
Adding Equality to Semantic TableauxBernhard BeckertUniversity of KarlsruheInstitute for Logic, Complexity und Deduction Systems76128 Karlsruhe, Germanybeckert@ira.uka.deAbstract. This paper tries to identify the basic problems encountered in handling equa-lity in the semantic tableau framework, and to describe the state of the art in solvingthese problems. The two main paradigms for handling equality are compared: adding newtableau expansion rules and using E-uni�cation algorithms; their e�cient implementationis discussed.1 IntroductionOne of the main goals of Automated Deduction is to e�ciently handle �rst-order logic withequality . Just adding the equality axioms to the data base leads to a huge search space (e.g. [10]);even very simple theorems cannot be proven. The only solution is to make the handling of equalitypart of the inference rules. Then, still, equality typically allows a lot of di�erent derivations.Methods have to be used for further restricting the search space.For resolution-based provers such methods|the most important is paramodulation|havebeen known since the 1960s and have often been implemented (although the problem of preventingthe derivation of redundant information remains to be solved).At the same time methods for adding equality to Gentzen-type calculi, such as semantic ta-bleaux and the connection method, have been developed [14, 19]. These, have not been used asoften; in comparison to resolution with paramodulation they are quite ine�cient. But, recentlymuch more e�cient methods have been developed, and over the last years there has been agrowing interest in handling equality in semantic tableaux [20, 10, 7] and the connection me-thod [11, 18].This paper tries to identify the basic problems encountered in handling equality in the se-mantic tableau framework, and to describe the state of the art in solving these problems.Which method is appropriate for handling equality depends heavily on the version of seman-tic tableaux used, namely on the type of variables occurring in the tableaux. Therefore, aftergiving some basic de�nitions, we describe the versions of semantic tableaux that are importantto distinguish in the next section. In Section 3 the two main paradigms for handling equalityin semantic tableaux are presented: (i) adding new tableau expansion rules and (ii) using E-uni�cation algorithms; they are described in detail in Sections 4 and 5. In Section 6 we comparethe di�erent methods and discuss how they can be implemented e�ciently. Finally, in Section 7we draw some conclusions. The reader should be familiar with the ground and the free variableversions of semantic tableaux (an excellent introduction can be found in [10]).2 Syntax and Semantics2.1 Basic De�nitions and NotationsLet us �x a �rst-order language L which is built up from countable sets P of predicate symbols,F of function symbols, C of constant symbols and V of object variables in the usual manner(for each arity there are countably many function and predicate symbols). We use the logicalconnectives ^ (conjunction), _ (disjunction), � (implication) and : (negation), and the quanti-�er symbols 8 and 9. The binary predicate symbol � 2 P denotes equality such that no confusion



with the meta-level equality predicate = can arise. There is no restriction on where equalities canoccur in formul�. We use the signed version of semantic tableaux, i.e., the formul� in tableauxare pre�xed with one of the signs T (true) and F (false). Signed formul� T G and FG are calledcomplementary.Since in the tableau proofs it will be necessary to introduce Skolem terms, we extend our �rst-order language L to a language LSko by adding countably many constant symbols and functionsymbols for each arity which do not appear already in L.We use the standard notions of free and bound variable, (grounding) substitution, sentence,model, logical consequence (denoted by j=), valuation, satis�ability and tautology.1 All occurringsubstitutions have a �nite domain; thus, a substitution � with domain fx1; : : : ; xng can be deno-ted by fx1=t1; : : : ; xn=tng, i.e. �(xi) = ti (1 � i � n). The restriction of � to a set V of variablesis denoted by �jV .A model M = hD; Ii (with domain D and interpretation I) is called normal i� I(�) isthe identity relation on D. A model is called canonical i�, moreover, for every d 2 D there isa term t in L (resp. LSko) such that I(t) = d. In the sequel, we restrict all considerations tocanonical models. For �rst-order logic with equality they are the analogue of Herbrand models:A sentence is satis�ed by a normal model i� it is satis�ed by a canonical model.2.2 The Ground Version of Semantic TableauxThe ground version [23], i.e. the version without free variables, is the simplest and basic versionof semantic tableaux. Unfortunately, it is (with and without equality) the least e�cient as well.But, since all other versions are based upon it, we present it �rst.There is a tableau rule for each combination of sign and logical connective (resp. quanti�er);thus, to every signed formula that is not a literal exactly one rule can be applied. We do notlist all the rules but only the schemata: �-rules (conjunctive type rules), �-rules (disjunctive),
-rules (universally quanti�ed), and �-rules (existentially quanti�ed):2��1�2 ��1 �2 

1(t)t is any groundterm. ��1(c)c is a new Sko-lem constant.To prove a formula G to be a tautology, we apply the above rules starting from the initialtableau that consists of the single formula FG. A proof is found, if all branches of the constructedtableau are closed simultaneously. We identify a branch with the set of the formul� it contains.De�nition1. A tableau T with branches B1; : : : ; Bk is closed i� there are complementary for-mul� TGi;FGi 2 Bi (1 � i � k).2.3 Free Variable Semantic TableauxUsing free variable quanti�er rules [10] is crucial for e�cient implementation|even more if equa-lity has to be handled. When 
-rules are applied, a new free variable is substituted for the quan-ti�ed variable, instead of replacing it by a ground term, that has to be \guessed". Free variablescan later be instantiated \on demand", when a tableau branch is closed or an equality is appliedto expand a branch.1 If in doubt, the reader should consult [10] for the precise de�nitions.2 For example, if � = T (F ^G) then �1 = T F and �2 = TG; if � = F (F ^G) then �1 = F F and�2 = FG; if 
 = T (8x)G(x) then 
1(t) = TG(t); if � = F (8x)G(x) then �1(t) = FG(t).



To preserve correctness, the schema for �-rules has to be changed as well: the Skolem termsintroduced now contain the free variables occurring in the �-formula.3

1(y)y is a free variable. ��1(f(x1; : : : ; xn))f is a new Skolem function symbol, andx1; : : : ; xn are the free variables in �.De�nition2. A free variable tableau T with branches B1; : : : ; Bk is closed i� there are1. a substitution �,2. formul� �i;  i 2 Bi (1 � i � k)such that �i� and  i� are complementary.2.4 Semantic Tableaux with Universal FormulaeFree variable semantic tableaux can be further improved by using the concept of universal for-mul� [3, 7]: 
-formul�|in particular equalities|have often to be used multiply in a tableauproof, with di�erent instantiations for the free variables they contain. A typical example is theassociativity axiom (8x)(8y)(8z)((x � y) � z � x � (y � z)) from group theory. Usually, it has to beapplied several times with di�erent substitutions for x, y and z to prove even very simple theo-rems from group theory. Therefore, in semantic tableaux the 
-rule has to be applied repeatedlyto generate several instances of the axiom each with di�erent free variables substituted for x, yand z. This, however, has disadvantages: Firstly, if the number of 
-rule applications is limited(this is often done in implementations, see Sec. 6), the limit has to be chosen high enough togenerate a su�cient number of instances. Secondly, since it is di�cult to decide how many in-stances will be needed, unnecessary formul� will be added to the tableaux enlarging the searchspace for a proof.These problems can at least partly be avoided by recognizing formul� (including equalities)that are \universal", i.e. that can be used multiply in a tableau proof with di�erent substitutionsfor the variables they contain (without a�ecting soundness):De�nition3. Let � be a signed formula on some tableau branch B and F� the \unsigned ver-sion" of �, i.e., if � = T G for some G then F� = G, else if � = FG then F� = :G.� is universalwith respect to the variable x i� the following holds for every normalmodelMand every grounding substitution �:If M j= B�, then M j= ((8x)F�))� :Amethod � for recognizing universal formul� assigns to a tableau branch B and a signedformula � a set � (B; �) of variables such that: if x 2 � (B; �) then � 2 B and � is universalw.r.t. x.Since the satis�ability problem of �rst-order logic can be reduced to the problem of recogni-zing universal formul�,4 it is|in general|undecidable whether a formula is universal. However,an important class of universal formul� can be recognized easily (and the method is easy toimplement):3 The �-rules we use are more liberal than that proposed in [10] (there, all the free variables on thebranch have to be included in the Skolem term). Using the liberalized rules (they have been proven tobe sound in [13]) makes it easier to close branches. There is an even more liberalized version, wherethe same Skolem function symbol is used to Skolemize �-formul� that are identical up to variablerenaming [8].4 A sentence G is unsatis�able i� T (G ^ p(x) ^ :p(a)) is universal w.r.t. x on a tableau branch consistingonly of that signed formula (x does not occur in G).



Theorem4. � is a method for recognizing universal formul� where � (B; �) contains exactlythe variables x such that the formula � 2 B has been added to B1. by applying a 
-rule, and x is the free variable that has been introduced; or2. by applying an �-, �- or 
-rule to a formula that is universal w.r.t. x.A formula G(x) is recognized as being universal w.r.t. x by this method, if new instancesG(x0); G(x00); : : : can be added to the branch without a�ecting other branches or generating newones.Once formul� are recognized as being universal, this knowledge can be taken advantage of tomake it easier to �nd a substitution � that closes a tableau: instantiations of variables w.r.t. whichthe formul� used to close a branch are universal are not taken into consideration. Soundness isnot a�ected if this notion of closed tableau is used [3]; completeness is not a�ected anyway.De�nition5. Let � be a method for recognizing universal formul�. A free variable tableau Twith branches B1; : : : ; Bk is closed i� there are1. a grounding substitution �,2. for 1 � i � k(a) formul� �i;  i 2 Bi,(b) grounding substitutions �isuch that1. �i�i and  i�i are complementary;2. �i di�ers from � only on the set U of variables with respect to which both �i and  i areuniversal, i.e. �ij(VnU) = �j(VnU) where U = � (Bi; �i) \ � (Bi;  i).One can take advantage of the universality of equalities in a similar way: If an equalityT (t � s) is universal with respect to a variable x, the variable x does not have to be instantiatedto apply the equality (see the following sections).The theorems and methods presented in the sequel do not depend on the method for reco-gnizing universal formul� actually used.2.5 Other Versions of Semantic TableauxAll results and methods described from here on can as well be adapted to other versions ofsemantic tableaux for �rst-order logic (with equality); all of them can be considered a variant orspecial case of the versions described above: calculi with unsigned formul�, with di�erent �-rules[10, 8], with methods for restricting the search space such as links or ordering restrictions, withlemma generation, etc. Di�culties can arise with adaptations to tableau calculi for other logics,in particular if the notion of equality itself is a�ected (e.g. if sorted terms are used).3 The Two Paradigms for Adding EqualityConstructing a tableau for a formula � can be considered a search for a model of �. Therefore,methods have to be employed for:1. adding formul� that are valid in a modelM of � to the tableau branch that correspondsto M (i.e., that is a partial de�nition ofM);2. recognizing formul� or sets of formul� that are unsatis�able; these formul� close brancheson which they occur.



In canonical models, on the one hand, additional formul� are valid and, thus, have to be addedto a branch: If P (a) and a � b are true in a canonical modelM, then M is a model of P (b), too.On the other hand, there are additional inconsistencies: :(a � a) is false in all canonical models.Accordingly, there are two possibilities for handling equality in semantic tableaux: The �rstand more straightforward method is to de�ne additional tableau rules for expanding branches byall the formul� valid in the canonical models they (partially) de�ne; then very simple additionalclosure rules can be used. The second possibility is to use a more complicated notion of closedbranch: Di�erent versions of E-uni�cation (depending on the version of semantic tableaux) areused to decide whether a tableau branch is unsatis�able in canonical models and, therefore,closed. Then, no additional expansion rules are needed.4 Handling Equality Using Additional Expansion Rules4.1 Additional Expansion Rules for Ground TableauxThe �rst methods for adding equality to the ground version of semantic tableaux have been de-veloped in the 1960s [14, 19]. R.C. Je�rey introduced the following additional tableau expansionrules: If a branch B contains a signed formula �[t] and an equality T (t � s) or T (s � t), thatcan be \applied" to �[t] to derive a formula �[s],5 then �[s] may be added to B.T (t � s)�[t]�[s] T (s � t)�[t]�[s]In addition to the new expansion rules there is a new closure rule: A branch is closed if itcontains a formula of the form F (t � t):De�nition6. A tableau T with branches B1; : : : ; Bk is closed i� for 1 � i � k{ there are complementary formul� �i;  i on Bi, or{ there is an inequality F (ti � ti) on BiExample 1. Figure 1 shows an example for the application of Je�rey's additional tableau expan-sion and closure rules. Note, that it is not possible to derive T P (b; b) in a single step.(1) T (a � b)(2) T P (a; a)(3) F P (b; b) ; (1) T (a � b)(2) T P (a; a)(3) F P (b; b)(4) T P (a; b) ; (1) T (a � b)(2) T P (a; a)(3) F P (b; b)(4) T P (a; b)(5) T P (b; b)�Fig. 1. Example for the application of Je�rey's additional rules to expand and close a tableau branch.The equality (1) is applied to the formula (2) to derive formula (4) and to (4) to derive (5). The branchis closed by the complementary formul� (2) and (5).Besides being based on the ground version of tableaux, the new expansion rules have a majordisadvantage: they are symmetrical and their application is completely unrestricted. This leads5 �[s] is constructed by substituting one occurrence of t in �[t] by s.



to much indeterminism and a huge search space; an enormous number of irrelevant formul� canbe added. If, for example, a branch B contains the formul� T (f(a) � a) and T P (a) then all theformul� T P (f(a)); T P (f(f(a))); T P (f(f(f(a)))); : : : can be added to B.The rules presented by S. Reeves [20] generate a smaller search space, because only ato-mic formul� that potentially close a branch are used for expansion. The rules are based uponthe following fact: If in a canonical modelM the inequality F (f(a1; : : : ; an) � f(b1; : : : ; bn)) isvalid or the formul� T P (a1; : : : ; an) and FP (b1; : : : ; bn), then at least one of the inequalitiesF (a1 � b1); : : : ;F (an � bn) has to be valid inM. With these rules, too, it is su�cient to use thenotion of closed tableau from Def. 6.T P (a1; : : : ; an)FP (b1; : : : ; bn)F (a1 � b1 ^ : : :^ an � bn) F (f(a1; : : : ; an) � f(b1; : : : ; bn))F (a1 � b1 ^ : : :^ an � bn)Example 2. Figure 2 shows the application of Reeves's additional rules to expand and close thesame tableau branch as in Figure 1. (1) T (a � b)(2) T P (a; a)(3) F P (b; b)(4) F (a � b)� !! aa(5) F (a � b)�Fig. 2. Example for the application of Reeves's additional expansion rule. It is applied to the atomicformul� (2) and (3) to generate the inequalities (4) and (5). The branches are closed by the formul� (1)and (4) and (1) and (5) respectively.Reeves's approach, however, can lead to heavy branching, because the new expansion rulescan as well be applied to pairs of equalities and inequalities. In the worst case the number ofbranches generated is exponential in the number of equalities on the branch.Example 3. Figure 3 shows an example for the heavy branching that can occur using Reeves'sexpansion rules.4.2 Additional Expansion Rules for Free Variable TableauxM. Fitting [10] extended Je�rey's approach and adapted it to free variable tableaux. The maindi�erence is that equality rule applications may require substituting free variables. These sub-stitutions can be obtained in a similar way as those needed to close a branch in free variabletableaux: If an equality T (t � s) is to be applied to a formula �(t0), the application of a mostgeneral uni�er (MGU) � of t and t0 to the tableau is su�cient to derive (�[s])�. However, theuni�er � has to be applied not only to the formul� involved but to the whole tableau:T (t � s)�[t0](�[s])�� is a MGU of t and t0 that isapplied to the whole tableau. T (s � t)�[t0](�[s])�� is a MGU of t and t0 that isapplied to the whole tableau.Uni�cation can as well become necessary if a branch is to be closed using equality; for example,a branch that contains the inequality F (f(x) � f(a)) is closed if the substitution fx=ag is applied(to the whole tableau):



(1) T (a1 � b1)(2) T (a2 � b2)(3) T (a3 � b3)(4) F (c � d)(5) F (a1 � c)(7) F (a2 � a1)F (a3 � a2)(11)�� @@F (b3 � a1)(12)���� HHHH(8) F (b2 � c)F (a3 � b2)(13)�� @@F (b3 � c)(14)������� XXXXXXX(6) F (b1 � d)(9) F (a2 � b1)F (a3 � a2)(15)�� @@F (b3 � b1)(16)���� HHHH(10) F (b2 � d)F (a3 � b2)(17)�� @@F (b3 � d)(18)Fig. 3. The disadvantage of Reeves's method: The three equalities (1), (2), (3) and the inequality (4) re-sult in eight branches; and even more branches could be added to the tableau. By applying the expansionrule, the inequalities (5) and (6) are derived from (1) and (4), (7) and (8) from (2) and (5), (9) and (10)from (2) and (6), (11) and (12) from (3) and (7), (13) and (14) from (3) and (8), (15) and (16) from(3) and (9), (17) and (18) from (3) and (10).De�nition7. A free variable tableau T with branches B1; : : : ; Bk is closed i� there are1. a grounding substitution �,2. for 1 � i � k(a) signed formul� �i;  i 2 Bi such that �i� and  i� are complementary, or(b) an inequality F (ti � t0i) 2 Bi such that ti� = t0i�.Example 4. Figure 4 shows a free variable tableau for the set of formul�(1) (8x)((g(x) � f(x)) _ :(x � a))(2) (8x)(g(f(x)) � x)(3) b � c(4) P (g(g(a)); b)(5) :P (a; c)The framed formul� have been added using Fitting's additional tableau rules. The tableau isclosed with the substitution fx1=a; x2=ag (Def. 7).The example demonstrates a di�culty involved in using additional expansion rules: If Equa-lity (9) is applied to (4) in the wrong way, i.e., if the formula (12') T P (f(g(a)); b) is derivedinstead of (12) T P (g(f(a)); b), then the term g(a) is substituted for x2 and the tableau cannotbe closed. Either a new instance of (8) has to be generated by applying the 
-rule to (1), orbacktracking has to be initiated.4.3 Additional Rules for Tableaux with Universal Formul�Fitting's method can easily be extended to free variable tableau with universal formul�. Whenequalities are used to derive new formul�, universality of both the equality T (t � s) (resp.T (s � t)) and the formula �[t0] it is applied to has to be taken into consideration. The di�erenceto the additional equality expansion rules from Section 4.2 is, that instead of the MGU � of tand t0 only its restriction �0 to those variables is applied w.r.t. which T (t � s) (resp. T (s � t))and �[t0] are not universal, i.e., �0 = �j(VnU) where U = � (B;T (t � s)) \ � (B; �[t0]).When branches are closed, the universality of formul� has to be taken into consideration aswell. The following notion of closed tableau is a combination of that given in De�nitions 5 and 7:



(1) T (8x)((g(x) � f(x))_ :(x � a))(2) T (8x)(g(f(x)) � x)(3) T (b � c)(4) T P (g(g(a)); b)(5) T :P (a; c)(6) F P (a; c)(7) T (g(f(x1)) � x1)(8) T ((g(x2) � f(x2)) _ :(x2 � a))(9) T (g(x2) � f(x2))(12) T P (g(f(a)); b)(13) T P (a; b)(14) T P (a; c)��� XXX(10) T :(x2 � a)(11) F (x2 � a)Fig. 4. A free variable tableau for the formul� from Example 4 (Formul� (1) to (5)). By applying thestandard free variable tableau rules, Formula (6) is derived from (5), (7) from (2), (8) from (1), (9) and(10) from (8), and (11) from (9); The framed formul� are added to the left branch by applying Fitting'sadditional expansion rules for handling equality: Formula (12) is derived by applying Equality (9) to (4)(the substitution fx2=ag has to be applied), Formula (13) by applying (7) to (12) (the substitutionfx1=ag has to be applied), and formula (14) by applying (3) to (13). Formul� (14) and (6) close theleft branch. The right branch is closed by Formula (11). The whole tableau is closed (Def. 7) using thesubstitution fx1=a; x2=ag. The substitution of free variables is not shown in the �gure.De�nition8. Let � be a method for recognizing universal formul�. A free variable tableau Twith branches B1; : : : ; Bk is closed i� there are1. a grounding substitution �,2. for 1 � i � k(a) formul� �i;  i 2 Bi or F (ti � t0i) 2 Bi,(b) grounding substitutions �isuch that1. �i�i and  i�i are complementary or ti�i = t0i�i;2. �i di�ers from � only on variables with respect to which both �i and  i are universal, i.e.�ij(VnU) = �j(VnU) where U = � (Bi; �i) \ � (Bi;  i).Example 5. If the method from Theorem 4 for recognizing universal formul� is used, the tableauin Figure 4 (without the framed formul�) is closed using the substitution fx2=ag. x1 does nothave to be instantiated, because Equality (7) is recognized to be universal w.r.t. to x1.5 Handling Equality Using E-Uni�cation5.1 Universal, Rigid and Mixed E-Uni�cationThere are di�erent versions of E-uni�cation that are important for handling equality in seman-tic tableaux: the classical \universal" E-uni�cation [22], \rigid" E-uni�cation [11] and \mixed"



E-uni�cation which is a combination of both [5]. The di�erent versions of E-uni�cation allowequalities to be used di�erently in an equational proof: in the universal case the equalities canbe applied several times with di�erent instantiations for the variables they contain; in the rigidcase they can be applied more than once but with only one instantiation for each variable; inthe mixed case there are both types of variables.Which type of E-uni�cation problems has to be solved to decide whether a tableau is clo-sed, depends on the version of semantic tableaux that equality is to be added to: UniversalE-uni�cation can only be used in the ground case. For handling equality in free variable ta-bleaux, rigid E-uni�cation problems have to be solved.6 For tableaux with universal formul�both versions have to be combined [5]; then, equalities contain two types of variables, namelyuniversal and rigid ones. To distinguish them syntactically, equalities (8x1) � � � (8xn)(l � r) areused that can be explicitly quanti�ed w.r.t. variables they contain.De�nition9. Amixed E-uni�cation problem hE; s; ti consists of a �nite set E of equalitiesof the form (8x1) � � � (8xn)(l � r) and terms s and t.A substitution � is a solution to the problem, i� E� j= (s� � t�) where the free variablesin E� are \held rigid", i.e. treated as constants.7The major di�erences between this de�nition and that generally given in the literature on(universal) E-uni�cation are:{ The equalities in E are explicitly quanti�ed (instead of considering all the variables in E tobe implicitly universally quanti�ed).{ In contrast to the \normal" notion of logical consequence, free variables in E� are \heldrigid".{ The substitution � is applied not only to the terms s und t but as well to the set E.We call a mixed E-uni�cation problem hE; s; ti purely universal if there are no free va-riables in E, and purely rigid if there are no bound variables in E;8 Table 1 shows some simpleexamples.Table 1. Examples for the di�erent versions of E-uni�cation. Note, that the fourth problem has nosolution, since the free variable x would have to instantiated with both a and b. Contrary to that, theempty substitution id is a solution to the third problem, where the variable x is universally quanti�ed.E s t MGUs Typeff(x) � xg f(a) a fx=ag purely rigidff(a) � ag f(x) a fx=ag groundf(8x)(f(x) � x)g g(f(a); f(b)) g(a; b) id purely universalff(x) � xg g(f(a); f(b)) g(a; b) | purely rigidf(8x)(f(x; y) � f(y; x))g f(a; b) f(b; a) fy=bg mixedFor handling equality in semantic tableaux, several E-uni�cation problems|one for eachbranch|have to be solved simultaneously:De�nition10. A �nite set fhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1) of mixed E-uni�cation pro-blems is called simultaneous E-uni�cation problem.A substitution � is a solution to the simultaneous problem i� it is a solution to every com-ponent hEk; sk; tki (1 � k � n).6 Using universal E-uni�cation corresponds to not applying the substitutions necessary for applyingequalities (Sec. 4.2) to the whole tableau|correctness would be destroyed.7 Here, j= is the logical consequence in normal models, i.e., (s� � t�) is true in all normal modelsof E�.8 If E is ground, the problem is both purely rigid and purely universal.



Since purely universal E-uni�cation is already undecidable, (simultaneous) mixed E-uni�ca-tion is|in general|undecidable as well. Is is, however, possible to enumerate a complete set ofMGUs. (Simultaneous) purely rigid E-uni�cation is decidable [11, 12].95.2 Closing Semantic Tableaux with E-Uni�cationThe common problem of all the methods described in Section 4, that are based on additionaltableau expansion rules, is that there are virtually no restrictions on the application of equalities.Because of their symmetry this leads to a very large search space; even very simple problemscannot be solved in reasonable time.It is di�cult to employ more elaborate and e�cient methods for handling equality in semantictableaux, such as completion-based approaches, because it is nearly impossible to transform thesemethods into (su�ciently) simple tableau expansion rules.10Contrary to that, arbitrary algorithms can be used, if the handling of equality is reducedto solving E-uni�cation problems. Then, no additional expansion rules are needed; once the E-uni�cation problems have been extracted, the tableau does not have to be taken into considerationany more. In [7] it has been shown that methods based on E-uni�cation are much more e�cientthan that based on additional rules|even if the comparatively ine�cient algorithm from [7] isused to solve E-uni�cation problems.The equality theory de�ned by a tableau branch B consists of the equalities on B; theyare (explicitly) quanti�ed w.r.t. to the variables w.r.t. which they can be recognized as beinguniversal:De�nition11. Let B be a tableau branch and � a method for recognizing universal formul�(Def. 3). Then the set E(B) of equalities consists of the equalities (8x1) � � � (8xn)(s � t) suchthat1. T (s � t) is formula on B,2. fx1; : : : ; xng = � (B;T (s � t)).Example 6. As an example we use the tableau from Figure 4. Its left branch is denoted by B1and its right branch by B2. If the method for recognizing universal formul� from Theorem 4 isused, E(B2) contains the equalities b � c and (8x)(g(f(x)) � x). E(B1) contains in addition theequality g(x2) � f(x2).De�nition12. Atomic formul� T P (s1; : : : ; sn) and F P (t1; : : : ; tn) with the same predicatesymbol and complementary signs are called a pair of potentially closing atoms.De�nition13. Let B be a tableau branch and � a method for recognizing universal formul�.Then the set P(B) of uni�cation problems consists exactly of the sets of term pairs:fhs1�; t1�i; : : : ; hsn�; tn�igfor each pair T P (s1; : : : ; sn), F P (t1; : : : ; tn) of potentially closing atoms on B such that P 6= �,and fhs�; t�igfor each inequality F (s � t) on B.The substitution � renames all the variablesx1; : : : ; xm 2 � (B;T P (s1; : : : ; sn)) \ � (B;F P (t1; : : : ; tn)) ;9 Purely rigid E-uni�cation is NP-complete [11]; simultaneous purely rigid E-uni�cation is NEXPTIME-complete [12].10 R. J. Browne [9] describes a completion-based method for handling equality, that uses additional ex-pansion rules. It is, however, only applicable to the ground version of tableaux and cannot be extendedto free variable tableaux.



or x1; : : : ; xm 2 � (A;F (s � t)) ;respectively, i.e., � = fx1=y1; : : : ; xm=ymg and y1; : : : ; ym are new variables.If one of the problems in the set P(B) of uni�cation problems of a branch B has a solution �(w.r.t. the equalities E(B)), B� is unsatis�able in canonical models; therefore the branch B isclosed under the substitution �. The pair of potentially closing atoms corresponding to the solveduni�cation problem has been proven to actually be complementary; or the the correspondinginequality has been proven to be inconsistent (provided the uni�er is applied to the tableau).Example 7. If, again, B1 denotes the left and B2 the right branch of the tableau in Figure 4(without the framed formul�), and � is the method from Theorem 4 for recognizing universalformul�, then both P(B1) and P(B2) contain the set fhg(g(a)); ai; hb; cig. P(B2) contains inaddition the set fhx2; aig.The following is a formal de�nition of the simultaneous mixed E-uni�cation problems thathave to be solved to close a tableau. The soundness of this notion of closed tableau has beenproven in [3]:De�nition14. A tableau T with branches B1; : : : ; Bk is closed i� in the sets of uni�cationproblems P(Bi) (1 � i � k) (Def. 13) there are elements fhsi1; ti1i; : : : ; hsini ; tiniig 2 P(Bi) suchthat there is a solution to the simultaneous mixed E-uni�cation problem (Def. 10)f hE(B1); s11; t11i; : : : ; hE(B1); s1n1; t1n1i;... ... ...hE(Bk); sk1; tk1i; : : : ; hE(Bk); sknk; tknki gExample 8. If the method from Theorem 4 for recognizing universal formul� is used, the ta-bleau from Figure 4 is closed w.r.t. Def. 14 (the framed formul� not taken into consideration):The substitution � = fx2=ag is a solution to the simultaneous mixed E-uni�cation problemfhhE(B1); g(g(a)); ai; hE(B1); b; ci; E(B2); x2; aig.Actually, it is not necessary to split pairs T P (s1; : : : ; sn) and F P (t1; : : : ; tn) of potentiallycomplementary atoms into n term pairs hs1; t1i; : : : ; hsn; tni that have to be uni�ed. Instead theproblem hP (s1; : : : ; sn); P (t1; : : : ; tn)i could be used. That, however, is ine�cient, because then simpler problems can be solved independently.Since purely rigid E-uni�cation is decidable [12], it is decidable whether a given free variabletableau without universal formul� is closed (Def. 14). However, if a tableau is not closed it may,nevertheless, be unsatis�able (and, thus, be expandable to a closed tableau). It is undecidablewhether a tableau with universal formul� is closed, because simultaneous mixed E-uni�cation isundecidable.5.3 Solving E-Uni�cation ProblemsTo solve the E-uni�cation problems that are extracted from tableaux (Def. 14), arbitrary algo-rithms can be used.The problems extracted from ground tableaux consist solely of ground terms. There are verye�cient methods for solving these ground E-uni�cation problems, that are based on computingthe equivalence classes of the terms to be uni�ed (w.r.t. to the relation de�ned by the equalitieson the branch) [21, 16].Algorithms based on computing equivalence classes can be used as well to solve rigid andmixed E-uni�cation problems, i.e., to add equality to free variable tableaux with universal for-mul� [7].



However, for solving non-ground problems, it is much better to use completion-based me-thods. Unfortunately, the Unfailing Knuth-Bendix-Algorithm [15, 1] with narrowing [17], thatis generally considered to be the best algorithm for universal E-uni�cation and has often beenimplemented, cannot be used to solve rigid or mixed problems. Completion-based methods forrigid E-uni�cation have been described in [11, 12]; these, however, are non-deterministic andunsuited for implementation, since the \guess" that is part of the algorithm is highly complex.Recently, deterministic completion-based methods have been introduced, both for purely rigidE-uni�cation [2] and for mixed E-uni�cation [4, 5].11 Besides being completion-based, there areseveral reasons why these methods are well suited for adding equality to free variable semantictableaux: Firstly, the terms to be uni�ed do not become part of the completion (in contrary to themethod in [11]); this is important because the E-uni�cation problems in De�nition 14 that sharethe same set of equalities can, thus, be solved using a single completion. Secondly, simultaneousE-uni�cation problems are solved by searching for common specializations of solutions to itscomponents; this is of advantage, because the di�erent E-uni�cation problems consist of thesame components.6 E�cient ImplementationUsing algorithms based on solving simultaneous rigid E-uni�cation problems, all branches of atableau are closed simultaneously. Another possibility, that is easier to implement, is to close thebranches one after the other; the �rst substitution found to close a branch Bi is applied to thewhole tableau. If, later on, it is not possible to close a branch Bj (j > i), backtracking is initiatedto compute further closing substitutions for Bi. In [3] it has been proven that this method leadsto a correct and complete calculus, provided the search for further substitutions closing a branchis limited. To preserve completeness the limit has to be incremented if no proof is found.It is, however, more e�cient to handle all (or several) branches of a tableau in parallel.Then, the information contained in the branches can be used simultaneously. Backtracking canbe avoided and the search space can be restricted. For example, it is often possible to reco-gnize branches for which only one closing substitution exists; these substitutions can be appliedimmediately, before other branches are closed.If a completion-based method is used to solve the E-uni�cation problems that are extractedfrom a tableau, it is advantageous to combine the completion process and the expansion of thetableau. Thus, if a �-rule is applied, the (partial) completion that has been computed up to thatpoint can be shared by the new subbranches and has only to be computed once.On the other hand, all described methods are much easier to implement if the handling ofequality is separated from the expansion of tableaux [7, 10]: First, the (classical) tableau expan-sion rules are applied until the tableau is exhausted (observing a limit for 
-rule applications).Then, the E-uni�cation problems are extracted and solved (resp. the equality expansion rulesare applied).7 ConclusionAlthough it is easier to add equality to the ground version, to prove even simple theorems, freevariable tableaux have to be used. These are su�cient as long as each branch is relatively easyto close, even if there is a large number of branches. If however, complex equational theorieshave to be applied to close the branches, universal formul� and elaborate methods for solvingE-uni�cation problems have to be used.11 The method described in [4, 5] has been implemented as part of the tableau-based theorem prover3TAP [6]. The implementation is written in Quintus Prolog. Besides the possibility to prove theoremsfrom predicate logic with equality, the E-uni�cation module can be used \stand alone" to solve simul-taneous mixed E-uni�cation problems. Upon request, the source code is available from the author.
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