Deduction by Combining Semantic Tableaux and

Integer Programming*

Bernhard Beckert and Reiner Hihnle

University of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,
76128 Karlsruhe, Germany. Phone: +49-721-608-4324, FAX: +49-721-608-4329,
Fmail: {beckert,hachnle}@ira.uka.de, WWW: http://i12www.ira.uka.de/

Abstract. Tn this paper we propose to extend the current capabilities of automated reasoning
systems by making use of techniques from integer programming. We describe the architecture of
an antomated reasoning system based on a Herbrand procedure (enumeration of formula instan-
ces) on clanses. The input are arbitrary sentences of first-order logic. The translation into clanses
is done incrementally and is controlled by a semantic tablean procedure using unification. This
amounts to an incremental polynomial CNF transformation which at the same time encodes part
of the tablean structure and, therefore, tablean-specific refinements that reduce the search space.
Checking propositional unsatisfiability of the resulting sequence of clanses can either be done with
a symbolic inference system snch as the Davis-Putnam procedure or it can be done nsing integer
programming. If the latter is used a number of advantages become apparent.

Introduction

In this paper we propose to extend the current capabilities of automated reaso-
ning (AR) systems by combining the inference procedure semantic tableaur with
integer program (IP) solvers. We show that the resulting system has properties
which are interesting for such applications as formal program verification. In Sec-
tion 1 we summarize some facts on semantic tableaux in order to make the paper
reasonably self-contained. In Section 2 we give a tableau-based polynomial time
translation from propositional logic into IPs. This translation will be lifted to
full first-order logic in Section 3. With an extended example we illustrate how
the system is supposed to work (Section 4) and in Section 5 we summarize the
possible synergy effects from marrying AR and OR in the way suggested. Finally
we mention related and ongoing work. We had to omit all proofs due to limited
space.

1 Semantic Tableaux

First we state some standard notions of computational logic that will be used in the
following; consult (Fitting, 1990) for details. Let us fix a first-order language whose
terms and formulae are built up from countable sets of predicate symbols, function
symbols, constant symbols and object variables in the usual manner (for each arity
there are countably many function and predicate symbols). We use the logical
connectives A (conjunction), V (disjunction), D (implication) and — (negation),

* This research was snpported by Deutsche Forschungsgemeinschaft within the Schwerpunkt-
programm Deduktion.

2 Bernhard Beckert and Reiner Hahnle

and the quantifier symbols ¥ and 3. An atom is a formula of the form p(ty,...,%,),
where p is a predicate symbol and #1,...,%, are terms. Atoms and their negations
are called literals. A clause is a disjunction of literals. A formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses. A variable is free if it is not
bound by a quantifier (V or 3). A sentence is a formula not containing any free
variables. We use the standard notions of satisfiability and model. A sentence is
called a tautology if it is true in all models, i.e., if its negation is unsatisfiable.
Substitutions are mappings from variables to terms and are extended to formulae
as usual. We denote a substitution by {@y — #1,..., 2, — t,}, where {x1,...,2,}
are the variables that occur in the term it is applied to. The application of ¢ to a
term # is denoted by to.

Semantic (or analytic) tableaux are a sound and complete calculus for doing
logical inferences in full first-order logic. They were developed in the 1950s from
Gentzen systems. For an introduction which covers the material needed here,
see (Fitting, 1990). Following Fitting we divide the set of formulae of into four
classes: « for formulae of conjunctive type, § for formulae of disjunctive type,
~ for quantified formulae of universal type and finally 6 for quantified formulae
of existential type. This is called uniform notation; it simplifies presentation and
proofs considerably. The classification is motivated by the tableau expansion rules
which are associated with each formula. The rules characterize the assertion of a
truth value to a formula by means of asserting truth values to its direct subfor-
mulae. For example, ¢ A 2 holds if and only if ¢ and @ hold. In the upper part of
Table T the rule schemata for the various formula types are given. Premises and
conclusions are separated by a horizontal bar, while vertical bars in the conclusion
denote different extensions which are to be thought as disjunctions. In the lower
part of Table T the correspondence between formulae and formula types is shown.

1o IV v 1)
o ERES 7 (y) b1(f(zr,...,70))
’ where y is a new free where f is a new (Skolem) function
variable. symbol, and =z1,...,7, are the free
variables occurring in 4.
Lo Jofool [8 [[A]f) | v [xnG] [¢ [&UE,.. o)
o AP ol ¥| [(6Vvy) || o] | [(Y)o(x) || o(y)| |=(Ve)o(x)|[~o(f(z1,. .. 2n))
~(OVY) |2 || (AP [[=¢[=¢| [2(Ex)é()[-é(y) | [Br)é(x) | 8(f(z1,--- 7n))
~@DY) || o] [(6DY) [[~4] ¢
) o] ¢

TABLE T

Formula types and tablean rule schemata.

We use free variable quantifier rules (Fitting, 1990; Hahnle and Schmitt, 1994).
Instead of “guessing” ground terms that are instantiated for universally quantified
variables, a new free variable is introduced, that is instantiated later “on demand”

Deduction by Combining Semantic Tableaux and Tnteger Programming 3

with a term that is useful.
For our purposes it is sufficient to visualize a tableau as a finite binary tree,
whose nodes are first-order formulae, constructed as follows:

1. A finite linear tree whose nodes are formulae taken from a set ® of formulae
is a tableau for ®.

2. If T is a tableau for ® and ¢ is a node from T then a new tableau 7’ for ®
is constructed by extending a branch of T that contains ¢ by as many new
linear subtrees as the rule' corresponding to ¢ has extensions, the nodes of
the new subtrees being labelled with the formulae in the extensions.?

A branch B of T is a maximal path in T. Tt is often identified with the set of formu-
lae it contains. A tableau branch is closed iff it contains a pair of complementary
formulae, i.e., formulae of the form ¢ and =¢.> A tableau is closed (under o) iff
there is a substitution ¢ such that all branches Bo of To are closed.

To prove tautologyhood of a formula ¢ we begin with a tree whose single node
is labelled by —¢, that is we assume that ¢ is false in some model. A tableau
proof represents a systematic search for such a model. FEvery tableau branch
corresponds to a partial possible model in which the formulae on the branch are
valid. Therefore, a complementary pair of formulae, and thus a closed branch,
denotes an explicit contradiction, since in no model both a formula and its negation
can be true.

A proof of the following theorem, that states soundness and completeness

of semantic tableaux, can be found in (Fitting, 1990) (completeness part) and
(Hahnle and Schmitt, 1994) (soundness part).

THROREM 1. et ¢ be any first-order sentence. Then there is a closed tableau for
{—¢} iff ¢ is a first-order tautology.

Using the deduction theorem for first order logic?, an immediate corollary of
Theorem 1 is that for all sentences ¢1,...,0,,¢: {d1,..., 0.} | ¢ iff there is a
closed tableau for {¢1,..., ¢, ~¢}.

Tableau construction for a set of formulae ® is a highly non-deterministic pro-
cedure. We did not specify, for example, in which order the tableau rules should
be applied to the formulae on a branch, or how a closing substitution should be
searched for.

' Tt is obtained by looking up the subformulae corresponding to ¢ and instantiating the mat-
ching rule schema (Table T).

2 From the two formulae in the conclusion of a double negation only one copy needs to be
kept. Moreover, it is is sufficient for completeness to apply a-, 5- and é-rules only once to every
formula in each branch. Consequently, formulae of these types may be deleted locally to the
current branch after rnle application. Note, however, that y-formulae must be used repeatedly
sometimes and hence may not be removed.

* Tt is sufficient merely to consider complementary pairs of atomic formulae.

* For all sentences ¢1,...,0n,6: {S1,...,¢n} = ¢ iff (1 A...Adyn) D ¢ is a tantology (where

|= denotes the logical consequence relation).

4 Bernhard Beckert and Reiner Hahnle

1 p(0)
N o)
O
g el D|P(9(7‘1)) - N

Fig. 1. The tablean proof described in Example 1.

ExamPrk 1. The tableau shown in Figure 1 proves that p(s(s(z))) is a logical
consequence of {p(0), (Yz)(p(z) D p(s(x)))}. Formulae (1) (3) are put on the
tableau initially. Formula (4) is derived from (2) by applying the y-rule, and then
(5) and (6) are added by applying the g-rule to (4). Now, the left branch is closed
under the substitution {2y — 0} by (1) and (5). The right branch of the tableau
is not closed under {27 < 0}; thus, the y-rule has to be applied a second time
to (2) to derive (7), and then (8) and (9) from (7). At that point the whole tableau
is closed under the substitution {2y — 0, 22 — s(0)}, the middle branch by (6)
and (8), and the right branch by (3) and (9). The middle branch could have been
closed under the substitution {22 — 0} as well (using (1) and (8)); this, however,
would have been useless and does not close the branch on the right. There is a
refinement of semantic tableaux called regularity (Letz ef al., 1992) that can avoid
such closures: it is not allowed to put two identical formulae on a branch. This
condition would be violated under the substitution {25 — 0}, because (9) and (6)
would then become identical.

2 Translating Semantic Tableaux into Integer Programs

In this section we describe a method using semantic tableaux for translating a
propositional® formula ¢ (which needs not to be in any normal form) into a 0-1-
TP C such that ¢ is satisfiable iff C is feasible. Tableau rules are used to split and
transform ¢, whereas TP methods are used to check whether the resulting tableau
is closed.

For propositional CNF formulae there is a well-known standard translation into
0-1-TPs: Each clause of the form py V...V pr V =pppr V...V =py, (1 < k< m)

5 Tifting of this method to full first-order logic is described in Section 3.

Deduction by Combining Semantic Tableaux and Tnteger Programming b

Bl Eil ElR
[>i—i] 6 p>i T—p>i
BRI

where 7 is a new TP
variable.

TABLE 1T

Propositional rules for signed a-formulae, g-formulae, and literals (p is an atomic formula).

corresponds to the constraint
prtocd e+ (T=pep)+ -4+ (1 —pn) > 1

The question whether a single tableau branch B is closed can as well be easily
transformed into a 0-1-TP: B is closed iff the set of constraints

{p>1:peB,panatom}U{p<0 : —-p € B, pan atom}

is infeasible. Using this translation, the question whether a whole tableau T is
closed results in a disjunctive programming problem: 7T is closed iff there is a
solution to one of the 1Ps constructed for each of its branches; that way, nothing
is gained by using IPs, because the transformation does not make use of their
expressiveness.

Instead, we use techniques similar to that of disjunctive programming to encode
a whole tableau, including its structure, into a single 0-1-TP. This translation makes
use of signed formulae®. A signed formula is a string of the form (b7 where ¢
is a (propositional or first-order) formula and 7 is a linear expression (for example
1—j1472). The sign associates a logical truth value with the formula. For example,
(b means that ¢ is true. One could add signs of the form (b to express “¢ is
false” by (b; this, however, is not necessary as we may use —wb instead. By
employing signed formulae, tableau rules that are linear for g-formulae (in contrast
to the rule in Table T) can be defined, see the second rule in Table TI. To generate
a 0-1-TP, two additional rules are needed that translate literals into constraints,
see the two rules on the right of Table II.

There is, of course, a price to be paid for the linearity of the disjunctive -
rules. New variables are introduced by their application, that we call branching
variables. Fach assignment of 0/1-values to the branching variables in the resulting
TP corresponds to one of the tableau branches and, thus, to a partial model. Tf,
for example, by assigning values to ji,...,ji, a linear expression i = i(j, ..., jx)
evaluates to 1, then ¢ means that ¢ is part of the branch B corresponding to
that assignment and is valid in the partial model associated with B.

% Signed formulae (with different types of signs) are frequently nsed in semantic tableaux for
non-classical logics, e.g. multiple-valued logics (Hahnle, 1994a).

6 Bernhard Beckert and Reiner Hahnle

The rules from Table IT can be used to step by step transform a set of signed
formulae into an TP:

DEFINITION 1. Tet ® = {¢1,...,¢r} be a set of propositional formulae, and let
the sequence Cg, . ..,C, be formed according to the following rules:

1. COZ{¢17---7¢I<}7

2. C,, is derived from C,,_1 by applying one of the tableau rules from Table 1T to
¥ € Cpmy and replacing ¢ by the result of the transformation (1 < m < n).

3. C,, consists only of constraints (i.e., there are no a signed formulae left).

Then C,, is a 0-1-IP associated with ®.

The following soundness and completeness theorem holds:

TrroreMm 2. If C is a 0-1-1P associated with a set ® of propositional formulae
(Def. 1), then:

C is infeasible iff ® is unsatisfiable.

Theorem 2 implies that a propositional formula ¢ is a tautology iff the TP(s)
associated with {=¢} are infeasible.

Examprr 2. TLet @ = {pV —p}; then Cy = { (pV —p)}. By applying the f-rule
we obtain Ci = {|>1—j]|p,[>1+j-1]|-p}; the literal rules are applied to derive the

0-1-TP

T—p>1+j-1}

that is associated with ®. Since Cj3 is feasible, p V —p has to be satisfiable (which
is, of course, true).

The two possible assignments of values (0 or 1) to the branching variable j
correspond two the two branches of the semantic tableau for p vV —p, and thus to
the two possible models, in which p is either true or false.

In case 31 or (85 is a literal, the 8 rule can be optimized inasmuch as the intro-
duction of an additional variable can be avoided; the variable is simply replaced
by the literal itself, which then becomes part of the constraint (Table TIT).

Using this optimization, the formula from Example 2 is transformed into the
single constraint 1 — p > 1 — p whose feasibility (for all values of p) can be seen
immediately. Taking this optimization into account our translation collapses into
the standard translation mentioned at the beginning of this section in the case of
CNF input.

Deduction by Combining Semantic Tableaux and Tnteger Programming 7

|8
EEIE
if 81 is a literal p. if 32 1s a literal p. if 81 is a literal —p. if 32 1s a literal —p.
TABLE 11T

Optimized f-rules in the case when 3 or 2 is a literal.

Bl B Ell

Zi—g(w1,0m0) | B [>i|7(y) [>i |61 (f(w1,. . 20))
where y is a new where f is a new (Skolem) function
free variable. symbol, and x1,..., %, are the free

where 7 1s a new n-ary predica- ; R
variables occurring in 4.

te symbol, and z1,...,z, are the
free variables occurring both in 3,
and f5.

TABLE TV

First-order constraint rules for 8-, v-, and é-formulae.

3 Lifting to First-Order Logic

Our lifting of the method described in the previous section to first-order logic is
based on Herbrand’s Theorem”. A set ® of first-order sentences is first transformed
into an TP containing free variables®. Then, new instances of the parts of the TP
that correspond to universally quantified (sub-)formulae are added to the problem
until it becomes unsatisfiable (if ® is satisfiable this process does, in general, not
terminate, because satisfiability of first-order sentences is undecidable).

The transformation rules for quantified formulae (y- and é-rules) from Table T
can be adapted to signed formulae straightforwardly. The a-rules and the rules
for literals (Table TT) remain unchanged for first-order logic. The p-formulae,
however, become slightly more complicated. Tt is necessary to parameterize the
branching variables with some of the free variables. The first-order rules are shown
in Table TV.

The definition of IPs associated with a set of formulae has to be adapted. Since
more than one instance of universally quantified (sub-)formulae may be needed, a
mechanism has to be added that allows to duplicate and instantiate parts of the

TP (Rule 2(b) in the definition):

DEFINITION 2. Tet ® = {¢q,..., 01} be a set of first-order sentences and let the
sequence Cy, . ..,C, be formed according to the following rules:

7 A set ® of clauses is unsatisfiable iff there is an unsatisfiable finite set of ground (i.e. variable-
free) instances of clauses from ®.

® These free variables should not be confused with TP variables in constraints (e.g. branching
variables). TP variables correspond to atomic formulae and, thus, might contain free variables.

8 Bernhard Beckert and Reiner Hahnle

1. COZ{¢17---7¢I<}7

2. a)C,, is derived from C,,_y by applying the a- or the literal rules from
Table TI, or the 3, v-, or é-rules from Table IV to # € C,,_1 and repla-
cing 1 by the result of the transformation (1 < m < n);? or

b) there is a substitution o such that C,, = C,,—1 U (Crnv0).

3. C,, consists only of constraints (that is no signed formulae are left).

Then C,, is a (first-order) 0-1-TP associated with .

Optimized versions of the f-rule in case when 8y or 33 is a literal (similar to
those in Table TIT) can still be used.

The following soundness and completeness theorem for first-order logic holds;
note, that in general not every IP associated with an unsatisfiable set of formulae
is infeasible (in contrast to the propositional case, Theorem 2).

THROREM 3. A finite set ® of first-order sentences is unsatisfiable iff at least one
of the first-order 0-1-1Ps associated with ® is infeasible.

This theorem implies soundness and completeness of the following procedure that
can be used to prove a first-order formula ¢ to be a tautology:

1. Apply a-, -, v-, 6-, and literal rules as long as possible to derive from Cq =

{ ¢} the 0-1-TP C

2. if the 0-1-1P C is infeasible
then STOP (-¢ is unsatisfiable; ¢ is a tautology)

3. Choose a solution L of C, . : Atoms(C) — {0, 1}

4. if there are o, p, ¢, such that o(p) = o(q) but L(p) # L(q)
then C := CUo(C); GOTO 3
else STOP (—¢ satisfiable; ¢ is not a tautology)

Note, that the choice of the solution [is indeterministic; for completeness
backtracking has to be used or fairness strategies have to be employed. Since
the substitutions o, that are applied to generate new instances, are computed by
analyzing the solutions of the TPs, and since this analysis is global (and is not
restricted to single tableau branches), the search space is much smaller than that
for semantic tableaux.

The pairs of atoms p, ¢ that can be used to remove a solution are called links.
It is a good heuristic to prefer links that involve an atom (p or ¢) that is part of as
few links as possible. This heuristic can be encoded into a minimization problem
and integrated into the IP.

? Note, that y-rules, too, are removed and replaced by v

Deduction by Combining Semantic Tableaux and Tnteger Programming 9
4 Example

As an example, we use the procedure described above to prove (again) the for-
mula from Example 1 to be a tautology, i.e., that & = {p(0), (Va)(p(x) D
p(s(x))), =p(s(s(x)))} is unsatisfiable. We initialize

Co = {>1]p(0), [Z1](Va)(p(x) D p(s(2))), [>1]=p(s(s(2)))} -

By applying the literal rules (Table IT) to p(()) and —p(s(s(x))) we derive

the constraints

p(0) > 1 (1)
T —p(s(s(0))) > 1 (2)

From (VT)(p(T) D p(s(x))) we derive (p(T) O p(s(x))) using the y-rule
(Table TV), then [>1—(1—p(x)) | p(s(x)) by applying the optimized S-rule'® and final-

ly using the literal rule p(s(x)) > 1 — (1 — p(x)), i.e.,

(1 p(a)) + pls(r)) > 1 (3)

The 0-1-TP C consisting of (1) (3) is feasible. We (arbitrarily) chose the soluti-
on Ly, where Li(p(0)) = Li(p(s(2))) =1 and Li(p(s(s(0)))) = Li(p(2)) = 0. This
solution can be removed using the link p(0), p(x), since Li(p(0)) # Li(p(x)), but
o(p(0)) = o(p(x)), where 0 = {& — 0}. Thus, we carry on with the TP C U Co,
i.e., we add the constraint

AVANYS

(1 =p(0)) +p(s(0)) > 1 (4)

The new problem (1) is still feasible. One solution is Ly, where Ly(p(0)) =
s(

(4)
La(p(s(0))) = La(p(s(x))) = 1 and La(p(s(s(0)))) = La(p(x)) = 0. We remove the
solution using the link p(s(0)), p(x) and apply o = {2 — s(0)} to add

(1 =p(s(0))) + p(s(s(0))) > 1 (5)

The resulting 0-1-TP (1) (5) is infeasible, which proves ® to be unsatisfiable.
It is obviously useless to use the link p(0),p(2) to remove the solution I,

4
)

because (4) would be added a second time. In general it is not as easy to recognize
useless links; fortunately, it is possible to adapt regularity (described in Example 1)
and other strategies known from semantic tableaux to avoid using such links.

1% Applying the non-optimized rule from Table TT results in the two formnlae —|p(rr,)

and | >1+45(2)—1 |p(s(x)) containing a branching variable, an nally in the constraints j(x) 4+ (1 —
d ining a b hing iabl d finally in th i]

p()) > T and (1 — j(2) + pls(x)) > 1.

10 Bernhard Beckert and Reiner Hahnle
5 Synergy Effects

In this section we list the benefits that can be gained from an interaction hetween
AR and OR techniques as suggested in the previous sections. Due to lack of space
we had to leave out concrete examples for many statements.

— The fact that logical formulae and the linear fragment of arithmetic are map-
ped into the same domain allows an efficient representation of the search
space associated with formulae as they typically occur in verification condi-
tions during formal program verification. Arithmetic properties are awkward
to define by purely logical means. On the other hand, if a special machinery
for dealing with purely arithmetical subproblems is used, tough problems
with redundancy and fairness tend to emerge. It is possible to view first-
order formulae over linear arithmetic as an extension of TP and the presented
mechanism as a solver that makes use of AR techniques to gain efficiency.

— As a tableau procedure is used to produce instances of formulae the input is
not restricted to any normal form: for the same reason an adaptation of the
technique to certain non-classical logics is possible, see (Hihnle, 1994b; Hahnle
and Thens, 1994). Both properties are important for many applications.

— Reductions of the search space (such as the regularity restriction defined
above) as they are commonly found in tableau-oriented procedures can be
built into the translation. The same holds for polynomial CNF transforma-
tion, cf. (Plaisted and Greenbaum, 1986), and for an optimized version of
Skolemization (Hahnle and Schmitt, 1994).

— The amount of backtracking which normally occurs in tableaux is greatly
reduced due to the efficient representation of a whole tablean which still can
be checked rapidly for closure (unsatisfiability). This kind of representation
makes it also possible to define subsumption within the C;. Moreover, the cost
function of integer programs can be employed to suggest substitutions that
lead to a favourable structure of the search space. In addition, a meaningful
cost function often improves the behaviour of TP solvers.

— Many TP solvers allow incremental solutions. Moreover, TP solvers tend to find
solutions of satisfiable problems quickly. Hence, they promise to be efficient for
large, combinatorially not too hard, and mostly satisfiable problems such as
they result from large formal specifications. Specific techniques for managing
sparse matrices will be of advantage for such problems as well.

— Problem dependent heuristics can often be encoded as arithmetical properties
in which case they can be represented at the same level as the problems
themselves.

Deduction by Combining Semantic Tableaux and Tnteger Programming 11

— Some TP techniques such as detection of simple (polynomially solvable) cases,
generation of certain strong cuts or various preprocessing aids have no direct
logical counterparts. Therefore, it can be hoped that such techniques can
solve some problems quickly, where symbolic inference is in trouble.

Conclusion

Related Work The inference procedure as sketched in this paper is reminiscent
of the Primal Partial Instantiation Method developed by Hooker and Rago (1992;
1994). The latter derives its name from the analogy between the generation of
new inequalities in the primal simplex method of Dantzig (1963) for solving linear
programs and the generation of new clauses/inequations in the procedure outlined
above. OQur proposal differs from Hooker and Rago’s mainly in the following points:
(i) we work with full first-order logic, not only with function-free universal clauses;
(ii) our procedure encodes part of the structure of a semantic tableau into the
generated inequations; (iii) we take advantage of the optimizing part of TP solvers
for computing links (blocks in the terminology of Hooker and Rago) with a minimal
number of alternatives, whereas Rago (1994) does not consider the use of IPs, but
generates sequences of ground (variable-free) clauses.

Further related work is (Kagan et al., 1993) which provides a translation (wor-
king as well by partial instantiation) from definite logic programs into linear pro-
grams. It is restricted to the area of logic programming and, as the authors
concede, linear programming is not specifically exploited and could be substituted
by a symbolic inference procedure.

Ongoing and Future Work An implementation of the suggested procedure (imple-
mented in Prolog and C++) is under way. Once a prototype is operational we will
start to evaluate various heuristics.

Summary On the meta-level the potential synergy effects of putting together AD
and OR can be summarized as follows:

1. A mixed approach can switch implementation paradigms whenever it is of
advantage.

2. Some techniques of AD) have no OR counterpart and vice versa. A mixed
procedure can employ all of them.

3. Finally, an occasional change of the point of view often results in new ideas
such as the usage of cost functions to compute substitutions.

References

George B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.
Melvin C. Fitting. First-Order Logic and Automated Theorem Prowving. Springer-Verlag, 1990.

12 Bernhard Beckert and Reiner Hahnle

Reiner Hahnle and Ortrun Tbens. Tmproving temporal logic tableanx nsing integer constraints.
In Proceedings, International Conference on Temporal Logic, Bonn, Germany, pages 535 539.
Springer LNCS 827, 1994.

Reiner Hahnle and Peter H. Schmitt. The liberalized 4-rule in free variable semantic tableanx.
Journal of Automated Reasoning,, 13(2):211 222, October 1994.

Reiner Hahnle. Automated Deduction in Multiple- Valued Logics, volnme 10 of International Series
of Monographs on Computer Science. Oxford University Press, 1994.

Reiner Hahnle. Many-valued logic and mixed integer programming. Annals of Mathematics and
Artificial Intelligence, 12(3,4):231 264, December 1994.

John N. Hooker. New methods for computing inferences in first order logic. Working Paper,
GSTA, CMU Pittsburgh, April 1992.

Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing definite logic programs by
partial instantiation and linear programming. Draft Manuscript, 1993.

Reinhold T.etz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: A high-
perfomance theorem prover. Journal of Automated Reasoning, 8(2):183 212, 1992.

David A. Plaisted and Steven Greenbaum. A structure-preserving clanse form translation. Journal
of Symbolic Computation, 2:293 304, 1986.

Gabriella. Rago. Optimization, Hypergraphs and Logical Inference. PhD) thesis, Dipartimento di
Tnformatica, Universita di Pisa, March 1994. Available as Tech Report TD-4/94.

