tableaux and the cost reduc-tion that can be achieved are discussed; as an example, completion-basedequality reasoning is presented, including experimental data obtained us-ing an implementation.1 IntroductionTheory reasoning is an important technique for increasing the e�ciency of au-tomated deduction systems. The knowledge from a given domain (or theory) ismade use of by applying e�cient methods for reasoning in that domain. Thegeneral purpose foreground reasoner calls a special purpose background reasonerto handle problems from a certain theory.Following the pioneering work of Stickel [23], sound and complete theoryreasoning methods have been described for various calculi; e.g., path resolution[18], the connection method [21], model elimination [2]. In addition, backgroundreasoners have been designed for various theories, in particular for equality rea-soning [5]; an overview can be found in [4].Besides the e�ciency of the foreground and the background reasoner, the in-teraction between them plays a critical rôle for the e�ciency of the combined sys-tem: It is a di�cult problem to decide whether it is useful to call the backgroundreasoner at a certain point or not, and how much time and other resources tospend for its computations. In general, to give a perfect answer to these questionsis as di�cult as the theory reasoning problem itself (if the theory is undecidable,it is undecidable whether a call to the background reasoner is useful). Even withgood heuristics at hand, one cannot avoid calling the background reasoner atthe wrong point: either too early or too late.This problem can (at least partially) be avoided by using incremental meth-ods for background reasoning, i.e., algorithms that|after a futile try to solve atheory reasoning problem|allow to save the results of the background reasoner's



computations and to reuse this data for a later call.1 Then, in case of doubt thebackground reasoner can be called early without running the risk of doing use-less computations. In addition, an incremental background reasoner can reusedata multiply, if di�erent extensions of a problem have to be handled. An im-portant example are completion-based methods for equality reasoning, that areinherently incremental.We focus on theory reasoning in semantic tableaux [22, 13] and related meth-ods|such as model elimination [17] and the connection method [10]|, where abackground theory reasoner is used to close tableau branches resp. to computeconnections or links (total theory reasoning).The paper is organized as follows: In Section 2 we introduce notation andrecall the basic de�nitions of theory reasoning; in Section 3 we de�ne the par-ticular version of free variable semantic tableaux we will be using in the fol-lowing sections (we stress that the results presented in this paper can easily beadapted to other versions of semantic tableaux and similar calculi). In Section 4our main results are presented: incremental theory reasoning is introduced andformally de�ned, its use in free variable semantic tableaux is described, andthe cost reduction that can be achieved is discussed. In Sections 5 and 6 wepresent completion-based equality reasoning as an example, and describe an ac-tual implementation; Section 7 contains experimental data obtained using thisimplementation. Finally, in Section 8 we draw conclusions from our work.2 Preliminaries2.1 NotationLet us �x a �rst-order language L which is built up from countable sets P ofpredicate symbols,F of function symbols, C of constant symbols and V of objectvariables in the usual manner (for each arity there are countably many func-tion and predicate symbols). We use the logical connectives ^ (conjunction),_ (disjunction), � (implication), $ (equivalence), and : (negation), and thequanti�er symbols 8 and 9.Since in the tableau proofs it will be necessary to introduce Skolem terms, weextend our �rst-order language L to a language LSko by adding countably manyconstant symbols and function symbols for each arity which do not alreadyappear in L.We use the standard notions of free and bound variable, (grounding) substi-tution, sentence, model, logical consequence (denoted by j=), valuation, satis�a-bility and tautology (see De�nition 1).Subst is the set of all idempotent substitutions with �nite domain (withoutmaking any real restrictions we only consider substitutions of this type). A sub-stitution � with domain fx1; : : : ; xng can be denoted by fx1=t1; : : : ; xn=tng, i.e.1 This should not be confused with partial theory reasoning, where the backgroundreasoner derives new formulae and hands these back to the foreground reasoner. Theinformation derived by an incremental background reasoner cannot be used by theforeground reasoner, but only by the background reasoner during later calls.



�(xi) = ti (1 � i � n). A substitution may be applied to quanti�ed formulae; inthat case, quanti�ed variables are never replaced; e.g., the result of applying thesubstitution fx=a; y=bg to (8x)p(x; y) is (8x)p(x; b).2.2 Theory ReasoningIn general any satis�able set of universally quanti�ed formulae is a theory, i.e.,we identify the theory with the de�ning set of axioms.De�nition1. A theory T � L is a satis�able set of universally quanti�ed for-mulae.A T -interpretation is an interpretation that satis�es T .A formula � (a set � of formulae) is T -satis�able if there is a T -interpretationsatisfying � (resp. �), else it is T -unsatis�able.A sentence � is a T -tautology if it is satis�ed by all T -interpretations.A formula � is a T -consequence of a set 	 of formulae, denoted 	 j=T �, if� is satis�ed by all T -interpretations that satisfy 	 .The restriction to theories consisting of universally quanti�ed formulae isnecessary, because exactly for such formulae the Herbrand-type Theorem 2 holds[21], that is essential for the completeness of tableau-like calculi using theoryreasoning. This restriction, however, is easy to get around, because existentialquanti�ers can be removed by skolemization.Theorem2. A set � of universally quanti�ed formulae is T -unsatis�able i�there is a �nite set of ground instances of formulae from � that is T -unsatis�able.Example 1. The most important theory in practice is the equality theory E . Itconsists of axioms that de�ne re
exivity, symmetry, transitivity, and monotinic-ity for function and predicate symbols of the equality predicate � 2 P (it isdenoted by �, such that no confusion with the meta-level equality = can arise).The following are the basic de�nitions for theory reasoning:De�nition3. Let � be a set of formulae. � is T -complementary i� every in-stance of � is T -unsatis�able.Example 2. The formula :(x � y) is E-unsatis�able; it is, however, not E-complementary, because its instance :(a � b) is E-satis�able. The formula:(x � x) is both E-unsatis�able and E-complementary.De�nition4. Let � be a set of literals, called key. A set R of literals is a residueof �, if there is a substitution � 2 Subst such that1. �� [R is T -complementary (R denotes the negation f:� : � 2 Rg of R),2. R = R�.In that case, the pair h�;Ri is called a refuter for �. If the residue is empty, weidentify the substitution � with the refuter h�; ;i.It is neither really necessary to require the formulae in the key nor in the residueto be literals, but all further considerations are much simpler that way.



2.3 Partial and Total Theory ReasoningThe central idea behind theory reasoning is the same for all calculi based in someway on Herbrand's theorem (tableau-like calculi, resolution, etc.) A key � � 	is chosen from the set 	 of formulae already derived by the foreground reasonerand is passed to the background reasoner, which computes refuters h�;Ri for �.There are two main approaches: if the background reasoner only computesrefuters with an empty residue, we speak of total theory reasoning else of partialtheory reasoning.In the case of partial reasoning, where R = f�1; : : : ; �ng (n � 1), the formula�1 _ : : :_ �n is added to the derived formulae 	 and the substitution � is applied.If the foreground reasoner is then able to show that (	� [ f�1 _ : : :_ �ng)� isT -unsatis�able for some substitution � , this proves that 	�� is T -unsatis�able:if 	�� were T -satis�able, then one of the sets (	� [ f�1 _ : : :_ �ng)� and (��[R)� , that have been shown to be T -unsatis�able, had to be T -satis�able.Although total theory reasoning can be seen as a special case of partial theoryreasoning, the way the foreground reasoner makes use of the refuter is quitedi�erent: no further derivations have to been made by the foreground reasoner;�� and thus 	� has been proven to be T -complementary by the backgroundreasoner. In the tableau framework, where (usually) the key � is taken from atableau branch B, this closes B if the substitution � is applied (see Section 3).In the following, we restrict all our considerations to total theory reason-ing; nevertheless, most of the techniques introduced in this paper are as wellapplicable to partial theory reasoning.For completeness of the combination of foreground and background reasoner,the background reasoner has to compute sets of refuters that are|in a certainsense|complete. We use the following de�nition, which is strong enough to besu�cient for all theories and calculi (depending on the actual theory and thecalculus used, weaker requirements may be su�cient to preserve completeness):De�nition5. A set � of refuters is complete for a key �, if for each groundsubstitution � 2 Subst that is a refuter for � there is a �0 2 � and a substitution� such that � = � � �0.3 Semantic Tableaux3.1 Free Variable Semantic TableauxFirst, we formally de�ne the free variable tableau calculus, using a slightly non-standard representation (the di�erence to classical free variable tableaux is onlyin notation and the way tableaux are represented): Tableaux are multi-sets ofmulti-sets of �rst-order formulae; as usual, the branches of a tableau are implic-itly disjunctively connected and the formulae on a branch are implicitly con-junctively connected.De�nition6. A tableau is a (�nite) multi-set of tableau branches, where a ta-bleau branch is a (�nite) multi-set of �rst order formulae.



There are two possibilities to derive a new tableau from an old one: (1) apply-ing a tableau expansion rule and (2) closing a branch by applying a substitutionto the tableau (incremental theory reasoning provides a third possibility: callingthe background reasoner, see Sec. 4.4).The expansion rules are the classical �-, �-, 
- and �-rules for �rst-orderformulae. The rule patterns are summarized in Table 1.2� �1 �2� ^  �  :(� _  ) :� : :(� �  ) � : ::� � � � �1 �2� _  �  :(� ^  ) :� : � �  :�  �$  � ^  :� ^ : :(�$  ) � ^ : :� ^  
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1(y)where y is a new freevariable. ��1(f(x1; : : : ; xn))where f is a new (Skolem) functionsymbol, and x1; : : : ; xn are the freevariables occurring in �.Table 1. Formula types and tableau rule schemata.To prove a formula � to be a tautology, we start from the initial tableauff:�gg. New tableaux are derived by applying the tableau expansion rules andclosing branches by applying a substitution.De�nition7. A tableau branch B is closed under a substitution � i� there areformulae �;: 2 B such that �� =  �, i.e., �� and : � are complementary.The problem of �nding a single substitution that closes all branches of atableau simultaneously is simpli�ed|as usual in practical applications|by clos-ing the branches one after the other: if a substitution is found that closes a sin-gle branch, it is applied to the whole tableau to close that branch, before otherbranches are considered. Closed branches are removed from the tableau insteadof just marking them as being closed. Thus, a proof is found, when the emptytableau has been derived.Theorem8 (Soundness and Completeness). A �rst-order sentence � is atautology i� there is a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)2 The �-rule is more liberal than that used in [13]; it has recently been proposed andproven sound by H�ahnle and Schmitt [15]. Even more liberalized �-rules have beeninvestigated in [9] and [1].



of tableaux such that for 1 � i � n the tableau Ti is constructed from Ti�1 by1. applying one of the expansion rules from Table 1, i.e., there is a branchB 2 Ti�1 and a formula � 2 B (that is not a literal) such thatTi = 8>><>>:(Ti�1 n fBg) [ f(B n f�g)[ f�1; �2gg if � is of type �(Ti�1 n fBg) [ f(B n f�g)[ f�1g; (B n f�g) [ f�2gg if � is of type �(Ti�1 n fBg) [ fB [ f
1gg if � is of type 
(Ti�1 n fBg) [ f(B n f�g)[ f�1gg if � is of type �2. or closing a branch B 2 Ti�1, i.e., Ti = (Ti�1 n fBg)�, where the branch Bis closed under � (Def. 7).The construction of a closed tableau is a highly non-deterministic process,because at each step one is (in general) free (1) to choose a branch B of thetableau, (2) to expand or to close B, and to choose (3a) a formula � 2 B forexpansion or (3b) a substitution that closes B.3.2 Semantic Tableaux with Total Theory ReasoningWe make use of the fact, that if there is a T -refuter (with an empty residue)for a key taken from a tableau branch B then B and all its instances are T -unsatis�able:De�nition9. Given a theory T , a tableau branch B is T -closed under a sub-stitution � if � is a refuter for a key � � B.Using the above de�nition, Theorem 8 can easily be adapted to theory rea-soning:Theorem10 (Soundness and Completeness, Theory Reasoning).Given a theory T , a �rst-order sentence � is a T -tautology i� there is a sequenceff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)of tableaux, such that for 1 � i � n the tableau Ti is constructed from Ti�1 by1. applying one of the expansion rules from Table 1 (see Theorem 8 for a formalde�nition),2. or closing a branch B 2 Ti�1, i.e., Ti = (Ti�1 n fBg)�, where the branch Bis T -closed under � (Def. 9).4 Incremental Background Reasoners4.1 MotivationAs already mentioned in the introduction, one of the main problems in using the-orem reasoning techniques in practice is the e�cient combination of foregroundand background reasoner and their interaction:



{ A late call to the background reasoner can lead to bigger tableaux andredundancy. Although several branches may share the same subbranch andthus contain the same key for which a refuter exists, the background reasoneris called separately for these branches and the refuter has to be computedrepeatedly.{ On the other hand, an early call to the background reasoner may not besuccessful and time consuming; this is of particular disadvantage if the theoryis undecidable, and as a result the background reasoner might not terminatealthough no refuter exists.Both these phenomena may considerably decrease the performance of a prover,and it is very di�cult to decide (resp. to develop good heuristics that decide)1. when to call the background reasoner;2. when to stop the background reasoner if it does not �nd a refuter.Example 3. The following example shows that earlier calls to the backgroundreasoner can reduce the size of a tableau proof exponentially: Assume � to be aset of formulae such that � j=T :p(sn(0)) (n � 0) for some theory T . Figure 1shows a proof for � j=T (p(0)$ p(s(0))$ � � � $ p(sn(0))) ;where the background reasoner is called when a literal of the form p(sn(0)) ap-pears on a branch. As a result, all the left-hand branches are closed immediatelyand the tableau is of linear size in n.If the background reasoner were only called when a branch is exhausted,i.e., when no further expansion is possible, then the tableau would have 2nbranches and the background reasoner would have to be called 2n times (insteadof n times).An incremental background reasoner can be of additional advantage, if thecomputations that are necessary to show that � j=T :p(sn(0)) are similar forall n. In that case a single call to the background reasoner in the beginning mayprovide information that later can be reused to close all the branches with lesse�ort.Even the best heuristic cannot avoid calls to the background reasoner at thewrong time. However, on certain conditions it is possible to avoid the adverseconsequences of early calls: If the algorithm the background reasoner uses isincremental, i.e., if the data produced by the background reasoner during afutile try to compute refuters can be reused for a later call.If early calls have no negative e�ects, the disadvantages of late calls can easilybe avoided by using heuristics that, in case of doubt, call the background reasonerat an early time. The problem of not knowing when to stop the backgroundreasoner is solved by calling it more often with less resources (time, etc.) foreach call.An additional advantage of using incremental background reasoners in thetableau framework is that computations can be reused repeatedly for di�erent



�:(p(0)$ p(s(0)) $ � � � $ p(sn(0)))p(0) ^ :(p(s(0))$ � � � $ p(sn(0)))p(0):(p(s(0)) $ � � � $ p(sn(0))) :p(0) ^ (p(s(0)) $ � � � $ p(sn(0))):p(0)p(s(0)) $ � � � $ p(sn(0)):p(sn�1(0))p(sn�1(0)) $ p(sn(0))p(sn�1(0)) ^ :p(sn(0))p(sn�1(0)):p(sn(0)) :p(sn�1(0)) ^ p(sn(0)):p(sn�1(0))p(sn(0))Fig. 1. Short tableau proof for � j=T p(0) $ p(s(0)) $ � � � $ p(sn(0)) (Example 3).extensions of a branch|even if the computation of refuters proceeds di�erentlyfor these extensions.4.2 Incremental KeysObviously there has to be some strong relation between the keys transferred tothe background reasoner, to make it possible to reuse the information computed.Since, between calls to the background reasoner, we want to (1) extend thetableau by new formulae and (2) apply substitutions (to the tableau), these arethe two operations we want to allow for changing the key:De�nition11. A sequence (�i)i�0 of keys is incremental if for i � 0 thereis a set 	i of literals and a substitution �i such that �i+1 = �i�i [ 	i, where	i = 	i�i.In general, not all refuters of �i are refuters of �i+1 (because a substitution isapplied); nor are all refuters of �i+1 refuters of �i (because new formulae areadded).4.3 Iterative and Incremental AlgorithmsTo be able to formally denote the state the computation of a background reasonerhas reached and the data generated, we use the following notion of backgroundreasoner:



De�nition12. A background reasoner is a triple hA; I;Si consisting of an al-gorithm (a function) A : D!D operating on a data structure D, an initial-ization function I : 2fL2LSko :L is a literalg !D that transforms a given key intothe data structure format, and an output function S : D! 2Subst that extractscomputed refuters from the data structure.Of course, the input and output functions have to be reasonably easy to compute(in practice their cost should be linear or at most polynomially in the input);in particular the cost of their computation has to be much smaller than that ofapplying the algorithmA, which is supposed to do the actual work.For the sake of simplicity, we focus on algorithms that are iterative in thefollowing sense:3De�nition13. A background reasoner hA; I;Si is iterative if for every key �and i � j the inclusion S(Ai(I(�))) � S(Aj(I(�))) holds.It is sound if for every key � and i � 0 the set S(Ai(I(�))) is a set of refutersfor �.It is complete if for every key � the set Si�0 S(Ai(I(�))) is a complete setof refuters for � (Def. 5).In practice, the condition for a background reasoner to be iterative is weakenedto the extent that it is allowed to remove refuters that are subsumed by otherrefuters.Our goal is to be able to stop the background reasoner when it has reacheda certain state in its computations for a key �, and to proceed from that statewith a new key �0 = �� [ 	 . For that purpose we need an update function, thatadapts the data structure representing the state of the computation to the newliterals 	 and the substitution �.De�nition14. Let T be a theory and R = hA; I;Si a sound and completeiterative background reasoner for T . An update functionU :D� 2fL2LSko :L is a literalg � Subst�!Dis correct (for R), if for every key �0 = �� [ 	 and Dn = U(An(I(�)); 	; �)(n � 0):1. S(Ai(Dn)) is a set of refuters for �0 for all i � 0 (soundness);2. Si�0 S(Ai(Dn)) is a complete set of refuters for �0 (completeness).According to the above de�nition a correct update function behaves as expectedwhen used for a single incremental step. Theorem 15 shows that this behaviorextends to sequences of incremental steps. In addition, the algorithm can beapplied arbitrarily often between incremental steps:3 This is no real restriction: If a background reasoner applies di�erent transformationsto the data at each step of its computation, this can be modeled by adding the index iand the state of the reasoner to the data structure, such that the right operation orsub-algorithm can be applied each time the background reasoner is invoked.



Theorem15. Let (�i)i�0 be an incremental sequence of keys, where�i+1 = �i�i [ 	i (i � 0) ;R a sound and complete iterative background reasoner (Def. 13), and U a correctupdate function for R (Def. 14). Let (Di)i�0 �D be de�ned by1. D0 = I(�0),2. Di+1 = U(Ani(Di); �i+1; 	i+1) for some ni � 0.Then1. S(Di) is a set of refuters for �i for all i � 0 ( soundness) and2. Sj�0S(Aj(Di)) is a complete set of refuters for �i ( completeness).4Example 4. Let (�i)i�0 be an incremental sequence of keys, where �i+1 = �i�i[	i (i � 0). Then for every sound and complete iterative background reasonerhA; I;Si the trivial update function de�ned by U(D;	i; �i) = I(�i�i [ 	i) iscorrect.The above example shows that it is not su�cient to use any correct updatefunction to achieve a better performance of the calculus, because using the trivialupdate function means that no information is reused. A useful update functionhas to preserve the information contained in the computed data.Whether there actually is a useful and reasonably easy to compute updatefunction depends on the theory T , the background reasoner, and its data struc-ture.In Section 6 we show that such a useful update function exists for a back-ground reasoner for completion-based equality handling. Another important ex-ample are background reasoners based on resolution: if a resolvent can be derivedfrom a key �, then it is valid for all extensions � [ 	 of �; resolvents may beinvalid for an instance �� of the key, but to check this is much easier than to re-compute all resolvents. In [3] a uniform translation from Horn theories to partialbackground reasoners based on unit-resulting positive hyper-resolution with in-put restriction is described. This procedure can be used to generate incrementalbackground reasoners for a huge class of theories.4.4 Semantic Tableaux and Incremental Theory ReasoningThe incremental theory reasoning method presented in the previous section iseasy to use for tableau-like calculi, because the de�nition of incremental se-quences of keys matches the construction of tableau branches. The keys of asequence are taken from an expanding branch, and the substitutions are thoseapplied to the whole tableau.4 Si�0 S(Di) is (in general) not a complete set of refuters for any of the keys, since noinclusion relation holds for the sets of refuters of an incremental sequence of keys.



The keys used in calls to the background reasoner, as well as the informationcomputed so far by the background reasoner, have to be attached to the tableaubranches:5De�nition16. A tableau is a (�nite) multi-set of tableau branches, where a ta-bleau branch is a triple h�;D;�i; � is a (�nite) multi-set of �rst order formulae,D 2 D (where D is the data structure used by the background reasoner), and� is a set of literals (a key).Now, the free variable tableau calculus introduced in Section 3.2 can beadapted to incremental theory reasoning: calling the background reasoner isadded as a third possibility to change the tableau (besides expanding and clos-ing branches). Soundness and completeness of the resulting calculus is a corollaryof Theorems 10 and 15:Theorem17 (Soundness and Completeness, Incremental Version).Given a theory T , a sound and complete background reasoner R = hA; I;Sifor T (Def. 13), and a correct update function U for R (Def. 14).A �rst-order sentence � is a T -tautology i� there is a sequencefhf:�g; I(;); ;ig= T0; T1; : : : ; Tn�1; Tn = ; (n � 0)of tableaux (Def. 16) such that for 1 � i � n the tableau Ti is constructed fromTi�1 by1. applying one of the expansion rules from Table 1, i.e., there is a branchB = h�;D;�i 2 Ti�1 and a formula � 2 � (that is not a literal) such thatTi = 8>>>><>>>>:(Ti�1 n fBg) [ fh(� n f�g) [ f�1; �2g; D; �ig if � is of type �(Ti�1 n fBg) [ fh(� n f�g) [ f�1g; D; �i;h(� n f�g) [ f�2g; D; �ig if � is of type �(Ti�1 n fBg) [ fh� [ f
1g; D; �ig if � is of type 
(Ti�1 n fBg) [ fh(� n f�g) [ f�1g; D; �ig if � is of type �2. closing a branch B = h�;D;�i 2 Ti�1, i.e.,Ti = fh�0�;D0; �0i : h�0; D0; �0i 2 (Ti�1 n fBg)g ;where � 2 S(D),3. or calling the background reasoner, i.e., there is a branchB = h�;D;�i 2 Ti�1 ;a number c > 0 of applications, and a key �0 = �� [ 	 � � such thatTi = (Ti�1 n fBg) [ fh�;Ac(U(D;	; �)); �0ig :5 If only maximal keys are used (all literals on the branch), the keys do not have tobe attached to the branch.



4.5 Achievable Cost ReductionThe maximal cost reduction that can be achieved by using an incremental rea-soner is reached if the costs are those of the non-incremental background reasonercalled neither too early nor too late, i.e., if always the right key in the incremen-tal sequence is chosen and the background reasoner is only called for that key(which is not possible in practice).More formally: If we search for a substitution � that is a refuter for one ormore of the keys in an incremental sequence (�i)i�0 (where �i+1 = �i�i [ 	i),then the index imin of the \right" key and the minimal number of applicationsof the background reasoner nmin are de�ned by:imin = minfi � 0 : � is a refuter for �ignmin = minfn � 0 : there is a � 0 2 S(An(I(�imin))) more general than �g :Thus, the minimal costs of �nding � using a non-incremental approach arecost(I; �imin) + cost(Anmin ; I(�imin)) ;where cost(f; x) denotes the costs of computing the application of the function fto the argument x.However, these minimal costs cannot be reached using a deterministic non-incremental background reasoner, because the index imin is not known (whichis equivalent to the problem of early/late calls).The costs of an incremental approach depend on the number ci of applicationsof the algorithm during step i. The number j of incremental steps that have tobe made until � is found can be bigger than imin (if the ci have been chosen toosmall). The costs are:cost(I; �0) + j�1Xi=0 cost(U ; (D0i; 	i; �i)) + jXi=0 cost(Aci ; Di) ;where D0 = I(�0), Di = U(D0i�1; 	i�1; �i�1) (for i � 1), and D0i = Aci(Di) (fori � 0). The actual costs become smaller and approach their minimum, if the costsof applying the update function approach zero, if all the information computedby the background reasoner can be reused for a later call, and if the numbers ciof applications have not been chosen too small.If substitutions are applied, i.e., if the �i are not the empty substitution,usually not all information derived for a key �i can be reused, because part ofit becomes invalid for an instance �i�i (see Section 6).In practice, the costs of an incremental method are between the ideal valueand the costs of calling a non-incremental reasoner for each of the keys in anincremental sequence (without reusing).But even if the costs for one sequence, i.e., for closing one tableau branch,are higher than that of using a non-incremental method, the overall costs forclosing the whole tableau can be small because information is reused for morethan one branch.



5 Equality Handling in Semantic TableauxIf total theory reasoning methods are employed for handling equality in freevariable tableaux, the background reasoner has to solve rigid E-uni�cation prob-lems [14] to compute refuters:De�nition18. A rigid E-uni�cation problem hE; s; ti consists of a �nite set Eof equalities (l � r) 2 LSko and terms s and t.A substitution � is a solution to the problem i� E� j=E (s� � t�) where thefree variables in E� are \held rigid", i.e. treated as constants.A complete set of refuters for a key � can be computed by extracting theset P (�) of rigid E-uni�cation problems from � according to the following de�-nition and solving the problems in P (�):De�nition19. Let � be a key. Then E(�) = fl � r : (l � r) 2 �g is the set ofequalities in �, and P (�) =fhE(�); hs1; : : : ; sni; ht1; : : : ; tnii : p(s1; : : : ; sn);:p(t1; : : : ; tn) 2 �, p 6= �g [fhE(�); s; ti : :(s � t) 2 �gis the set of rigid E-uni�cation problems in �.Theorem20. For any key � the set of solutions to the rigid E-uni�cation prob-lems in P (�) is a complete set of refuters for � (w.r.t. the equality theory E).Various methods for computing rigid E-uni�ers have been described [14, 11,6], the most e�cient of which are completion-based.6 Fortunately, completion-based methods for rigid E-uni�cation can easily be used for incremental back-ground reasoning: Let (�i)i�0 be a sequence of incremental keys, then the fol-lowing equations hold for the sequence (P (�i))i�0 of corresponding rigid E-uni�cation problems: E(�i+1) = E(�i�i) [E(	i)P (�i+1) = P (�i�i) [ P (	i) [ P 0(where P 0 contains additional E-uni�cation problems extracted from literalsp(s1; : : : ; sn), :p(t1; : : : ; tn) one of which is in �i�i and one of which is in 	i).Therefore, a correct update function only has to1. apply the substitution �i to the old set of E-uni�cation problems and rewriterules,2. add the new rewrite rules and E-uni�cation problems to the old ones, and3. remove the rewrite rules that are not valid for the substitution �i (these rulesconstitute information that cannot be reused).6 We use the version of total theory reasoning in semantic tableaux where branches areclosed one after the other. To close all branches simultaneously, a simultaneous rigidE-uni�cation problem has to be solved. This is much more di�cult than the non-simultaneous version: simultaneous rigid E-uni�cation is undecidable [12] whereasthe non-simultaneous problem is NP-complete [14].



6 ImplementationA completion-based method for solving mixed E-uni�cation problems [6], whichis an extension of rigid E-uni�cation,7 has been implemented as part of thetableau-based theorem prover 3TAP [7, 8]. The E-uni�cation problems extractedfrom a branch (resp. key) are transformed into (sets of) constrained terms andrewrite rules; the constraints describe the sets of substitutions for which, if thesubstitution is applied to the tableau, a derived term or rewrite rule remainsvalid. An algorithm that can be seen as an extension of the Unfailing Knuth-Bendix Algorithm [16] with narrowing [19] is employed to search for refuters. In3TAP only maximal keys are used, i.e., all literals from a tableau branch. Theindeterminism of free variable tableaux is resolved by closing branches from leftto right, using a �xed order in which formulae are expanded, and backtrack-ing w.r.t. the substitutions that are applied to the tableau: if a branch cannotbe closed, the last application of a substitution � is undone and other closingsubstitutions are searched for that close the same branches as �.In the old version of 3TAP information computed by the background reasonercould not be reused, and the background reasoner was either{ only called for exhausted tableau branches, i.e., if no expansion rule wasapplicable (observing a limit on the number of 
-rule applications), whichusually led to late calls; or{ called each time before a �-rule was applied; which usually led to early calls.Fortunately, due to the inherently incremental nature of 3TAP 's algorithm forsolving mixed E-uni�cation problems, it has been easy to design and implementa correct and reasonably simple update function U(D;	; �): rewrite rules anduni�cation problems are extracted from the new literals in 	 ; they can be addedto the data structure D without any further changes. The substitution � is ap-plied to the constrained rules and terms in D. Which rewrite rules and termsare not valid for � and have to be removed can be checked using the constraintsattached to rules and terms (experiments show that in practice only few rulesand terms have to be removed).The new incremental version of the background reasoner is always called be-fore a �-rule is applied. The number of iterative steps during a call is determinedby a heuristic, that the user can a�ect by changing certain parameters.7 Mixed E-uni�cation is a combination of the classical universal E-uni�cation and rigidE-uni�cation. The performance of provers using E-uni�cation for handling equalitycan be increased considerably, if mixed E-uni�cation is used instead of the purelyrigid version: An equality has often to be applied more than once in a proof, eachtime with di�erent substitutions for the variables occurring in it. In tableau-likecalculi the mechanism to do so is to generate several instances of the equality. It is,however, often possible to recognize equalities that are \universal" w.r.t. variablesthey contain (e.g. equalities that occur on only one branch of a tableau). If mixed E-uni�cation is used, this knowledge can be used to avoid generating additional copiesof equalities.



7 Experiments and ResultsIn the following we present some experimental data obtained using the imple-mentation described in the previous section. Three di�erent theory reasoningmethods are compared:1. Calling the background reasoner each time before a �-rule is applied(a) reusing the computed information for later calls (reuse),(b) without reusing information (no reuse);2. calling the background reasoner for exhausted branches only (late call).The generated tableaux are in general the same for Cases 1a and 1b,8 they aredi�erent (larger) if the background reasoner is only called for exhausted branches(Case 2). In the statistics TR is the number of tableau rule applications and EQdenotes the number of calls to the equality background reasoner. Proof timesare given in seconds, running on a SUN SPARC 10 (\1" means that no proofcould be found in reasonable time).The following table shows results for some of Pelletier's problems [20] (pel)and problems taken from an application in program veri�cation where lemmataon a speci�cation of hash tables are to be proven (hash). The speci�cation con-sists of about 120 axioms and makes heavy use of the equality predicate.branches closed time [sec]Problem TR EQ background foreground reuse no reuse late callpel48 4 7 4 0 0.75 0.95 0.76pel49 27 21 14 0 25.88 29.42 28.79pel51 29 20 8 4 4.32 4.38 3.96pel52 26 18 8 2 5.15 5.19 4.59pel55 102 30 4 20 8.95 5.74 32.73hash3 334 151 76 0 25.25 61.33 1hash9 929 545 273 0 84.77 1 1hash11 250 63 32 0 27.23 43.72 1hash12 173 19 10 0 14.45 31.96 1hash13 260 63 32 0 34.40 39.06 1hash25 530 251 126 0 50.62 1 1The tableaux for Pelletier's problems are quite small. Here, reusing informationdoes not lead to an improvement, neither does it have any negative e�ects. Theproof for problem pel55 is shortened considerably by making early calls to thebackground reasoner.For the more di�cult examples from program veri�cation the improvementgained by reusing information corresponds roughly to the size of the tableauproof: the more branches there are, the more re-computations of the same infor-mation can be avoided.8 They can di�er, if without reusing information (Case 1b) a limit (e.g. on the numberof equality applications) is reached before a branch is closed, and that limit is notreached if information is reused (Case 1a).
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