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In [11] Reiter laid the foundations of the formal theory of an approach to diagnosis known as diagnosis from first
principles. His work was based on the work of many researchers, notably that of de Kleer [4] and Genesereth [5]. In
diagnosis from first principles, we have a logic based description of some system (e.g., a circuit) and an observation of
the system’s behavior. We then try to find a set of components in the system which, when assumed to be abnormal,
explains the discrepancy between the intended behavior of the system and the observation. Usually the number of
diagnoses will be exponential in the total number of components. Reiter uses minimal diagnosis to characterize all
diagnoses, and gives a procedure (without an implementation) which can compute all minimal diagnoses. de Kleer [2]
uses a less formal method, which requires the failure probabilities of the components to be known, in his diagnosis
system. Mozetič and Holzbaur [6] describe an algorithm which uses Prolog for specifying the system description. Their
technique is a purely symbolic method based on Reiter’s theory. However, all these techniques require the system
description to be in conjunctive normal form (CNF) or some form which is close to CNF. Therefore, any formula not in
CNF must be converted to CNF before applying the diagnosis system. Relying on CNF or any other clause form may
cause an exponential blow-up even before the diagnosis algorithms can be applied. Efficient clause form translations [8]
commonly used in theorem provers cannot be used here because they do not preserve equivalence during transformation.
The diagnosis systems of Reiter [11], de Kleer [2], and of Mozetič and Holzbaur [6] also require the generation of
minimal conflicts. Generating minimal conflicts causes an additional blow up.

In [10] we describe a new technique for computing minimal diagnoses of a system based on Reiter’s theory; also,
modifications are introduced so that only single fault diagnoses are generated. This approach does not rely on a clause
form representation (although it is applicable to systems represented in clause form), nor does it require generating the
set of minimal conflicts. The approach is based on dissolution, an inference rule described in [7] for formulas in negation
normal form (NNF). We have obtained experimental results on the performance of our techniques on commonly used
benchmark problems [10].

A system is a pair (SD;Comp) where SD, the system description, is a propositional formula, and Comp, the set
of system components, is a finite set. For each component c we have a propositional variable denoted by ab(c), that is
interpreted to mean that component c is abnormal. We use AbV to denote the set of these variables. An observationObs is a propositional formula. A diagnosis for the system (SD;Comp) with observation Obs is a set ∆ � AbV such
that the propositional formulaF(SD;Obs;∆) = SD ^Obs ^0@ ^ab(c)2∆

ab(c)1A ^0@ ^ab(c)2(AbV n∆) ab(c)1A
is consistent. A diagnosis ∆ is minimal if no proper subset of ∆ is a diagnosis. A diagnosis ∆ is a single fault diagnosis
if ∆ is singleton set, otherwise it is a multiple fault diagnosis.1

Dissolution [7] is an inference rule that preserves equivalence and that terminates naturally in the propositional case.
If we dissolve in formula F until it is linkless, the resulting formula is called the full dissolvent of F ; we denote it
by FD(F ). The set of conjunctive paths2 (c-paths) in FD(F ) is unique: The satisfiable c-paths in F .

In [9] we describe an algorithm PI which can compute the following set �(F ), under the assumption that the
formula F has no unsatisfiable c-paths (`(p) denotes the set of literals of a c-path p):�(F ) = f`(p) : p is a c-path through F , and for all c-paths q through F : `(q) 6� `(p)g
Theorem 1 Let (SD;Comp) be a system with observation Obs, and let D be the setf`(p) \AbV : p is a c-path in FD(Obs ^ SD)g :
Then �(D) contains all the minimal diagnoses of (SD;Comp) with observation Obs.3�This research was supported in part by National Science Foundation Grant CCR-9101208.

1These definitions are a propositional version of those used by Reiter [11].
2A conjunctive path in a formula F is a conjunction of literals that is a clause in the disjunctive normal form (DNF) of F .
3Note that we are treating D as a DNF formula when applying � to it.



We may compute all minimal diagnoses by restricting each set to literals containing only positive variables fromAbV
while computing �(FD(SD ^Obs)). In fact, our implementation uses a further refinement based on pure literals4:

Theorem 2 Let K be a pure literal in the formula F , where K 62 AbV , and letD = f`(p) \AbV : p is a satisfiable c-path in FgD0 = f`(p) \AbV : p is a satisfiable c-path in DC(K;G)g
Then �(D) = �(D0).

Here, DC(K;G) denotes the d-path complement of K in F .5 The DC operator strictly reduces the size of the
formula on which it is applied. We apply this reduction whenever we discover a pure occurrence of a literal. Therefore,
by applying this theorem during the process of dissolving, we can significantly reduce the combinatorial explosion. By
definition, all the literal occurrences in a full dissolvent are pure. Therefore, at the end of the process we will be left
with a formula which has literals from the set AbV only. Thus we may use PI to compute the set �(FD(SD ^Obs)).

To find all and only single faults, we restructure the formula during the process of dissolving so as to eliminate
c-paths which have at least two different variables from the set AbV occurring in them. By eliminating such paths,
potential multiple faults are also eliminated. These operations strictly reduce the size of the formula and therefore
improve the performance of the algorithm.

We have currently implemented both the single fault and multiple fault diagnosis algorithms. Our implementation
is written in C/C++ (running on a Sun Sparc 5), and has been enhanced with the anti-link operations from [1] to reduce
the number of subsumption checks, and uses a trie-like data structure (described in [3]). We have used the familiar n-bit
carry adder example from [11]. The n-bit adder circuit is considered to be a difficult example for diagnosis systems.
The following table gives running times (in seconds) for various observations of the system for the adder example. Each
observation was either randomly chosen or was the specific observation where all the inputs are 0 and all the outputs
except the nth bit are 0, yielding exactly 3n� 1 minimal diagnoses.

Problem # Gates Mozetič & Holzbaur Our System # Diagnoses Observation

3-bit adder 15 260.47 0.41 204 random
3-bit adder 15 0.01 0.35 2 random
3-bit adder 15 0.13 0.47 8 specific
6-bit adder 30 > 2 hours 524.26 17 specific

We also compared our system with that of Mozetič and Holzbaur when computing single faults only. We employed
the specific observation used in the above table. To produce single faults only, the input to the Mozetič-Holzbaur
algorithm was appropriately augmented. It was much slower than ours. (We note that perhaps the Mozetič-Holzbaur
algorithm itself could be modified to handle single faults, as opposed to modifying the input, although we see no obvious
way to do so.)
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4A literal K is pure in a formula F , if there is no c-path in F containing bothK and its negation.
5The d-path complement ofK in F is a formula containing the disjunctive paths (d-paths) of F that do not go throughK (see [7]).


