
Deduction by Combining Semantic Tableaux andInteger Programming�Bernhard Beckert and Reiner H�ahnleUniversity of Karlsruhe, Institute for Logic, Complexity and Deduction Systems,76128 Karlsruhe, Germany. Phone: +49-721-608-4324, FAX: +49-721-608-4329,Email: fbeckert,haehnleg@ira.uka.de, WWW: http://i12www.ira.uka.de/Abstract. In this paper we propose to extend the current capabilities of automated reasoningsystems by making use of techniques from integer programming. We describe the architecture ofan automated reasoning system based on a Herbrand procedure (enumeration of formula instan-ces) on clauses. The input are arbitrary sentences of �rst-order logic. The translation into clausesis done incrementally and is controlled by a semantic tableau procedure using uni�cation. Thisamounts to an incremental polynomial CNF transformation which at the same time encodes partof the tableau structure and, therefore, tableau-speci�c re�nements that reduce the search space.Checking propositional unsatis�ability of the resulting sequence of clauses can either be done witha symbolic inference system such as the Davis-Putnam procedure or it can be done using integerprogramming. If the latter is used a number of advantages become apparent.IntroductionIn this paper we propose to extend the current capabilities of automated reaso-ning (AR) systems by combining the inference procedure semantic tableaux withinteger program (IP) solvers. We show that the resulting system has propertieswhich are interesting for such applications as formal program veri�cation. In Sec-tion 1 we summarize some facts on semantic tableaux in order to make the paperreasonably self-contained. In Section 2 we give a tableau-based polynomial timetranslation from propositional logic into IPs. This translation will be lifted tofull �rst-order logic in Section 3. With an extended example we illustrate howthe system is supposed to work (Section 4) and in Section 5 we summarize thepossible synergy e�ects from marrying AR and OR in the way suggested. Finallywe mention related and ongoing work. We had to omit all proofs due to limitedspace. 1 Semantic TableauxFirst we state some standard notions of computational logic that will be used in thefollowing; consult (Fitting, 1990) for details. Let us �x a �rst-order language whoseterms and formulae are built up from countable sets of predicate symbols, functionsymbols, constant symbols and object variables in the usual manner (for each aritythere are countably many function and predicate symbols). We use the logicalconnectives ^ (conjunction), _ (disjunction), � (implication) and : (negation),� This research was supported by Deutsche Forschungsgemeinschaft within the Schwerpunkt-programm Deduktion.

2 Bernhard Beckert and Reiner H�ahnleand the quanti�er symbols 8 and 9. An atom is a formula of the form p(t1; : : : ; tn),where p is a predicate symbol and t1; : : : ; tn are terms. Atoms and their negationsare called literals. A clause is a disjunction of literals. A formula is in conjunctivenormal form (CNF) if it is a conjunction of clauses. A variable is free if it is notbound by a quanti�er (8 or 9). A sentence is a formula not containing any freevariables. We use the standard notions of satis�ability and model. A sentence iscalled a tautology if it is true in all models, i.e., if its negation is unsatis�able.Substitutions are mappings from variables to terms and are extended to formulaeas usual. We denote a substitution by fx1 t1; : : : ; xn tng, where fx1; : : : ; xngare the variables that occur in the term it is applied to. The application of � to aterm t is denoted by t�.Semantic (or analytic) tableaux are a sound and complete calculus for doinglogical inferences in full �rst-order logic. They were developed in the 1950s fromGentzen systems. For an introduction which covers the material needed here,see (Fitting, 1990). Following Fitting we divide the set of formulae of into fourclasses: � for formulae of conjunctive type, � for formulae of disjunctive type,
 for quanti�ed formulae of universal type and �nally � for quanti�ed formulaeof existential type. This is called uniform notation; it simpli�es presentation andproofs considerably. The classi�cation is motivated by the tableau expansion ruleswhich are associated with each formula. The rules characterize the assertion of atruth value to a formula by means of asserting truth values to its direct subfor-mulae. For example, �^ holds if and only if � and hold. In the upper part ofTable I the rule schemata for the various formula types are given. Premises andconclusions are separated by a horizontal bar, while vertical bars in the conclusiondenote di�erent extensions which are to be thought as disjunctions. In the lowerpart of Table I the correspondence between formulae and formula types is shown.��1�2 ��1 �2

1(y)where y is a new freevariable. ��1(f(x1; : : : ; xn))where f is a new (Skolem) functionsymbol, and x1; : : : ; xn are the freevariables occurring in �.� �1 �2� ^ � :(� _) :� : :(� �) � : ::� � � � �1 �2(� _) � :(� ^) :� : (� �) :�

1(y)(8x)�(x) �(y):(9x)�(x) :�(y) � �1(f(x1; : : : ; xn)):(8x)�(x) :�(f(x1; : : : ; xn))(9x)�(x) �(f(x1; : : : ; xn))TABLE IFormula types and tableau rule schemata.We use free variable quanti�er rules (Fitting, 1990; H�ahnle and Schmitt, 1994).Instead of \guessing" ground terms that are instantiated for universally quanti�edvariables, a new free variable is introduced, that is instantiated later \on demand"

Deduction by Combining Semantic Tableaux and Integer Programming 3with a term that is useful.For our purposes it is su�cient to visualize a tableau as a �nite binary tree,whose nodes are �rst-order formulae, constructed as follows:1. A �nite linear tree whose nodes are formulae taken from a set � of formulaeis a tableau for �.2. If T is a tableau for � and � is a node from T then a new tableau T 0 for �is constructed by extending a branch of T that contains � by as many newlinear subtrees as the rule1 corresponding to � has extensions, the nodes ofthe new subtrees being labelled with the formulae in the extensions.2A branch B of T is a maximal path in T . It is often identi�ed with the set of formu-lae it contains. A tableau branch is closed i� it contains a pair of complementaryformulae, i.e., formulae of the form � and :�.3 A tableau is closed (under �) i�there is a substitution � such that all branches B� of T� are closed.To prove tautologyhood of a formula � we begin with a tree whose single nodeis labelled by :�, that is we assume that � is false in some model. A tableauproof represents a systematic search for such a model. Every tableau branchcorresponds to a partial possible model in which the formulae on the branch arevalid. Therefore, a complementary pair of formulae, and thus a closed branch,denotes an explicit contradiction, since in no model both a formula and its negationcan be true.A proof of the following theorem, that states soundness and completenessof semantic tableaux, can be found in (Fitting, 1990) (completeness part) and(H�ahnle and Schmitt, 1994) (soundness part).Theorem 1. Let � be any �rst-order sentence. Then there is a closed tableau forf:�g i� � is a �rst-order tautology.Using the deduction theorem for �rst order logic4, an immediate corollary ofTheorem 1 is that for all sentences �1; : : : ; �n; �: f�1; : : : ; �ng j= � i� there is aclosed tableau for f�1; : : : ; �n;:�g.Tableau construction for a set of formulae � is a highly non-deterministic pro-cedure. We did not specify, for example, in which order the tableau rules shouldbe applied to the formulae on a branch, or how a closing substitution should besearched for.1 It is obtained by looking up the subformulae corresponding to � and instantiating the mat-ching rule schema (Table I).2 From the two formulae in the conclusion of a double negation only one copy needs to bekept. Moreover, it is is su�cient for completeness to apply �-, �- and �-rules only once to everyformula in each branch. Consequently, formulae of these types may be deleted locally to thecurrent branch after rule application. Note, however, that
-formulae must be used repeatedlysometimes and hence may not be removed.3 It is su�cient merely to consider complementary pairs of atomic formulae.4 For all sentences �1; : : : ; �n; �: f�1; : : : ; �ng j= � i� (�1 ^ : : :^ �n) � � is a tautology (wherej= denotes the logical consequence relation).

4 Bernhard Beckert and Reiner H�ahnle1 p(0)2 (8x)(p(x) � p(s(x)))3 :p(s(s(0)))4 p(x1) � p(s(x1))5 :p(x1) 6 p(s(x1))7 p(x2) � p(s(x2))8 :p(x2) 9 p(s(x2))

� �Fig. 1. The tableau proof described in Example 1.Example 1. The tableau shown in Figure 1 proves that p(s(s(x))) is a logicalconsequence of fp(0); (8x)(p(x) � p(s(x)))g. Formulae (1){(3) are put on thetableau initially. Formula (4) is derived from (2) by applying the
-rule, and then(5) and (6) are added by applying the �-rule to (4). Now, the left branch is closedunder the substitution fx1 0g by (1) and (5). The right branch of the tableauis not closed under fx1 0g; thus, the
-rule has to be applied a second timeto (2) to derive (7), and then (8) and (9) from (7). At that point the whole tableauis closed under the substitution fx1 0; x2 s(0)g, the middle branch by (6)and (8), and the right branch by (3) and (9). The middle branch could have beenclosed under the substitution fx2 0g as well (using (1) and (8)); this, however,would have been useless and does not close the branch on the right. There is are�nement of semantic tableaux called regularity (Letz et al., 1992) that can avoidsuch closures: it is not allowed to put two identical formulae on a branch. Thiscondition would be violated under the substitution fx2 0g, because (9) and (6)would then become identical.2 Translating Semantic Tableaux into Integer ProgramsIn this section we describe a method using semantic tableaux for translating apropositional5 formula � (which needs not to be in any normal form) into a 0-1-IP C such that � is satis�able i� C is feasible. Tableau rules are used to split andtransform �, whereas IP methods are used to check whether the resulting tableauis closed.For propositional CNF formulae there is a well-known standard translation into0-1-IPs: Each clause of the form p1 _ : : : _ pk _ :pk+1 _ : : : _ :pm (1 � k � m)5 Lifting of this method to full �rst-order logic is described in Section 3.

Deduction by Combining Semantic Tableaux and Integer Programming 5�i ��i �1�i �2 �i ��i�j �1�i+j�1 �2where j is a new IPvariable. �i pp � i �i :p1� p � iTABLE IIPropositional rules for signed �-formulae, �-formulae, and literals (p is an atomic formula).corresponds to the constraintp1 + � � �+ pk + (1� pk+1) + � � �+ (1� pm) � 1 :The question whether a single tableau branch B is closed can as well be easilytransformed into a 0-1-IP: B is closed i� the set of constraintsfp � 1 : p 2 B, p an atomg [fp � 0 : :p 2 B, p an atomgis infeasible. Using this translation, the question whether a whole tableau T isclosed results in a disjunctive programming problem: T is closed i� there is asolution to one of the IPs constructed for each of its branches; that way, nothingis gained by using IPs, because the transformation does not make use of theirexpressiveness.Instead, we use techniques similar to that of disjunctive programming to encodea whole tableau, including its structure, into a single 0-1-IP. This translation makesuse of signed formulae6. A signed formula is a string of the form �i �, where �is a (propositional or �rst-order) formula and i is a linear expression (for example1�j1+j2). The sign associates a logical truth value with the formula. For example,�1 � means that � is true. One could add signs of the form �i � to express \� isfalse" by �0 �; this, however, is not necessary as we may use �1 :� instead. Byemploying signed formulae, tableau rules that are linear for �-formulae (in contrastto the rule in Table I) can be de�ned, see the second rule in Table II. To generatea 0-1-IP, two additional rules are needed that translate literals into constraints,see the two rules on the right of Table II.There is, of course, a price to be paid for the linearity of the disjunctive �-rules. New variables are introduced by their application, that we call branchingvariables. Each assignment of 0/1-values to the branching variables in the resultingIP corresponds to one of the tableau branches and, thus, to a partial model. If,for example, by assigning values to j1; : : : ; jk, a linear expression i = i(j1; : : : ; jk)evaluates to 1, then �i � means that � is part of the branch B corresponding tothat assignment and is valid in the partial model associated with B.6 Signed formulae (with di�erent types of signs) are frequently used in semantic tableaux fornon-classical logics, e.g. multiple-valued logics (H�ahnle, 1994a).

6 Bernhard Beckert and Reiner H�ahnleThe rules from Table II can be used to step by step transform a set of signedformulae into an IP:Definition 1. Let � = f�1; : : : ; �kg be a set of propositional formulae, and letthe sequence C0; : : : ; Cn be formed according to the following rules:1. C0 = f �1 �1; : : : ; �1 �kg,2. Cm is derived from Cm�1 by applying one of the tableau rules from Table II to 2 Cm�1 and replacing by the result of the transformation (1 � m � n).3. Cn consists only of constraints (i.e., there are no a signed formulae left).Then Cn is a 0-1-IP associated with �.The following soundness and completeness theorem holds:Theorem 2. If C is a 0-1-IP associated with a set � of propositional formulae(Def. 1), then: C is infeasible i� � is unsatis�able.Theorem 2 implies that a propositional formula � is a tautology i� the IP(s)associated with f:�g are infeasible.Example 2. Let � = fp_:pg; then C0 = f �1 (p _ :p)g. By applying the �-rulewe obtain C1 = f �1�j p; �1+j�1 :pg; the literal rules are applied to derive the0-1-IP C3 = f p � 1� j ;1� p � 1 + j � 1gthat is associated with �. Since C3 is feasible, p _ :p has to be satis�able (whichis, of course, true).The two possible assignments of values (0 or 1) to the branching variable jcorrespond two the two branches of the semantic tableau for p _ :p, and thus tothe two possible models, in which p is either true or false.In case �1 or �2 is a literal, the � rule can be optimized inasmuch as the intro-duction of an additional variable can be avoided; the variable is simply replacedby the literal itself, which then becomes part of the constraint (Table III).Using this optimization, the formula from Example 2 is transformed into thesingle constraint 1 � p � 1 � p whose feasibility (for all values of p) can be seenimmediately. Taking this optimization into account our translation collapses intothe standard translation mentioned at the beginning of this section in the case ofCNF input.

Deduction by Combining Semantic Tableaux and Integer Programming 7�i ��i�p �2if �1 is a literal p. �i ��i�p �1if �2 is a literal p. �i ��i�(1�p) �2if �1 is a literal :p. �i ��i�(1�p) �1if �2 is a literal :p.TABLE IIIOptimized �-rules in the case when �1 or �2 is a literal.�i ��i�j(x1;:::;xn) �1�i+j(x1 ;:::;xn)�1 �2where j is a new n-ary predica-te symbol, and x1; : : : ; xn are thefree variables occurring both in �1and �2. �i
�i
1(y)where y is a newfree variable. �i ��i �1(f(x1; : : : ; xn))where f is a new (Skolem) functionsymbol, and x1; : : : ; xn are the freevariables occurring in �.TABLE IVFirst-order constraint rules for �-,
-, and �-formulae.3 Lifting to First-Order LogicOur lifting of the method described in the previous section to �rst-order logic isbased on Herbrand's Theorem7. A set � of �rst-order sentences is �rst transformedinto an IP containing free variables8. Then, new instances of the parts of the IPthat correspond to universally quanti�ed (sub-)formulae are added to the problemuntil it becomes unsatis�able (if � is satis�able this process does, in general, notterminate, because satis�ability of �rst-order sentences is undecidable).The transformation rules for quanti�ed formulae (
- and �-rules) from Table Ican be adapted to signed formulae straightforwardly. The �-rules and the rulesfor literals (Table II) remain unchanged for �rst-order logic. The �-formulae,however, become slightly more complicated. It is necessary to parameterize thebranching variables with some of the free variables. The �rst-order rules are shownin Table IV.The de�nition of IPs associated with a set of formulae has to be adapted. Sincemore than one instance of universally quanti�ed (sub-)formulae may be needed, amechanism has to be added that allows to duplicate and instantiate parts of theIP (Rule 2(b) in the de�nition):Definition 2. Let � = f�1; : : : ; �kg be a set of �rst-order sentences and let thesequence C0; : : : ; Cn be formed according to the following rules:7 A set � of clauses is unsatis�able i� there is an unsatis�able �nite set of ground (i.e. variable-free) instances of clauses from �.8 These free variables should not be confused with IP variables in constraints (e.g. branchingvariables). IP variables correspond to atomic formulae and, thus, might contain free variables.

8 Bernhard Beckert and Reiner H�ahnle1. C0 = f �1 �1; : : : ; �1 �kg,2. a) Cm is derived from Cm�1 by applying the �- or the literal rules fromTable II, or the �,
-, or �-rules from Table IV to 2 Cm�1 and repla-cing by the result of the transformation (1 � m � n);9 orb) there is a substitution � such that Cm = Cm�1 [(Cm�1�).3. Cn consists only of constraints (that is no signed formulae are left).Then Cn is a (�rst-order) 0-1-IP associated with �.Optimized versions of the �-rule in case when �1 or �2 is a literal (similar tothose in Table III) can still be used.The following soundness and completeness theorem for �rst-order logic holds;note, that in general not every IP associated with an unsatis�able set of formulaeis infeasible (in contrast to the propositional case, Theorem 2).Theorem 3. A �nite set � of �rst-order sentences is unsatis�able i� at least oneof the �rst-order 0-1-IPs associated with � is infeasible.This theorem implies soundness and completeness of the following procedure thatcan be used to prove a �rst-order formula � to be a tautology:1. Apply �-, �-,
-, �-, and literal rules as long as possible to derive from C0 =f �1 :�g the 0-1-IP C2. if the 0-1-IP C is infeasiblethen STOP (:� is unsatis�able; � is a tautology)3. Choose a solution L of C, L : Atoms(C)! f0; 1g4. if there are �, p, q, such that �(p) = �(q) but L(p) 6= L(q)then C := C [�(C); GOTO 3else STOP (:� satis�able; � is not a tautology)Note, that the choice of the solution L is indeterministic; for completenessbacktracking has to be used or fairness strategies have to be employed. Sincethe substitutions �, that are applied to generate new instances, are computed byanalyzing the solutions of the IPs, and since this analysis is global (and is notrestricted to single tableau branches), the search space is much smaller than thatfor semantic tableaux.The pairs of atoms p; q that can be used to remove a solution are called links.It is a good heuristic to prefer links that involve an atom (p or q) that is part of asfew links as possible. This heuristic can be encoded into a minimization problemand integrated into the IP.9 Note, that
-rules, too, are removed and replaced by
1

Deduction by Combining Semantic Tableaux and Integer Programming 94 ExampleAs an example, we use the procedure described above to prove (again) the for-mula from Example 1 to be a tautology, i.e., that � = fp(0); (8x)(p(x) �p(s(x))); :p(s(s(x)))g is unsatis�able. We initializeC0 = f �1 p(0); �1 (8x)(p(x) � p(s(x))); �1 :p(s(s(x)))g :By applying the literal rules (Table II) to �1 p(0) and �1 :p(s(s(x))) we derivethe constraints p(0) � 1 (1)1� p(s(s(0))) � 1 (2)From �1 (8x)(p(x) � p(s(x))) we derive �1 (p(x) � p(s(x))) using the
-rule(Table IV), then �1�(1�p(x)) p(s(x)) by applying the optimized �-rule10, and �nal-ly using the literal rule p(s(x)) � 1� (1� p(x)), i.e.,(1� p(x)) + p(s(x)) � 1 (3)The 0-1-IP C consisting of (1){(3) is feasible. We (arbitrarily) chose the soluti-on L1, where L1(p(0)) = L1(p(s(x))) = 1 and L1(p(s(s(0)))) = L1(p(x)) = 0. Thissolution can be removed using the link p(0); p(x), since L1(p(0)) 6= L1(p(x)), but�(p(0)) = �(p(x)), where � = fx 0g. Thus, we carry on with the IP C [C�,i.e., we add the constraint (1� p(0)) + p(s(0)) � 1 (4)The new problem (1){(4) is still feasible. One solution is L2, where L2(p(0)) =L2(p(s(0))) = L2(p(s(x))) = 1 and L2(p(s(s(0)))) = L2(p(x)) = 0. We remove thesolution using the link p(s(0)); p(x) and apply � = fx s(0)g to add(1� p(s(0))) + p(s(s(0))) � 1 (5)The resulting 0-1-IP (1){(5) is infeasible, which proves � to be unsatis�able.It is obviously useless to use the link p(0); p(x) to remove the solution L2,because (4) would be added a second time. In general it is not as easy to recognizeuseless links; fortunately, it is possible to adapt regularity (described in Example 1)and other strategies known from semantic tableaux to avoid using such links.10 Applying the non-optimized rule from Table II results in the two formulae �1�j(x) :p(x)and �1+j(x)�1 p(s(x)) containing a branching variable, and �nally in the constraints j(x)+ (1�p(x)) � 1 and (1� j(x)) + p(s(x)) � 1.

10 Bernhard Beckert and Reiner H�ahnle5 Synergy E�ectsIn this section we list the bene�ts that can be gained from an interaction betweenAR and OR techniques as suggested in the previous sections. Due to lack of spacewe had to leave out concrete examples for many statements.� The fact that logical formulae and the linear fragment of arithmetic are map-ped into the same domain allows an e�cient representation of the searchspace associated with formulae as they typically occur in veri�cation condi-tions during formal program veri�cation. Arithmetic properties are awkwardto de�ne by purely logical means. On the other hand, if a special machineryfor dealing with purely arithmetical subproblems is used, tough problemswith redundancy and fairness tend to emerge. It is possible to view �rst-order formulae over linear arithmetic as an extension of IP and the presentedmechanism as a solver that makes use of AR techniques to gain e�ciency.� As a tableau procedure is used to produce instances of formulae the input isnot restricted to any normal form; for the same reason an adaptation of thetechnique to certain non-classical logics is possible, see (H�ahnle, 1994b; H�ahnleand Ibens, 1994). Both properties are important for many applications.� Reductions of the search space (such as the regularity restriction de�nedabove) as they are commonly found in tableau-oriented procedures can bebuilt into the translation. The same holds for polynomial CNF transforma-tion, cf. (Plaisted and Greenbaum, 1986), and for an optimized version ofSkolemization (H�ahnle and Schmitt, 1994).� The amount of backtracking which normally occurs in tableaux is greatlyreduced due to the e�cient representation of a whole tableau which still canbe checked rapidly for closure (unsatis�ability). This kind of representationmakes it also possible to de�ne subsumption within the Ci. Moreover, the costfunction of integer programs can be employed to suggest substitutions thatlead to a favourable structure of the search space. In addition, a meaningfulcost function often improves the behaviour of IP solvers.� Many IP solvers allow incremental solutions. Moreover, IP solvers tend to �ndsolutions of satis�able problems quickly. Hence, they promise to be e�cient forlarge, combinatorially not too hard, and mostly satis�able problems such asthey result from large formal speci�cations. Speci�c techniques for managingsparse matrices will be of advantage for such problems as well.� Problem dependent heuristics can often be encoded as arithmetical propertiesin which case they can be represented at the same level as the problemsthemselves.

Deduction by Combining Semantic Tableaux and Integer Programming 11� Some IP techniques such as detection of simple (polynomially solvable) cases,generation of certain strong cuts or various preprocessing aids have no directlogical counterparts. Therefore, it can be hoped that such techniques cansolve some problems quickly, where symbolic inference is in trouble.ConclusionRelated Work The inference procedure as sketched in this paper is reminiscentof the Primal Partial Instantiation Method developed by Hooker and Rago (1992;1994). The latter derives its name from the analogy between the generation ofnew inequalities in the primal simplex method of Dantzig (1963) for solving linearprograms and the generation of new clauses/inequations in the procedure outlinedabove. Our proposal di�ers from Hooker and Rago's mainly in the following points:(i) we work with full �rst-order logic, not only with function-free universal clauses;(ii) our procedure encodes part of the structure of a semantic tableau into thegenerated inequations; (iii) we take advantage of the optimizing part of IP solversfor computing links (blocks in the terminology of Hooker and Rago) with a minimalnumber of alternatives, whereas Rago (1994) does not consider the use of IPs, butgenerates sequences of ground (variable-free) clauses.Further related work is (Kagan et al., 1993) which provides a translation (wor-king as well by partial instantiation) from de�nite logic programs into linear pro-grams. It is restricted to the area of logic programming and, as the authorsconcede, linear programming is not speci�cally exploited and could be substitutedby a symbolic inference procedure.Ongoing and Future Work An implementation of the suggested procedure (imple-mented in Prolog and C++) is under way. Once a prototype is operational we willstart to evaluate various heuristics.Summary On the meta-level the potential synergy e�ects of putting together ADand OR can be summarized as follows:1. A mixed approach can switch implementation paradigms whenever it is ofadvantage.2. Some techniques of AD have no OR counterpart and vice versa. A mixedprocedure can employ all of them.3. Finally, an occasional change of the point of view often results in new ideassuch as the usage of cost functions to compute substitutions.ReferencesGeorge B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1990.

12 Bernhard Beckert and Reiner H�ahnleReiner H�ahnle and Ortrun Ibens. Improving temporal logic tableaux using integer constraints.In Proceedings, International Conference on Temporal Logic, Bonn, Germany, pages 535{539.Springer LNCS 827, 1994.Reiner H�ahnle and Peter H. Schmitt. The liberalized �-rule in free variable semantic tableaux.Journal of Automated Reasoning,, 13(2):211{222, October 1994.Reiner H�ahnle. Automated Deduction in Multiple-Valued Logics, volume 10 of International Seriesof Monographs on Computer Science. Oxford University Press, 1994.Reiner H�ahnle. Many-valued logic and mixed integer programming. Annals of Mathematics andArti�cial Intelligence, 12(3,4):231{264, December 1994.John N. Hooker. New methods for computing inferences in �rst order logic. Working Paper,GSIA, CMU Pittsburgh, April 1992.Vadim Kagan, Anil Nerode, and V. S. Subrahmanian. Computing de�nite logic programs bypartial instantiation and linear programming. Draft Manuscript, 1993.Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO: A high-perfomance theorem prover. Journal of Automated Reasoning, 8(2):183{212, 1992.David A. Plaisted and Steven Greenbaum. A structure-preserving clause form translation. Journalof Symbolic Computation, 2:293{304, 1986.Gabriella Rago. Optimization, Hypergraphs and Logical Inference. PhD thesis, Dipartimento diInformatica, Universit�a di Pisa, March 1994. Available as Tech Report TD-4/94.

