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2 Anavai Ramesh et al.Many algorithms have been proposed to compute the prime implicates of propo-sitional boolean formulas. Most algorithms (de Kleer, 1992; Jackson and Pais,1990; Jackson, 1992; Kean and Tsiknis, 1990; Slagle et al., 1970) assume thatthe input is either in conjunctive normal form (CNF) or in disjunctive normalform (DNF). The algorithm of (Ngair, 1993) requires the input to be a conjunctionof DNF formulas. In (Ramesh and Murray, 1993) we propose a set of techniquesfor �nding the prime implicates of formulas in negation normal form (NNF). Ourtechniques are based on dissolution, an inference rule introduced in (Murray andRosenthal, 1987b), and on an algorithm called Pi. We have discovered classes offormulas for which our techniques are polynomial but for which any CNF/DNF-based technique must be exponential in the size of the input. Ngair has alsointroduced similar examples; however, our method is more general than Ngair'swhich is based on order theory (Ngair, 1993). Coudert and Madre (1993) have alsodeveloped an algorithm for computing prime implicates and implicants of formulasin which binary decision diagrams (BDDs) are employed. In that case anti-linkoperators can be helpful, too: Any algorithm which uses BDDs|including Coud-ert and Madre's|must perform large amounts of subsumption testing; therefore,it is of advantage to remove anti-links from a formula before it is transformed intoa BDD.Although we use prime implicate/implicant generation as an example to demon-strate the utility of anti-link operations, anti-link operations can be employed inany application that requires eliminating subsumed paths in an NNF formula. Wehave successfully used anti-link operations in a diagnosis system (Ramesh andMurray, 1995).In (Ramesh and Murray, 1993) we describe the Pi algorithm; there, Pi is usedto enumerate all the prime implicates of a full dissolvent, an NNF formula thathas no conjunctive links (de�ned later). Pi repeatedly does subsumption checks tokeep intermediate results as small as possible. However these checks are expensive.Many result in failure, and they have to be done on sets which can be exponentiallylarge. The time required for these operations can be reduced by using a morecompact representation of the intermediate results (de Kleer, 1992), but avoidingas many such checks as possible is the focus of this paper.We show that the full dissolvent can be restructured before applying Pi suchthat many non-prime implicates are removed without doing subsumption checks atall. We de�ne disjunctive and conjunctive anti-links1 in NNF formulas (anti-linksconsist of two (non-complementary) occurrences of the same literal|whereas linksconsist of two complementary literals). We identify operations to remove such anti-1 Anti-links and some associated operators were �rst proposed by Beckert and H�ahnle | per-sonal communication. The �rst motivation for studying anti-links arose in connection with regularclausal tableau calculi (Letz et al., 1992). The anti-link rule as it will be de�ned later can beviewed as an implementation of the regularity condition in (Letz et al., 1992) for the propositionalnon-clausal case (Letz et al. considered the �rst-order clausal case). There, re�nements of generalinference rules are considered, whereas the anti-link rule allows implementation as a preprocessingstep. anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 3links and their associated subsumed paths. This leaves fewer subsumption checksfor the Pi algorithm.In the next section we describe our path semantics viewpoint and our graphicalrepresentation of formulas in classical logic. In Section 3 we introduce anti-linksand develop useful equivalence-preserving operations based on them. In Section 4,complexity issues are discussed and some NP-completeness results are proven.Section 5 introduces further techniques based on strictly pure subformulas. Thee�ectiveness of our techniques on certain benchmark formulas described by Ngair(1993) is explored. In Section 6 we introduce strictly pure full blocks and use themto develop a method that reduces the number of subsumption tests required.2 Foundations: Facts on Formulas in Negation Normal FormWe assume the reader to be familiar with the notions of atom, literal, and formulafrom classical logic. We consider only formulas in negation normal form (NNF):The only connectives used are conjunction and disjunction, and all negations areat the atomic level. This restriction is reasonable, since formulas that containnegations and other operators at any level can be converted to NNF in polynomialtime.In this section, we introduce a number of technical terms and de�nitions thatare treated in detail in (Murray and Rosenthal, 1993). They are required for thedevelopment of the anti-link operations de�ned in Section 3, and they make thepaper self-contained even for readers not familiar with dissolution.2.1 Semantic GraphsSemantic graphs are a graphical representation of NNF formulas:Definition 1. A semantic graph consists either of1. one of the constants true and false,2. a literal A or A,3. a c-arc, which is a conjunction of two semantic graphs, or4. a d-arc, which is a disjunction of two semantic graphs.We use the notation (X; Y )c for the c-arc fromX to Y and similarly use (X; Y )dfor a d-arc; the subscript may be omitted when no confusion is possible.Each semantic graph used in the construction of a semantic graph G is calledan explicit subgraph of G. If G = (X; Y )c, then X (resp. Y ) is a fundamentalsubgraph of G if X (Y ) is not a c-arc; otherwise the fundamental subgraphs of X(Y ) are fundamental subgraphs of G. Similarly if G = (X; Y )d, then X (Y ) isa fundamental subgraph of G if X (Y ) is not a d-arc, otherwise the fundamentalsubgraphs of X (Y ) are fundamental subgraphs of G.anti.tex - Date: January 31, 1996 Time: 13:50



4 Anavai Ramesh et al.The set of nodes of a semantic graph G consists of all literal occurrences usedin its construction; the same holds for the set of c-arcs of G and the set of d-arcsof G; i.e., these sets include the nodes, c-arcs, and d-carc, respectively, occurringin the explicit subgraphs of G.In the following, we identify a semantic graph G and the formula it represents2;essentially, the only di�erence between the semantic graph and the formula is thepoint of view, and we will use either term depending upon the desired emphasis.For a more detailed exposition, see (Murray and Rosenthal, 1993).In addition, we identify a semantic graph and the triple consisting of its set ofnodes, its set of c-arcs, and its set of d-arcs. The only exception, were this latteridenti�cation is not possible, because it would be ambiguous, are the semanticgraphs true and false (both correspond to (;; ;; ;)). Note, however, that when asemantic graph contains occurrences of true and false, the obvious truth-functionalreductions apply. Unless otherwise stated, we will assume that semantic graphsare automatically so reduced.In pictorial representations, c-arcs and d-arcs are indicated by the usual symbolsfor conjunction and disjunction; the arguments of a c-arc are placed verticallyabove each other, the arguments of a d-arc horizontally besides each other.Example 1. Below, the formulaG = (X ^ Y ) = ((:C ^A) _D _ E)^ (:A _ (B ^ C)) (1)is displayed as a semantic graph:X ĈA _ D _ E^Y A _ B̂C (2)The boxes in (2) show the explicit subgraphs used in the construction of thesemantic graph (since c-arcs and d-arcs are associative and commutative we donot show the explicit subgraphs in subsequent pictorial representations).Definition 2. If A and B are nodes in a graph, and if (X; Y )� is an arc (� = cor � = d) with A in X and B in Y , we say that (X; Y )� is the arc connecting Aand B, and that A and B are �-connected.2 true, false, and positive literals represent themselves; a negative literal A represents :A;(X;Y )c represents X ^ Y ; and (X;Y )d represents X _ Y .anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 5Example 2. In (2), C is c-connected to each of B, A, C, D, and E, and is d-connected to A.Definition 3. Let G be a semantic graph. A partial c-path through G is a setof nodes such that any two are c-connected, and a c-path through G is a partialc-path that is not properly contained in any partial c-path.(Partial) d-paths are de�ned accordingly using d-arcs instead of c-arcs.`(p) denotes the set of literals of a path p.Example 3. Below, the semantic graph (2) is shown with lines indicating its c-paths (on the left) and its d-paths (on the right):ĈA _ D _ E^A _ B̂C ĈA _ D _ E^A _ B̂CThe c-paths are fC;A;Ag, fC;A;B; Cg, fD;Ag, fD;B;Cg, fE;Ag, fE;B;Cg;the d-paths are fC;D;Eg, fA;D;Eg, fA;Bg, fA;Cg.The following lemma is obvious.Lemma 1. Let G be a semantic graph. Then an interpretation I satis�es (falsi-�es) G i� I satis�es (falsi�es) every literal on some c-path (d-path) through G.2.1.1 SubgraphsWe will frequently �nd it useful to consider subgraphs of a semantic graph thatare not explicit.Definition 4. Given a semantic graph G and a non-empty subset N of the nodesof G, the subgraph of G that corresponds to N is that part of G that consists ofnodes from N , where the logical structure of that part is preserved.G�N denotes the subgraph of G corresponding to the set of nodes of G thatare not in N .Two subgraphs H and H 0 of G meet each other if they have nodes in common.A non-empty subset N of nodes corresponds unambiguously to one subgraphof G. The empty set corresponds to both true and false; true and false are sub-graphs of all semantic graphs.For a more precise de�nition of subgraphs, see (Murray and Rosenthal, 1993).anti.tex - Date: January 31, 1996 Time: 13:50



6 Anavai Ramesh et al.Example 4. Below the subgraph of (2) is shown that corresponds to the node setfA;D;A; g. A _ DÂ2.1.2 BlocksThe most important subgraphs are the blocks:Definition 5. A c-blockH is a subgraph of a semantic graph G with the propertythat any c-path p that includes at least one node fromH passes throughH , where ppasses through H i� the subset of p consisting of nodes ofH is a c-path through H .d-blocks are accordingly de�ned using d-paths.Example 5. In (2), the subgraph corresponding to the node set fA;D;E;A; Cgis a c-block. However, it is not a d-block since the d-path fA;Bg restricted to thesubgraph is fAg, which is a proper sub-path of fA;Cg in the subgraph.Definition 6. A full block is a subgraph that is both a c-block and a d-block.One way to envision a full block is to consider conjunction and disjunction asn-ary connectives. Then a full block is a subset of the arguments of one connective,i.e., of one explicit subformula.Full blocks may be treated as essentially explicit subgraphs (up to the order ofarguments), and the Isomorphism Theorem from (Murray and Rosenthal, 1987a)assures us that they are the only structures that may be so treated.Example 6. In (2), the subgraph corresponding to fC;A;Eg is a full block. Itcan be written as (fC;Ag; E)d; i.e., we can regard the upper part of the graphas (fC;A;Eg;D)d. The fundamental subgraphs of the upper disjunction are(fCg; fAg)c and the literals D and E.Definition 7. Let H be a full block; H is a conjunction or a disjunction of fun-damental subgraphs of some explicit subgraph M . If the �nal arc of M is aconjunction, then we de�ne the c-extension of H to be M and the d-extension ofH to be H itself. The situation is reversed if the �nal arc of M is a d-arc.We use the notation CE(H) and DE(H) for the c- and d-extensions, respec-tively, of H .Example 7. In (2),CE(A) = A and DE(A) = A _ B̂C :anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 7In this paper, we compute c- and d-extensions of single nodes only. Single nodesare always full blocks and so testing for this property will be unnecessary. If weassume that formulas are represented as n-ary trees, computing these extensionscan be done in constant time; we merely determine whether the given node's parentis a conjunction or a disjunction, and the appropriate extension is then either thenode itself or the parent.2.2 Path DissolutionPath dissolution (Murray and Rosenthal, 1993) is an inferencing mechanism forclassical logic that has several interesting properties. It is an e�cient generalizationof the method of analytic tableaux, is strongly complete in the propositional case,and can produce a list of satisfying interpretations of a formula. The latter featureis particularly valuable in this or in any setting in which one wishes to make useof satisfying interpretations rather than merely to determine whether any exist.Path dissolution works by selecting a link and restructuring the formula sothat all paths through the link are eliminated. The nature of the restructuring issuch that one cannot rely on CNF (conjunctive normal form): Even if a formulastarts out in CNF, a single dissolution step produces an unnormalized formula.One consequence of eliminating all paths through a link is strong completeness:Any sequence of dissolution steps will eventually create a linkless formula. Thepaths that remain may be interpreted as models (satisfying interpretations) of theformula.Definition 8. A c-link is a complementary pair of c-connected nodes; d-connec-ted complementary nodes form a d-link.Unless stated otherwise, we use the term link to refer to a c-link. Path disso-lution is in general applicable to collections of links; here we restrict attention tosingle links.Example 8. Consider the link fA;Ag in (2). Then the entire graph G = (X ^Y )is the smallest full block containing the link.Definition 9. Let X be a semantic graph and H an arbitrary subgraph.3The c-path complement of H with respect to X , written CC(H;X), is thesubgraph of X consisting of all literals in X that lie on c-paths that do not containnodes from H . If no such literal exists, CC(H;X) = false.The c-path extension of H with respect to X , written CPE(H;X), is the sub-graph of X containing all literals that lie on c-paths that pass through H . If nosuch literal exists, CPE(H;X) = false.43 H usually is but does not have to be a subgraph of X.4 Note, that CPE has two arguments whereas CE (Def. 7) has but one; intuitively, CE has animplicit second argument that is always the entire graph in which the explicit argument occurs.anti.tex - Date: January 31, 1996 Time: 13:50



8 Anavai Ramesh et al.In the development of anti-link operations, we will use operations that are theduals of CC and CPE. We use DC for the d-path complement and DPE for thed-path extension operators. Their de�nitions are straightforward by duality,Because we consider only single link dissolution, the �rst arguments of CCand CPE will be literals when these operators are used in the construction ofdissolvents in the examples below. However, this is not the case in Section 3, andhence the above de�nitions of these operators are in full generality.Example 9. In (2), CC(A;X) = (D _ E)CPE(A;X) = (C ^A)CPE(A;G) = (C ^A ^ Y )CE(A) = (C ^A)The above de�nitions of the operators CC and CPE are adequate for thede�nition of dissolution. However, (equivalent) more constructive de�nitions aregiven in Section 3, where they will be required in proving the correctness of theanti-link operations introduced there.The reader is referred to (Murray and Rosenthal, 1993) for the proofs of thelemmas below.Lemma 2. Let H be an arbitrary subgraph of G. The c-paths of CPE(H;G) areprecisely the c-paths of G that pass through H .Corollary 1. CPE(H;G) is exactly the subgraph of G relative to the set ofnodes that lie on c-paths that pass through H .Lemma 3. Let H be an arbitrary subgraph of G. The c-paths of CC(H;G) areprecisely the c-paths of G that do not pass through H .Corollary 2. CC(H;G) is exactly the subgraph of G relative to the set of nodesthat lie on c-paths that do not pass through H .Lemma 4. If H is a c-block, then CC(H;G)_ CPE(H;G) and G have the samec-paths.The above lemmas and corollaries about CC and CPE all hold in dual formfor DC and DPE.Suppose that we have literal occurrences A and A residing in conjoined sub-graphs X and Y , respectively. It is intuitively clear that the c-paths through (X^Y ) that do not contain the link fA;Ag are those through (CPE(A;X)^CC(A; Y ))plus those through (CC(A;X) ^ CPE(A; Y )) plus those through (CC(A;X) ^CC(A; Y )). anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 9Definition 10. Let H = fA;Ag be a link, and let M = (X; Y )c be the smallestfull block containing H . DV (H;M), the dissolvent of H inM , is de�ned as follows:If H is a single c-block, then DV (H;M) = CC(A;M) = CC(A;M) = false.Otherwise (i.e., if H consists of two c-blocks),DV (H;M) = CPE(A;X)^CC(A; Y ) _ CC(A;X)^CPE(A; Y ) _ CC(A;X)^CC(A; Y )The only way that H can be a single c-block is if H is a full block (it is trivially ad-block). In that case, H = M , and A and A must be (up to commutations andreassociations) arguments of the same conjunction.The following proposition follows from the corollaries and Lemma 4:Proposition 1. Either of the two more compact graphs shown below has thesame c-paths as DV (H;M), and may thus be used instead:X̂CC(A; Y ) _ CC(A;X)^CPE(A; Y ) (3) CC(A;X)Ŷ _ CPE(A;X)^CC(A; Y ) (4)The semantic graphs from the above proposition are not identical to DV (H;M)as graphs, but they do have the identical c-paths: all those of the original full blockM except those of CPE(A;X)^ CPE(A; Y ), i.e., except those through the link.Example 10. If we dissolve on the link fA;Ag in (2) (using the compact form (4)of dissolution from Proposition 1), the graph that results is:D _ E^A _ B̂C _ ĈÂB̂CTheorem 1. Let H be a link in a semantic graph G, and let M be the smallestfull block containing H . Then M and DV (H;M) are logically equivalent.A proof of Theorem 1 (in a more general form) can be found in (Murray andRosenthal, 1993).We may therefore select an arbitrary link H in G and replace the smallest fullblock containing H by its dissolvent, producing (in the ground case) an equivalentgraph. We call the resulting graph the dissolvent of G with respect to H . Sincethe paths of the new graph are all that appeared in G except those that containedanti.tex - Date: January 31, 1996 Time: 13:50



10 Anavai Ramesh et al.the link, this graph has strictly fewer c-paths than the old one. As a result, �nitelymany dissolutions (bounded above by the number of c-paths in the original graph)will yield a linkless equivalent graph. This proves:Theorem 2. At the ground level, path dissolution is a strongly complete rule ofinference.52.3 Prime Implicates/ImplicantsWe brie
y summarize basic de�nitions regarding implicates. The treatment forimplicants is completely dual and is indicated by appropriate dual expressions inparentheses.Definition 11. A disjunction (conjunction) D subsumes another disjunction D0(conjunction D0) i� D j= D0 (D0 j= D).true (false) is subsumed by all disjunctions (conjunctions).A disjunction is called true i� it is equivalent to true. A conjunction is calledfalse i� it is equivalent to false.Lemma 5. If a disjunction (conjunction)D0 is not true (false), thenD subsumesD0i� D � D0.A true disjunction (false conjunction) subsumes another true disjunction (falseconjunction) only.As usual, subsumption corresponds to the subset relation, and only in thedisjunctive case coincides with logical implication.Definition 12. A disjunction (conjunction) P of literals is an implicate (impli-cant) of a formula G, i� G j= P (P j= G).A disjunction (conjunction) D is a prime implicate (prime implicant) of a for-mula G i�1. D is not true (false).2. D is an implicate (implicant) of G.3. For all literals Ai in D, G 6j= (D � fAig) ((D� fAig) 6j= G).Note that the set of all prime implicates (implicants) of a formula G, whentreated as a CNF (DNF) formula, is equivalent to G.Definition 13. Let D be the set of all prime implicates of a formula G. A primeimplicate D of G is essential if D n fDg is not equivalent to G, otherwise D isinessential.5 That means, that the result of applying dissolution repeatedly to an unsatis�able semanticgraph results in the graph false, independently of the choice of the link that is dissolved on ateach step. anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 112.4 Fully Dissolved FormulasIf we dissolve in a semantic graph G until it is linkless, we call the resulting graphthe full dissolvent of G and denote it by FD(G). Observe that FD(G) is dependenton the order in which links are activated. However, the set of c-paths in FD(G) isunique: It is exactly the set of satis�able c-paths in G. Because FD(G) is link-free,the consequences, i.e., implicates, of G are represented in the d-paths of FD(G).In a dual manner, we may de�ne dissolution for disjunctive links; in that case,FD(G) has no disjunctive links, and the implicants of G are represented in thec-paths of FD(G). These relationships are made precise by Theorem 3 below.In the discussion that follows, we will often refer to subsumption of d- and c-paths rather than of disjuncts and conjuncts. Paths are de�ned as sets of literaloccurrences, but with regard to subsumption, we consider the literal set `(p) ofa path p. In this way, no change in the standard de�nitions is necessary. Thetheorem below was proved in (Ramesh and Murray, 1993).Theorem 3. In any non-empty formula in which no c-path (d-path) contains alink, every implicate (implicant) of the formula is subsumed by some d-path (c-path) in the formula.Corollary 3. Every prime implicate (implicant) of a reduced DNF (CNF) for-mula, i.e., one with no false conjuncts (true disjuncts), is subsumed by some d-path(c-path) in the formula.This follows directly from the theorem because such a DNF (CNF) formula hasno c-paths (d-paths) with links.In (Ramesh and Murray, 1993), the prime implicates of G are computed by �rstobtaining FD(G); then, knowing that all implicates are present in the d-paths ofFD(G), the Pi algorithm computes �(FD(G)), where�(F ) = fp j p is a d-path through F , `(p) is not true;for all d-paths q through F : `(q) 6� `(p)g :When used in this way, Pi extracts all unsubsumed non-tautological d-paths froman NNF formula without c-links. In general, Pi computes �(F ) for an arbitraryNNF formula F . 3 Subsumed Paths and Anti-LinksMuch of the material in this section is a detailed description of the results sketchedin (Beckert et al., 1994). Our goal is to �rst identify as many subsumed paths aspossible in an e�cient manner and then eliminate them. The presence of anti-links (both disjunctive and conjunctive) in a graph may indicate that subsumedd-paths are present in the graph. We now de�ne anti-links and then discuss waysto identify and remove subsumed paths due to anti-links.anti.tex - Date: January 31, 1996 Time: 13:50



12 Anavai Ramesh et al.Definition 14. If M = (X; Y )d is a d-arc in a semantic graph G and if AX andAY are nodes (occurrences of literal A) in X and in Y respectively, then we callfAX ; AY g a disjunctive anti-link.If M = (X; Y )c is a c-arc in G, then we call fAX ; AY g a conjunctive anti-link.Note, that M is the smallest full block containing the anti-link.The following theorem relates subsumed paths to anti-links. The theorem isimmediate for CNF formulas; there is an obvious dual theorem regarding subsumedc-paths that is immediate for DNF formulas.Theorem 4. Let G be a semantic graph in which a d-path p is subsumed by adistinct non-tautological d-path p0 in G. Then G contains either a disjunctiveanti-link or a conjunctive anti-link.Proof. There are two distinct possibilities, either `(p) = `(p0) or `(p) � `(p0).Suppose `(p) = `(p0). Then there must be a literal having two di�erent occurrences.These two occurrences must be either d- or c-connected and thereby constituteeither a disjunctive or a conjunctive anti-link.Suppose `(p) � `(p0). The proof is by induction on the structure of G.Basis: G is a literal. The result is vacuously true since there cannot be two distinctd-paths through G.Induction step:(a) Suppose G = (X ^ Y ) for some X and Y . Then either p and p0 areboth from the same explicit subgraph (X or Y ) or from di�erent explicitsubgraphs. If they lie in the same explicit subgraph then the resultfollows directly from the induction hypothesis. If they are from di�erentsubgraphs then every literal in `(p0) occurs at least once in X and at leastonce in Y . Any two such occurrences of some literal in `(p0) constitutea conjunctive anti-link.(b) Suppose G = (X _ Y ). Let pX and pY be the restriction of p to X andto Y respectively. Let p0X and p0Y be the restriction of p0 to X and toY respectively. Since p and p0 are distinct, either pX and p0X must bedistinct, or pY and p0Y must be distinct (or both), so assume without lossof generality that pX and p0X are distinct.If either pX subsumes p0X or vice versa, then by the induction hypothesis,X must have an anti-link and so does G. On the other hand if pX andp0X do not subsume each other, then there must be some literal (say L)in `(p0X) which is not in pX . But since p0 subsumes p, there must bean occurrence of L in pY . The two occurrences of L, one in p0X and theother in pY , constitute a disjunctive anti-link.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 13Unfortunately, the presence of anti-links does not imply the presence of sub-sumed paths, and hence the converse of the above theorem is not true.3.1 Redundant Anti-linksWe now identify those disjunctive anti-links which do imply the presence of sub-sumed paths.Definition 15. A disjunctive anti-link fAX ; AY g with respect to the graph G isredundant if either CE(AX) 6= A or CE(AY ) 6= A.Definition 16. Let fAX ; AY g be a disjunctive anti-link in graph G, where M =(X; Y )d is the smallest full block containing the anti-link.Then DP (fAX ; AY g; G) is the set of all d-paths of M which pass through bothCE(AX)� fAXg and AY or through both CE(AY )� fAY g and AX .Example 11. Consider the following graph G = (X; Y )d:XAX _ CB̂ _ Y AŶE _ C (5)The two occurrences of A form a disjunctive anti-link. Because CE(AY )� fAg =Y � fAg and DPE(AX ; X) = A _ C, DP (fAX ; AY g; G) contains the d-path p =fAX ; C; E;Cg (indicated by a line). But since CE(AX) = AX , there are no pathsthrough CE(AX)� fAXg; p is the only member of DP (fAX ; AY g; G). The anti-link is redundant, and p is subsumed by p0 = fAX ; C; AY g (with literal set fA;Cg).Notice that had G been embedded in a larger graph G0, every d-path q containingp in G0 would be subsumed by a corresponding d-path q0 that di�ers from q onlyin that q0 contains p0 instead of p.In general, one or both of the literals in a redundant anti-link fAX ; AY g is anargument of a conjunction, and DP (fAX ; AY g; G) 6= ;. In the above example,the two occurrences of C are both arguments of disjunctions, and thus comprise anon-redundant anti-link for which DP (fCX ; CY g; G) = ;.Although only redundant disjunctive anti-links contribute directly to subsumedd-paths, non-redundant anti-links do not prohibit the existence of subsumed paths.However, such non-redundant anti-links do not themselves provide any evidencethat such paths are in fact present.Theorem 5. Let fAX ; AY g be a redundant disjunctive anti-link in a semanticgraph G. Then each d-path in DP (fAX ; AY g; G) is properly subsumed by a d-path in G that contains the anti-link.anti.tex - Date: January 31, 1996 Time: 13:50



14 Anavai Ramesh et al.Proof. Recall that a d-path (c-path) in a graph G is said to pass through a sub-graph X of G if the path when restricted to the set of nodes in X forms a d-path(c-path) in X . Let p 2 DP (fAX ; AY g; G), and assume without loss of generalitythat p passes through both CE(AX)�fAXg and AY . Note that CE(AX)�fAXg isnon-empty and thatM = (X_Y ) is the largest full block containing the anti-link.We may write CE(AX) as (A ^ C1 ^ : : :^ Cn), where n � 1.Let p = pX[pY [po where pX and pY are p restricted toX and to Y , respectively,and po is p restricted to nodes outside of both X and Y . By construction, AX 62 pXand thus pX passes through some Ci, 1 � i � n. So pX = p0X [ pCi , where pCi ispX restricted to Ci, and hence p = p0X [ pci [ pY [ po. The d-path p0X [fAg clearlypasses through X , and since AY 2 pY , p0 = p0X [ AX [ pY [ po subsumes p.3.2 An Anti-Link OperatorThe identi�cation of redundant disjunctive anti-links can be done easily by check-ing to see if either CE(AX) 6= AX or CE(AY ) 6= AY . After identifying a redun-dant anti-link, it is possible to remove it using the disjunctive anti-link dissolvent(DADV) operator de�ned below; in the process, all d-paths in DP (fAX ; AY g; G)are eliminated, and the two occurrences of the anti-link literal are collapsed intoone.Definition 17. Let fAX ; AY g be a disjunctive anti-link and let M = (X; Y )d bethe smallest full block containing the anti-link. ThenDADV (fAX ; AY g;M) = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ CC(AY ; Y )Example 12. Consider again the semantic graph (5) from Example 11. We haveDC(AX ; X) = B and DC(AY ; Y ) = (E _ C), so the upper conjunct in DADV is(B _ C _E). For the middle conjunct,CE(AX; X) = AXDC(CE(AX); X) = BDPE(AY ; Y ) = AYanti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 15this conjunct is (B _A). Finally in the lower conjunct, DPE(AX ; X) = (A _ C)and CC(AY ; Y ) = false, so this reduces to (A _ C). The result is:DADV (AX ; AY ;M) = B _ E _ C^B _ A^A _ CWe point out that although DADV produces a CNF formula in the abovesimple example, in general it does not. In particular, the above graph can besimpli�ed as the consequence of easily recognizable conditions, and the resultinggraph is not in CNF. For the details, see Case 1 of Section 3.5.3.3 Extension and Path Complement OperatorsA number of more primitive operators are used in the de�nition ofDADV ; they aredescribed in (Murray and Rosenthal, 1993) and have been de�ned in Section 2. Wepresent equivalent constructive descriptions here in order to prove Lemma 6 below,and, in the next subsection, to verify that DADV has the desired properties.Proposition 2. Let G be a semantic graph and H an arbitrary subgraph. ThenCPE(H;G) = 8>>><>>>: false if H does not meet GG if H = GWni=1CPE(HFi ; Fi) if the �nal arc of G is a d-arcVki=1CPE(HFi ; Fi) ^Vnj=k+1 Fj if the �nal arc of G is a c-arcDPE(H;G) = 8>>><>>>: true if H does not meet GG if H = GVni=1DPE(HFi ; Fi) if the �nal arc of G is a c-arcWki=1DPE(HFi ; Fi) _ Wnj=k+1 Fj if the �nal arc of G is a d-arcCC(H;G) = 8>>><>>>: G if H does not meet Gfalse if H = GWni=1CC(HFi ; Fi) if the �nal arc of G is a d-arcVki=1CC(HFi ; Fi) ^ Vnj=k+1 Fj if the �nal arc of G is a c-arcDC(H;G) = 8>>><>>>: G if H does not meet Gtrue if H = GVni=1DC(HFi ; Fi) if the �nal arc of G is a c-arcWki=1DC(HFi ; Fi)_ Wnj=k+1 Fj if the �nal arc of G is a d-arcwhere Fi (i � i � k) are the fundamental subgraphs of G that meet H , and Fi(k + 1 � i � n) are those that do not.anti.tex - Date: January 31, 1996 Time: 13:50



16 Anavai Ramesh et al.Lemma 6. If G is a graph and A is a literal occurrence in G, then CC(A;G) islogically equivalent to(DPE(A;G)� fAg)^DC(CE(A); G) :Proof. We prove the lemma by showing that the formula on the left and theformula on the right possess exactly the same set of d-paths; the result then followsfrom Lemma 1. The proof is done via induction on the syntactic structure of G(the lemma trivially holds if G = true or G = false).1. If G is a literal, then G = A and both the set of d-paths of CC(A;G) and theset of d-paths of DPE(A;G)� fAg)^DC(CE(A); G) are empty. Note, thatDC(CE(A); G) = DC(A;A) = true, but (DPE(A;G)�fAg) = fAg�fAg =false = CC(A;A).2. If G = (X; Y )d, then without loss of generality assume A belongs to X .Hence CC(A;G) = (CC(A;X) _ Y ). By the induction hypothesis, the d-paths of CC(A;X) are just those of (DPE(A;X)�fAg)^DC(CE(A);X). SoCC(A;G) has the same d-paths as (DPE(A;X)�fAg)^DC(CE(A);X)_Y .Now consider the right hand side of the equation. Since A is in X ,DPE(A;G) = (DPE(A;X)_ Y ) :Therefore, DPE(A;G)� fAg = (DPE(A;X)� fAg _ Y ). Also, CE(A) willbe disjoint from Y , and thusDC(CE(A); G) = DC(CE(A); X)_ Y :Therefore we can write the right hand side of the equation as (DPE(A;X)�fAg _ Y ) ^ (DC(CE(A);X)_ Y ). By factoring out the subgraph Y we getan equivalent subgraph ((DPE(A;X)� fAg) ^DC(CE(A);X))_ Y havingthe same d-paths. But this is just the semantic graph that has been shown tohave the same d-paths as the left hand side.3. Finally suppose G = (X; Y )c; again assume that A is in X . Now there aretwo subcases to consider.a) If CC(A;G) = false and thus has no d-paths, then A in X is not d-connected to any other subgraph in X . Hence X is of the form A^C1 ^: : :^Cn (where n � 0). But then G = A^C1^ : : :^Cn^Y , CE(A) = G,and DPE(A;G) = DPE(A;X) = A. As a result, both DC(CE(A); G)and DPE(A;G)� fAg have no d-paths.(b) If CC(A;G) 6= false, thenCC(A;G) = CC(A;X)^ Y ;anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 17and thus CC(A;X) 6= false. Therefore, by the induction hypothesis,CC(A;G) has the same d-paths as(DPE(A;X)� fAg)^DC(CE(A); X)^ Y :Focusing now on the right hand side of the equation, DPE(A;G) =DPE(A;X) by de�nition. The c-extension of A can only include nodesfrom X (otherwise, CC(A;G) = false, contrary to the subcase (b) condi-tion). Therefore, DC(CE(A); G) = DC(CE(A); X)^ Y . Therefore theright hand side of the equation has the same d-paths as (DPE(A;X)�fAg)^ (DC(CE(A);X)^Y ). This is just the result obtained for the lefthand side in this subcase.3.4 Correctness of DADVIn Theorem 6 below we show that DADV (fAX ; AY g; G) is logically equivalentto G and does not contain the d-paths of DP (fAX ; AY g; G).Theorem 6. Let M = (X; Y )d be the smallest full block containing fAX ; AY g, adisjunctive anti-link in semantic graph G. Then DADV (fAX ; AY g;M) is equiva-lent to M and di�ers in d-paths fromM as follows: d-paths in DP (fAX ; AY g; G)are not present, and any d-path ofM containing the anti-link is replaced by a pathwith the same literal set having only one occurrence of the anti-link literal.Proof. Note that AX and AY are literal occurrences (and hence d-blocks) in Xand in Y respectively. By the dual of Lemmas 4, X is equivalent to DC(AX ; X)^DPE(AX ; X), and from the distributive law, M is equivalent toDC(AX ; X) _ Y^DPE(AX ; X) _ YSimilarly, Y is equivalent to DC(AY ; Y ) ^ DPE(AY ; Y ), and we expand theupper occurrence of Y and distribute. Thus, M is equivalent toDC(AX ; X) _ DC(AY ; Y )^DC(AX ; X) _ DPE(AY ); Y^DPE(AX ; X) _ YBy the duals of Lemmas 2 and 3, not only have we rewrittenM equivalently, butthe d-paths ofM have been preserved. We will continue to rewriteM ; our goal is toanti.tex - Date: January 31, 1996 Time: 13:50



18 Anavai Ramesh et al.eventually put it in an equivalent form in which the d-paths of DP (fAX ; AY g;M)have been omitted.Consider the d-paths of DC(AX ; X) | the d-paths in X that miss AX . Theyeither miss CE(AX), the c-extension of AX , or pass through CE(AX) � fAXg.Hence DC(AX ; X) has the same d-paths asDPE(CE(AX)� fAXg); X)^DC(CE(AX); X) :By replacing the lower occurrence of DC(AX ; X) in the previous graph, we getthe following graph M 0 which is equivalent to M and has the same d-paths as M :M 0 = DC(AX ; X) _ DC(AY ; Y )^DPE((CE(AX)� fAXg); X)^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ YEvery d-path in the subgraph DPE((CE(AX) � fAXg); X)_DPE(AY ; Y ) is inDP (fAX ; AY g;M). By Theorem 5, all these paths are subsumed by other d-paths. Therefore, we can remove the subgraph DPE((CE(AX)�fAXg); X) fromM 0 while preserving equivalence to get the graph M 00 shown below.M 00 = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ YAgain by using arguments dual to the one given earlier for X , we have that Y andDPE(AX ; Y )^DPE((CE(AY )� fAY g); Y )^DC(CE(AY ); Y )have identical d-paths.Replacing Y in M 00, we �nd that every d-path in the subgraph DPE(AX ; X)_DPE((CE(AY )�fAY g); Y ) is in DP (fAX ; AY g;M). Again by Theorem 5, theseanti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 19paths are also subsumed by other d-paths. Therefore we can remove the subgraphDPE((CE(AY )� fAY g); Y ) and preserve equivalence; M 000 results.M 000 = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ DPE(AY ; Y )^DC(CE(AY ); Y )The d-paths in M 000 are those of M excluding the d-paths in DP (fAX ; AY g;M).Consider now the d-paths of DPE(AX ; X) _ DPE(AY ; Y ) in M 000. They areexactly those ofM (and ofM 000) that contain the anti-link: They each contain twooccurrences of the literal A. Hence we can remove the node AY from DPE(AY ; Y )to get M 0000.M 0000 = DC(AX ; X) _ DC(AY ; Y )^DC(CE(AX); X) _ DPE(AY ; Y )^DPE(AX ; X) _ DPE(AY ; Y )� fAY g^DC(CE(AY ); Y )Applying Lemma 6 to M 0000 we get DADV (fAX ; AY g;M).In constructingDADV (fAX ; AY g;M) we have removed only subsumed d-pathsand altered only d-paths that contain the anti-link by collapsing the double occur-rence of the anti-link literal. Hence DADV (fAX ; AY g;M) is equivalent toM , doesnot contain the anti-link, and does not contain any d-path of DP (fAX ; AY g;M).Theorem 6 gives us a method to remove disjunctive anti-links and some sub-sumed d-paths: Simply identify a redundant anti-link H = fAX ; AY g and thesmallest full block M containing it, and then replace M by DADV (H;M). Thecost of this operation is proportional to the size of the graph replacing M , andthis is linear in M . Also, c-connected literals in M do not become d-connected inDADV (H;M). Thus truly new disjunctive anti-links are not introduced. How-ever, parts of the graph may be duplicated, and this may give rise to additionalcopies of anti-links not yet removed. Nevertheless, persistent removal of redun-dant disjunctive anti-links (in which case DP (fAX ; AY g;M) 6= ;) is a terminatingprocess, because the number of d-paths is strictly reduced at each step. Thisproves: anti.tex - Date: January 31, 1996 Time: 13:50



20 Anavai Ramesh et al.Theorem 7. Finitely many applications of the DADV operation on redundantanti-links will result in a graph without redundant disjunctive anti-links, and ter-mination of this process is independent of the choice of anti-link at each step.Although we can remove all the redundant disjunctive anti-links in the graph,this process can introduce new conjunctive anti-links. Such anti-links may indicatethe presence of subsumed d-paths, but the situation is not as favorable as withdisjunctive anti-links | see Section 3.7.3.5 SimplificationsObviously, DADV (fAX ; AY g;M) can be syntactically larger than M = (X; Y )d.Under certain conditions we may use simpli�ed alternative de�nitions for DADV .These de�nitions result in formulas which are syntactically smaller than those thatresult from the general de�nition. The following is a list of possible simpli�cations.1. If CE(AX) = AX (and CE(AX) 6= X) ;then DC(CE(AX); X) = DC(AX ; X). Therefore by (possibly non atomic)factoring on DC(AX ; X) and observing that (DC(AY ; Y ) ^ DPE(AY ; Y ))has the same d-paths as Y , DADV (fAX ; AY g;M) becomesDC(AX ; X) _ Y^DPE(AX ; X) _ CC(AY ; Y )It turns out that this rule applies to (2) in Example 1. Since CE(AX) = AX ,the simpli�ed rule for this case results in the following graph.B _ ÂE _ C^A _ C2. If CE(AX) = X ;then DC(CE(AX); X) = true. HenceDPE(AX) = AX and DC(AX ; X) = (X � fAXg) :DADV (fAX ; AY g;M) becomesX � fAXg _ DC(AY ; Y )^AX _ CC(AY ; Y )anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 213. If both Case 1 and Case 2 apply, then CE(AX; X) = X = AX , and the aboveformula simpli�es to AX _ CC(AY ; Y ) :Note that in all the above versions of DADV , the roles of X and Y can beinterchanged.3.6 Disjunctive Anti-Links and FactoringIt is interesting to note that the DADV operation contains factoring (i.e., theordinary application of the distributive law to a pair of conjunctions containing acommon argument) as a special case. This is just the condition for Case 2 aboveexcept that both CE(AX) = X and CE(AY ) = Y hold. Under these conditions,DADV (fAX ; AY g;M) becomesX � fAXg _ Y � fAY gÂ :This is the graph obtained by disjunctive factoring (Murray and Rosenthal, 1993).The DADV operator also captures the absorption law (or merging). If AX andAY are both arguments of the same disjunction, then X = AX , Y = AY , andDADV (fAX ; AY g;M) = AX . Note, however, that technically the anti-link is notredundant in this case.3.7 Conjunctive Anti-LinksThere are conjunctive anti-links that always indicate the presence of d-paths thatare subsumed by others, and they are easy to detect. However, the conditionsto be met are much more restrictive than those for redundant disjunctive anti-links. Consider a conjunctive anti-link fAX ; AY g, where the smallest full block Mcontaining the anti-link is (AX ; Y )c. Every d-path in Y which passes through AYwill be subsumed by the d-path consisting of the single literal AX . Hence we canreplace Y by DC(AY ; Y ).This is a kind of dual to Case 3 of the simpli�ed versions of DADV discussedearlier. There, the anti-link fAX ; AY g is disjunctive and M = (AX ; Y )d. Thesimpli�ed DADV operation just replaces Y by CC(AY ; Y ). Note that the con-junctive anti-link operation above removes subsumed d-paths, whereas the Case 3disjunctive anti-link operation can either remove paths or merely remove the sec-ond occurrence of the anti-link literal on paths that contain the anti-link. Bothoperations involve d-paths, and both have strictly dual operations that would a�ectc-paths instead. anti.tex - Date: January 31, 1996 Time: 13:50



22 Anavai Ramesh et al.4 Complexity ConsiderationsThe problem of eliminating all subsumed paths in a graph in an e�cient mannerdoes not seem feasible. The following de�nition makes precise the notion of min-imality with respect to subsumed d-paths. Then we show that it is NP-hard toachieve this property.Definition 18. Let G be a semantic graph; we say that a graph G0 is a d-minimalequivalent of G if it satis�es the following conditions.1. G is logically equivalent to G0.2. If p0 and q0 are two distinct d-paths in G0, then p0 does not subsume q0 andvice versa.3. If p0 is a d-path in G0, then there is a d-path p in G such that, `(p) = `(p0).4. If p is a minimal d-path in G, then there is a d-path p0 in G0 such that`(p0) = `(p).The c-minimal equivalent of a graph is de�ned in the obvious dual way.Note that Property 1 above is implied by Properties 3 and 4, and that G0 neednot be unique. However, the d-paths of G0 will always include all essential (andpossibly some inessential) prime implicates of G.Computing d-minimal equivalent graphs e�ciently would be helpful for �ndingprime implicates. In a d-minimal equivalent graph of a full dissolvent, subsumptionchecks can be completely eliminated by Property 2 above. Hence to �nd the primeimplicates ofG, we can �nd a d-minimal equivalent G0 of the full dissolvent FD(G),and then simply enumerate the d-paths of G0.A d-minimal equivalent of a given graph G can be trivially obtained by �rstenumerating all the d-paths of the given graph G and then eliminating all thesubsumed d-paths. The above algorithm is exponential in the size of G, becauseG0 is being constructed in CNF. However an NNF d-minimal equivalent G0 of Gmay be small compared to a CNF d-minimal equivalent. Even so, the problem isNP-hard (proof follows) and hence is not likely to have an e�cient algorithm.Theorem 8. The following problem (elimination of subsumed paths) is NP-hard.Given a graph G, �nd a d-minimal equivalent graph G0.Proof. To show NP-hardness we reduce from satis�ability of CNF formulas. LetC be an instance of the CNF satis�ability problem and fX1; : : : ; Xng be theset of variables in C. Let A;X 01; : : : ; X 0n be distinct variables not occurring infX1; : : : ; Xng. Let D be the semantic graph obtained by replacing Xi by X 0i,anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 231 � i � n, in :C (by which we denote the NNF of the negation of C). Weconstruct the following semantic graph G.A _ D^X1 _ X 01.̂..̂Xn _ X 0nThe size of the graph G is no more than a constant factor of the size of C and cantherefore be constructed in linear time. It is easy to see that any d-path whichincludes the literal A must pass through D and vice versa.Let G0 be any graph which is a d-minimal equivalent to G. We will show thatC is satis�able i� the literal A occurs in G0.Suppose C is satis�able; then :C is falsi�able, and there are d-paths (in fact,clauses, since :C is in DNF) in :C that do not contain any disjunctive linkfXi; Xig. All such d-paths through D do not contain any fXi; X 0ig, 1 � i � n; atleast one such, say p, is not subsumed by another d-path through D. The d-pathpA cannot be subsumed by any other d-path in G and hence there will be a pathin G0 which has the same literal set as pA. Hence the literal A must occur in G0.If C is not satis�able, then :C is valid. Therefore for every d-path p in D (andhence every d-path through A), there is some i, 1 � i � n, such that the pairof literals fXi; X 0ig � `(p). But every such pair of literals forms a d-path in Gand hence every d-path containing A will be subsumed by another d-path in G.Furthermore the subsuming path will not contain the literal A. By de�nition ofd-minimal equivalent and by construction of G0, no d-path in G0 can contain theliteral A, and thus the literal A cannot occur in G0.If we can solve the elimination of subsumed paths problem in polynomial timethen we have the following algorithm which can solve the satis�ability of CNFin polynomial time: Given any instance C of the CNF satis�ability problem, wecan construct in polynomial time the graph G as shown earlier. We then �nd thegraph G0 using the algorithm for elimination of subsumed paths. The size of G0will be polynomial in the size of G (since computing it required only polynomialtime). Now C is satis�able i� the literal A occurs in G0 and this check can be donein polynomial time.By a completely dual construction we obtain the following corollary.Corollary 4. Given a graph G, �nding a c-minimal equivalent of G is NP-hard.We have seen that the general problem of computing d- or c-minimal graphsis NP-hard. Nevertheless, redundant disjunctive anti-links are easily recognized,anti.tex - Date: January 31, 1996 Time: 13:50



24 Anavai Ramesh et al.and eliminating their corresponding subsumed d-paths can be done without directsubsumption checks. On the other hand, recognizable subsumed d-paths due toconjunctive anti-links are not likely to be as plentiful due to the strong restrictionde�ning such useful anti-links. It is also di�cult to �nd out if an arbitrary conjunc-tive anti-link results in subsumed d-paths. In fact, this problem is NP-complete.Theorem 9. The following problem is NP-complete. Given a conjunctive anti-link fAX ; AY g in a graph G, determine whether there are there two d-paths pXand pY in G, such that pX passes through AX and pY passes through AY andeither pX subsumes pY or vice versa.Proof. It is easy see that this problem is in NP. To show NP-hardness we reducefrom satis�ability of CNF formulas. Let C be an instance of the CNF satis�abilityproblem and fX1; : : : ; Xng be the set of variables in C. Let A;B;X 01; : : : ; X 0n bedistinct variables not occurring in fX1; : : : ; Xng. Let D be the semantic graphobtained by replacing Xi by X 0i, 1 � i � n, in :C. We construct the followingsemantic graph G. A1 _ D^A2 _ B _ X1̂X 01 _ : : : _ Xn̂X 0nThe subgraph D is a DNF formula, and A1 and A2 are two di�erent occurrencesof the literal A. These two literal occurrences form a conjunctive anti-link in G.Every d-path through A2 contains the literal B, and only d-paths containing A1can possibly subsume d-paths through A2. The size of the graph G is no morethan a constant factor of the size of C and can therefore be constructed in lineartime.We must show that C is satis�able i� there is a d-path through A1 that sub-sumes another d-path through A2. Suppose �rst that C is satis�able. Then :C isfalsi�able, and there is at least one d-path in :C that does not contain any dis-junctive link fXi; Xig. Therefore some d-path p through D does not contain anyof the literal pairs fXi; X 0ig, 1 � i � n. Recall that `(p) is de�ned to be the literalset of path p. It is easy to see that since `(p) does not contain such a literal pair(corresponding to a d-link in :C), a d-path p0 can be chosen that passes throughthe n rightmost disjuncts in the lower part of G, such that `(p0) � `(p). Clearly,A2Bp0 is subsumed by A1p.To show the if-part, suppose there is some d-path (say p) through A1 thatsubsumes another d-path (say p0) through A2. Then p cannot contain any literalpair fXi; X 0ig because no such pair occurs on any d-path in the lower part of G.Therefore p when restricted to D will not have such a literal pair, :C has a d-pathwithout a d-link, and hence C is satis�able.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 25Corollary 5. The problem dual to the one described in Theorem 9 involvingdisjunctive anti-links and c-paths is NP-complete.5 Some Benchmark ExamplesNgair (1993) has investigated examples that prove di�cult for many proposedprime implicate/implicant algorithms. In this section, we show thatPi+ anti-linksis e�ective for some of these examples. For other examples from (Ngair, 1993),applying anti-link techniques appears not to produce as signi�cant an improve-ment. We develop an additional technique based on strictly pure full blocks thatresults in a dramatic improvement for these latter examples.In (Ngair, 1993) a class of formulas is proposed for which reliance on an inter-mediate CNF form can result in an exponential increase in size and hence would beintractable for CNF-based algorithms. Dissolution + Pi also does poorly for theseexamples: Although the full dissolvent can be computed quickly, a large numberof subsumption checks must be performed by Pi. It turns out, however, that inthis case the subsumed implicates correspond to easily recognizable anti-links ofboth the disjunctive and conjunctive kind. We show that if these anti-links areremoved after dissolution is performed, dissolution + Pi can �nd all the implicatesin polynomial time.Ngair's formulas are abbreviated with Fn (n � 1) and are de�ned as:Fn =   n̂i=2A2i�1! _ A1! ^   n̂i=2A2i! _A2! ^ n_i=1 (A2i�1 ^A2i)In the left part of Figure 1 we show the graph of Fn for a �xed n.Clearly Fn has 4n literals, and 2n�2 c-links; dissolution can remove these linksby performing 2n dissolution steps. The full dissolvent that results is depicted inthe right part of Figure 1.The structure of the full dissolvent depends on the order in which links areselected for application of dissolution; the above dissolvent is the one obtainedby the current version of our propositional dissolution prover Dissolver. (Thecompact version (3) from Proposition 1 of the dissolvent is used; X is chosen tobe the smallest of the two c-blocks). We can now factor on all the occurrencesof both A1 and A2 in the upper right hand part of the graph and on the twooccurrences of A1 in the lower left corner. The resulting graph is shown in Figure 2.(Since Dissolver is NNF-based, such factoring is not only feasible but is in factimplemented and routinely employed to produce the �nal output.)The two occurrences ofA2 at the bottom left part of the graph form a redundantdisjunctive anti-link; they can be removed using the special case covered by Rule 1for disjunctive anti-links. The two occurrences of A1 on the left hand side ofthe graph form a conjunctive anti-link and can be removed using the conjunctiveanti-link rule. This produces:anti.tex - Date: January 31, 1996 Time: 13:50



26 Anavai Ramesh et al.A3̂...̂A2n�1 _ A1^A4̂...̂A2n _ A2^A1̂A2 _ : : : _ A2n�1Â2n
A3̂...̂A2n�1 _ A1^A1̂A2 _ A1̂A2̂A4̂...̂A2n _ A1̂A2̂A2n�1Â2n _ : : : _ A1̂A2̂A3̂A4Fig. 1. Semantic graph of Ngair's formulas before and after dissolution.A1̂A2 _ A1̂A2̂A2n�1Â2n _ : : : _ A3̂A4By factoring on A1 and removing the conjunctive anti-link comprised of thetwo occurrences of A2 (or by just factoring on A1 ^A2), the above graph reducesto (A1 ^ A2); the prime implicates are just fA1g and fA2g. To get this graph,n + 3 factoring and 3 anti-link operations were required | obviously polynomialtime. Hence dissolution + removal of anti-links + Pi can handle the above classof problems in polynomial time. Perhaps the most important point is that nosubsumption checks whatsoever are required.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 27A3̂...̂A2n�1 _ A1Â1̂A2 _ A2̂A4̂...̂A2n _ A1̂A2̂A2n�1Â2n _ : : : _ A3̂A4Fig. 2. Ngair's formulas after dissolution and factoring.6 A Generalized Purity Principle6.1 Strictly Pure Full BlocksRecall that a full block is essentially an explicit subgraph; it is a subset of the argu-ments of a conjunction or disjunction, and, via commutations and reassociations,can in fact be made explicit.Definition 19. A subgraph M in a graph G is pure i� all c-links or d-links thatmeet M at all are totally within M .6 If, in addition, all conjunctive or disjunctiveanti-links that meetM at all are totally within M , we say thatM is strictly pure.7If M is a full block in G we speak of a (strictly) pure full block .When factored, some of the examples from (Ngair, 1993) contain surprisinglymany strictly pure full blocks. Note that both factoring and recognizing strictlypure full blocks are polynomial operations. Intuitively, such full blocks can bereplaced by single new variables, and the implicates of the resulting graph bear astrong relationship to those of the original. Of course, the full block in questionmust be satis�able (since the new variable certainly is). At �rst, this may appear6 This is just the obvious generalization of the concept of a pure literal as it is used in theliterature on CNF-based automated deduction.7 Simply put, M shares no variables with the rest of G.anti.tex - Date: January 31, 1996 Time: 13:50



28 Anavai Ramesh et al.to be a heavy penalty. It is not, however, because the prime implicates of the fullblock itself must be computed anyway. In doing so, its satis�ability is determinedas a byproduct.The following theorems characterize the properties of strictly pure full blockswith respect to prime implicates. In them we employ the following notation: letM be an explicit subgraph of a graph G and let X be a variable not occurring inG. By GXM we denote the graph obtained by the substitution of X for M in G.Similarly, if D is a disjunction of literal occurrences from G we denote by DM thedisjunction of literals that occur in M and by DG�M the disjunction of literalsthat do not. Obviously, D = (DG�M _DM) holds. Finally, we setDXM = �DG�M _X if DM 6= false (empty disjunction)DG�M otherwiseTheorem 10. LetM be a satis�able strictly pure full block in a satis�able seman-tic graph G and let D be a non-tautological disjunction of literals from G. IfDM 6= false, then the following statements are equivalent:1. D is a prime implicate of G.2. DXM is a prime implicate of GXM , and DM is a prime implicate of M .This theorem turns out to be a special case of Theorem 11 to be proved in thefollowing subsection.If a graph G contains several strictly pure full blocks M1; : : : ;Mn, then therepeated application of Theorem 10 provides a potentially signi�cant speedup incomputing the prime implicates of G: Replace each strictly pure full block Mi bya new variable Xi (1 � i � n) and compute the prime implicates of the resultinggraph GXM . Then, all substitutions of prime implicates of Mi for Xi in the primeimplicates of GXM result in prime implicates of G. The speedup is potentiallydramatic: Each subsumption test performed within some Mi would otherwise beperformed once for every d-path in GXM that can be extended throughMi to form ad-path in G. Observe that prime implicates of GXM containing none of the variablesXi (1 � i � n) are simply prime implicates of G that do not contain literals fromany of the blocks Mi.Several distinct strictly pure full blocks can be handled by repeated applicationof Theorem 10 as explained above. However, multiple occurrences M1; : : : ;Mn ofa single full block M in G require an extended analysis. The problem is that themultiple occurrences themselves preclude any single M i from being strictly pure,even if M shares no variables with the rest of G. Intuitively, we would expect thatby replacing each of the occurrences M i in G by the single new variable X , theprime implicates of the resulting graph GXM would also bear a strong relationshipto those of G. This is made precise in the next section.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 296.2 Multi-Pure Full BlocksDefinition 20. Suppose thatM1; : : : ;Mn are occurrences of full blocks in G andthat all of them are syntactically identical (up to associativity and commutativityof disjuncts and conjuncts). The subgraph M� formed by taking all the nodes ofthe blocks M i is not necessarily a full block;8 but let M� be strictly pure. Thenwe call the M i multi-pure full blocks.In addition, suppose that there are occurrences Mn+1;Mn+2; : : : ;Mn+m of fullblocks syntactically identical (up to associativity and commutativity of disjunctsand conjuncts) toM , the NNF of the complement of any of theM i (1 � i � n). Wecall M1; : : : ;Mn;Mn+1;Mn+2; : : : ;Mn+m complementary multi-pure full blocks.Note that each (complementary) multi-pure full block M i is not strictly pure,since it has anti-links (and possibly links) to its equivalent (complementary) fullblocks in G.Observe that complementary non-atomic formulas must be recognized. Forexample, if M = (A _ B), then M could be A ^ B or B ^ A. In fact, M couldhave been input as :(A _B) or as :(:A � B). If NNF formulas are stored in anappropriate canonical way, complementarity is easily (that is, in polynomial time)detectable; the situation is also straightforward when complementary formulashave the form M and :M prior to conversion to NNF. In any case, a detailedtreatment of this issue is beyond the scope of this paper. We do note that inthe absence of complements, multi-pure full blocks are recognizable in polynomialtime via a canonical NNF representation. A modi�cation of any algorithm for�nding common subtrees (see (Grossi, 1993) for one such algorithm) can be usedfor recognizing multi-pure full blocks.It turns out that the results of Theorem 10 can be extended to the case inwhich a formula contains complementary multi-pure full blocks. We use the nota-tion of Theorem 10 with the understanding that M denotes any occurrence of anM1;M2; : : : ;Mn and the Mn+1;Mn+2; : : : ;Mn+m are treated as negated occur-rences ofM (thus GXM replaces the complementary occurrencesM j as well). M� isde�ned as the subgraph of G relative to the M i and M j (1 � i � n < j � n+m).GXM , DM , DG�M , and DXM are de�ned as before, but relative toM�. Additionally,we de�ne DXM in the obvious way (Intuitively, we use DXM when the literals of DMcorrespond to unnegated occurrences of M , and we use DXM when the literals inDM correspond to negated occurrences of M).Theorem 11. Let M1;M2; : : : ;Mn and Mn+1;Mn+2; : : : ;Mn+m be complemen-tary multi-pure full blocks in a satis�able semantic graph G, where all of theblocks M i and M j are satis�able (we allow m = 0). Let D be a non-tautologicaldisjunction of literals from G. Then the following statements are equivalent:8 As the blocks M i could be single literals occurring in arbitrary positions, this is hardlysurprising. anti.tex - Date: January 31, 1996 Time: 13:50



30 Anavai Ramesh et al.1. D is a prime implicate of G.2. DM = false and D is a prime implicate of GXorDM 6= false and DXM is a prime implicate of GXM , and DM is a primeimplicate of M orDM 6= false and DXM is a prime implicate of GXM , and DM is a primeimplicate of M .Proof. Let G0XM be a graph without c-links that is equivalent to GXM (for instance,G0XM could be the full dissolvent of GXM). Similarly, letM 0 be a c-linkless equivalentofM , andM 0 be a c-linkless equivalent ofM . Let G0 be the graph obtained fromGby replacing X by M 0 and X by M 0. It is easy to see that G0 is equivalent to Gbut has no c-links. By Theorem 3, every prime implicate of G is present as ad-path in G0 and every prime implicate of GXM is present as a d-path in G0XM .To prove the only-if-part, let D be a prime implicate of G. Then there mustbe an unsubsumed d-path p in G0 such that `(p) = D. Since M 0 and M 0 arecomplementary, p can never meet (and thus pass through) both M i and M j forany i and j.Suppose �rst that p does not pass through any of the occurrences of M or M .In this case, p must also be a d-path in G0XM (technically, p is isomorphic to a d-path in G0XM). To prove that p is not subsumed by another d-path in G0XM , assumeotherwise, namely, that there is a path p0 in G0XM that subsumes p. But p0 cannotcontain X or X, and hence would also be a d-path in G0 that subsumes p, whichis a contradiction. Thus D is a prime implicate of G0XM and hence of GXM .Now suppose p passes through the full blocks M i10; : : : ;M iq0. Let pj , 1 � j � q,be the restriction of p to M ij 0. Notice that for 1 � j, k � q, `(pj) = `(pk); other-wise, the d-path obtained by replacing pj by pk in p would subsume p. Similarly,pj cannot be subsumed by another d-path in M ij 0. Since pj is an unsubsumed d-path in M ij 0 which is a linkless equivalent of M , DM = `(pj) is a prime implicateof M . Now let pX be the d-path obtained by replacing each of the pj by X in p;pX is a d-path in GXM . Furthermore, pX cannot be subsumed by another d-pathin GXM (again, such a subsuming path would induce a path in G0 that subsumes p).Therefore DXM = `(pX) is a prime implicate of GXM .Finally, in the case that p passes through the full blocks M i10; : : : ;M ir 0, theargument is similar as in the previous paragraph.To prove the if-part, �rst supposeDM = false and D is a prime implicate of GXM .Then there is an unsubsumed d-path (say p) in G0XM such that D = `(p). SinceDM = false, p contains neither X nor X. Thus p is an unsubsumed d-path of G0,and D is a prime implicate of G.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 31Now suppose that DXM is a prime implicate of GXM and that DM is a primeimplicate of M . Then there are unsubsumed d-paths pX in G0XM and pM in M 0,respectively, such that `(pX) = DXM and `(pM) = DM , respectively. In the presentsubcase, by de�nition, DXM contains X (and cannot contain X). Let p0 be theresult of replacing all occurrences of X in pX by pM ; p0 is a d-path in G0. Sinceboth pM and pX are unsubsumed in GXM and M 0, respectively, and since M 0 doesnot share any variables with the rest of G0, p0 will also be unsubsumed in G0.Hence, by Theorem 3, D = `(p0) is a prime implicate of G.Similarly, if DXM is a prime implicate of GXM and DM is a prime implicate ofM ,then D is a prime implicate of G.It is straightforward to see that in the case when n = 1 and m = 0 Theorem 11collapses into Theorem 10.On the one hand we expect to substitute new variables for multi-pure full blocksand achieve a savings in the computation of prime implicates comparable to thatprovided by Theorem 10. But note that some complementary occurrences of Mmay be c-connected; this means that such occurrences play a role in whateverinference process is employed prior to computation of the implicates themselves. Inparticular, we may treat them as literals and dissolve (indeed, the set of individuallinks between such full blocks would satisfy the requirements of a multiple linkdissolution chain as it is de�ned in (Murray and Rosenthal, 1993)).That dissolving on two complementary full blocks accomplishes exactly whatdissolving on all the corresponding single-links would is clear: All c-paths throughboth full blocks are eliminated from the graph. But the former operation is muchmore e�cient than the latter. Therefore, recognizing such complementary fullblocks and performing inference directly on them, rather than on their constituentliterals, is desirable. Note also that for the inference phase of a prime implicatecomputation, complementary full blocks do not have to be multi-pure full blocks.This condition is necessary only for the extraction of implicates using Theorem 11once all implicates are known to be present.Finally, the remarks above apply also to identical full blocks if they form appro-priate non-atomic anti-links as discussed in Section 3.6.3 More ExamplesKean & Tsiknis (1990) provide a class of examples referred in the following toasKnm. They havemn+1 input CNF clauses and (m+1)n+mn prime implicates.This set of clauses can be factored to obtain a more compact representation in NNFas shown in Figure 3.Since the number of prime implicates is exponential, so is the number of sub-sumption checks required. The number of subsumption checks for the Ipia (deKleer, 1992) and Gen-Pi (Ngair, 1993) algorithms are shown in Table I.For each i, the literals Si1; : : : ; Sim form a full blockMi, and all literals in it arestrictly pure. Let K 0mn be the graph obtained by replacing each full block Mi byanti.tex - Date: January 31, 1996 Time: 13:50



32 Anavai Ramesh et al.A1 _ S11.̂..̂S1m.̂..̂An _ Sn1.̂..̂Snm^A1 _ : : : _ AnFig. 3. Semantic graph of Kean & Tsiknis's formulas.Examples Ipia Gen-Pi Pi + anti-linkK33 5166 972 164K44 506472 11600 887K54 1730120 29074 887TABLE INumber of subsumption checks needed for Kmn byIpia, Gen-Pi, and Pi + anti-link.a new variable Xi. By the corollary of Theorem 10, we can get the prime impli-cates of Kmn from the prime implicates of K 0mn. Since each of the subgraphs Mihas no c-links, the prime implicates of Mi are present as d-paths by Theorem 3.Since they also have no anti-links, by the contrapositive of Theorem 4, neither aresubsumption checks required to �nd these prime implicates. Thus the number ofsubsumption checks to be done is exactly that required for computing the primeimplicates of K 0mn, and this is signi�cantly less than that needed for Kmn. Notethat the number of prime implicates of K 0mn is only 2n + n. For the problems inTable I, we applied the above technique in combination with anti-link operations.anti.tex - Date: January 31, 1996 Time: 13:50



Fast Subsumption Checks Using Anti-Links 33ForK 0mn, the full dissolvent depends only on n and can be de�ned recursively. Thefull dissolvent of K 0m2 (basis) and of the general case of K 0mn (n > 2) are shown inFigure 4.A1 _ X1Â2̂X2 _ A1̂X1̂A2 _ X2 Xn _ An^K 0m(n�1) _ Xn̂An̂A1̂A2 _ X2.̂..̂An�1 _ Xn�1Fig. 4. The full dissolvent of Km2 (left) and of Kmn, n > 2 (right).The number of subsumption checks required here is also shown in Table I.Clearly, our techniques produce a signi�cant reduction in the number of subsump-tion checks required. Note that for the problem Kmn, the number of subsumptionchecks depends only on n and not on m, and is not reduced by applying theanti-link operations to the full dissolvent.Our techniques are not limited to NNF formulas. They can sometimes be usedby other algorithms like Ipia and Gen-Pi which are not based on NNF formulas.For example K 0mn turns out to be in CNF and hence both Ipia and Gen-Pi canhandle these formulas, thereby reducing the number of subsumption checks need-ed. However normal forms like CNF provide very little scope for applying thesetechniques directly. For example the literals Si1; : : : ; Sim in the unfactored form ofKmn do not form a full block. Hence one cannot apply Theorem 10. They do forma full block after factoring. This provides stronger evidence that by avoiding lessgeneral normal forms like CNF/DNF, one can improve the performance of primeimplicate algorithms.We also note that we have implemented some of the anti-link operations pre-sented above in a diagnosis system introduced in (Ramesh and Murray, 1995). Asa result, we greatly increased the size of problems solvable on our system. (Theanti-link operations used were the special cases that do not increase the size of theformula.) anti.tex - Date: January 31, 1996 Time: 13:50



34 Anavai Ramesh et al.7 Comparison with BDDsBDDs (Bryant, 1986) are commonly used in veri�cation of boolean circuits. Coud-ert and Madre (Coudert and Madre, 1993) describe an algorithm which producesthe prime implicates/implicants of a propositional formula represented as a BDD.Any algorithm including theirs which uses BDDs must perform large amounts ofsubsumption testing. Given any formula in NNF, a BDD based method would�rst construct the BDD and then extract the prime implicates/implicants from it.In contrast, our system would �rst compute the full dissolvent. But for either ofthese approaches, the next stage | extracting the prime implicates/implicants |requires extensive testing for subsumption.The size of the BDD depends critically on the ordering (of variables) chosen.There are classes of NNF formulas (Breitbart et al., 1995) for which any BDDwill be exponentially large in the formula size. These formulas do not have anyc-links, so the dissolution phase of our method does not change the formula. Hencethe input to Pi would be a small formula, whereas the BDD based method wouldhave to handle an exponentially larger intermediate representation. However theseformulas have many prime implicates and prime implicants, and the subsumptionchecking is the bottleneck for both methods.In all likelyhood, the relative performance of these two methods can be deter-mined through experimental evaluation only; formulas will exist for which onemethod is superior, and vice versa.8 Conclusions and Future WorkWe have introduced anti-links and de�ned useful equivalence-preserving opera-tions on them. These operations can be employed so as to strictly reduce thenumber of d-paths in an NNF formula. Unlike path dissolution, which removesunsatis�able (or tautological, in the dual case) paths, anti-link operations removesubsumed paths without any direct checks for subsumption. This is signi�cant forprime implicate computations, since such computations tend to be dominated bysubsumption checks.Although prime implicate/implicant problems are intractable in general, ourtechniques perform exponentially better than others on certain examples. In addi-tion, we are able to improve performance greatly on the inherently exponentialexamples of (Ngair, 1993).Some experimental results on a dissolution- and Pi-based system for computingprime implicates are reported in (Ramesh and Murray, 1993). That system iscurrently being extended; some anti-link operations are already implemented andhave shown to improve performance. Operations based on strictly pure full blocksare under development, and their e�ectiveness in practice will be tested.anti.tex - Date: January 31, 1996 Time: 13:50
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