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Abstract. This paper tries to identify the basic problems encountered in handling equa-
lity in the semantic tableau framework, and to describe the state of the art in solving
these problems. The two main paradigms for handling equality are compared: adding new
tableau expansion rules and using E-unification algorithms; their efficient implementation
is discussed.

1 Introduction

One of the main goals of Automated Deduction is to efficiently handle first-order logic with
equality. Just adding the equality axioms to the data base leads to a huge search space (e.g. [10]);
even very simple theorems cannot be proven. The only solution is to make the handling of equality
part of the inference rules. Then, still, equality typically allows a lot of different derivations.
Methods have to be used for further restricting the search space.

For resolution-based provers such methods—the most important is paramodulation—have
been known since the 1960s and have often been implemented (although the problem of preventing
the derivation of redundant information remains to be solved).

At the same time methods for adding equality to Gentzen-type calculi, such as semantic ta-
bleaux and the connection method, have been developed [14, 19]. These, have not been used as
often; in comparison to resolution with paramodulation they are quite inefficient. But, recently
much more efficient methods have been developed, and over the last years there has been a
growing interest in handling equality in semantic tableaux [20, 10, 7] and the connection me-
thod [11, 18].

This paper tries to identify the basic problems encountered in handling equality in the se-
mantic tableau framework, and to describe the state of the art in solving these problems.

Which method is appropriate for handling equality depends heavily on the version of seman-
tic tableaux used, namely on the type of variables occurring in the tableaux. Therefore, after
giving some basic definitions, we describe the versions of semantic tableaux that are important
to distinguish in the next section. In Section 3 the two main paradigms for handling equality
in semantic tableaux are presented: (i) adding new tableau expansion rules and (ii) using E-
unification algorithms; they are described in detail in Sections 4 and 5. In Section 6 we compare
the different methods and discuss how they can be implemented efficiently. Finally, in Section 7
we draw some conclusions. The reader should be familiar with the ground and the free variable
versions of semantic tableaux (an excellent introduction can be found in [10]).

2 Syntax and Semantics

2.1 Basic Definitions and Notations

Let us fix a first-order language £ which is built up from countable sets P of predicate symbols,
F of function symbols, C of constant symbols and V of object variables in the usual manner
(for each arity there are countably many function and predicate symbols). We use the logical
connectives A (conjunction), V (disjunction), D (implication) and — (negation), and the quanti-
fier symbols V and 3. The binary predicate symbol & € P denotes equality such that no confusion



with the meta-level equality predicate = can arise. There is no restriction on where equalities can
occur in formulae. We use the signed version of semantic tableaux, i.e., the formule in tableaux
are prefixed with one of the signs T (true) and F (false). Signed formulae T G and F G are called
complementary.

Since in the tableau proofs it will be necessary to introduce Skolem terms, we extend our first-
order language £ to a language Lgx, by adding countably many constant symbols and function
symbols for each arity which do not appear already in L.

We use the standard notions of free and bound variable, (grounding) substitution, sentence,
model, logical consequence (denoted by =), valuation, satisfiability and tautology.! All occurring
substitutions have a finite domain; thus, a substitution o with domain {zy,...,#,} can be deno-
ted by {z1/t1,...,2n/tn}, l.e. o(2;) = ; (1 < i < n). The restriction of o to a set V' of variables
is denoted by oy .

A model M = (D,Z) (with domain D and interpretation 7) is called normal iff 7(=) is
the identity relation on D. A model is called canonical iff, moreover, for every d € D there is
a term ¢ in £ (resp. Lgxo) such that Z(¢) = d. In the sequel, we restrict all considerations to
canonical models. For first-order logic with equality they are the analogue of Herbrand models:
A sentence is satisfied by a normal model iff it is satisfied by a canonical model.

2.2 The Ground Version of Semantic Tableaux

The ground version [23], i.e. the version without free variables; is the simplest and basic version
of semantic tableaux. Unfortunately, it is (with and without equality) the least efficient as well.
But, since all other versions are based upon it, we present it first.

There is a tableau rule for each combination of sign and logical connective (resp. quantifier);
thus, to every signed formula that is not a literal exactly one rule can be applied. We do not
list all the rules but only the schemata: a-rules (conjunctive type rules), f-rules (disjunctive),
~y-rules (universally quantified), and é-rules (existentially quantified):?
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To prove a formula GG to be a tautology, we apply the above rules starting from the initial
tableau that consists of the single formula F G. A proof is found, if all branches of the constructed
tableau are closed simultaneously. We identify a branch with the set of the formule it contains.

Definition1. A tableau T with branches By, ..., By is closed iff there are complementary for-
mule TG FG € By (1 <i<k).

2.3 Free Variable Semantic Tableaux

Using free variable quantifier rules [10] is crucial for efficient implementation—even more if equa-
lity has to be handled. When vy-rules are applied, a new free variable is substituted for the quan-
tified variable, instead of replacing it by a ground term, that has to be “guessed”. Free variables
can later be instantiated “on demand”, when a tableau branch is closed or an equality is applied
to expand a branch.

! If in doubt, the reader should consult [10] for the precise definitions.
2 For example, if a = T (FAG) then a1 =T F and a2 =T G; if =F(FAG) then g1 =FF and
B2 =FG;if y=T (Vo)G(z) then v1(t) =T G(t); if § = F (Vz)G(x) then 6:(t) = F G(¢).



To preserve correctness; the schema for é-rules has to be changed as well: the Skolem terms
introduced now contain the free variables occurring in the é-formula.?
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y is a free variable. f is a new Skolem function symbol, and
Z1,...,&n are the free variables in 6.

Definition 2. A free variable tableau 7" with branches By, ..., By is closed iff there are

1. a substitution o,
2. formulee ¢;,¢; € B; (1 <i<k)

such that ¢;0 and ;0 are complementary.

2.4 Semantic Tableaux with Universal Formulae

Free variable semantic tableaux can be further improved by using the concept of universal for-
mule [3, 7]: y-formulae—in particular equalities—have often to be used multiply in a tableau
proof, with different instantiations for the free variables they contain. A typical example is the
associativity axiom (Va)(Vy)(Vz)((z - y) - z = & - (y - z)) from group theory. Usually, it has to be
applied several times with different substitutions for x, y and z to prove even very simple theo-
rems from group theory. Therefore, in semantic tableaux the ~-rule has to be applied repeatedly
to generate several instances of the axiom each with different free variables substituted for z, y
and z. This, however, has disadvantages: Firstly, if the number of ~-rule applications is limited
(this is often done in implementations, see Sec. 6), the limit has to be chosen high enough to
generate a sufficient number of instances. Secondly, since it is difficult to decide how many in-
stances will be needed, unnecessary formule will be added to the tableaux enlarging the search
space for a proof.

These problems can at least partly be avoided by recognizing formulee (including equalities)
that are “universal”, 1.e. that can be used multiply in a tableau proof with different substitutions
for the variables they contain (without affecting soundness):

Definition 3. Let ¢ be a signed formula on some tableau branch B and Fy the “unsigned ver-
sion” of ¢, i.e.,if ¢ = T G for some G then Fyy = G, else if ¢ = F &G then Fy = =G,

¢ 1s universal with respect to the variable z iff the following holds for every normal model M
and every grounding substitution o:

If M Bo, then M E ((V&)Fy))o .

A method Y for recognizing universal formula assigns to a tableau branch B and a signed
formula ¢ a set (B, ¢) of variables such that: if € Y'(B,¢) then ¢ € B and ¢ is universal
w.r.t. x.

Since the satisfiability problem of first-order logic can be reduced to the problem of recogni-
zing universal formulse,* it is—in general—undecidable whether a formula is universal. However,
an important class of universal formulae can be recognized easily (and the method is easy to
implement):

® The é-rules we use are more liberal than that proposed in [10] (there, all the free variables on the
branch have to be included in the Skolem term). Using the liberalized rules (they have been proven to
be sound in [13]) makes it easier to close branches. There is an even more liberalized version, where
the same Skolem function symbol is used to Skolemize é-formulae that are identical up to variable
renaming [8].

* A sentence G is unsatisfiable iff T (G A p(z) A —p(a)) is universal w.r.t.  on a tableau branch consisting
only of that signed formula (z does not occur in G).



Theorem4. T is a method for recognizing universal formule where T (B, ¢) contains exactly
the variables © such that the formula ¢ € B has been added to B

1. by applying a y-rule, and © is the free variable that has been introduced; or
2. by applying an «a-, 6- or y-rule to a formula that is universal w.r.t. x.

A formula G(#) is recognized as being universal w.r.t. # by this method, if new instances
G(2'),G(2"),. .. can be added to the branch without affecting other branches or generating new
ones.

Once formulea are recognized as being universal, this knowledge can be taken advantage of to
make it easier to find a substitution o that closes a tableau: instantiations of variables w.r.t. which
the formulae used to close a branch are universal are not taken into consideration. Soundness is
not affected if this notion of closed tableau is used [3]; completeness is not affected anyway.

Definition5. Let 7 be a method for recognizing universal formulae. A free variable tableau T’
with branches By, ..., By is closed iff there are

1. a grounding substitution o,
2. for 1 <i<k
(a) formule ¢;, ¢; € By,
(b) grounding substitutions o;

such that

1. ¢;0; and ¢;0; are complementary;
2. o; differs from o only on the set U of variables with respect to which both ¢; and v; are
universal, i.e. o;jy\v) = ow\v) Where U = T(B;, ;) N T(B;, ¥i).

One can take advantage of the universality of equalities in a similar way: If an equality
T (¢ = s) is universal with respect to a variable z, the variable # does not have to be instantiated
to apply the equality (see the following sections).

The theorems and methods presented in the sequel do not depend on the method for reco-
gnizing universal formulae actually used.

2.5 Other Versions of Semantic Tableaux

All results and methods described from here on can as well be adapted to other versions of
semantic tableaux for first-order logic (with equality); all of them can be considered a variant or
special case of the versions described above: calculi with unsigned formulae, with different é-rules
[10, 8], with methods for restricting the search space such as links or ordering restrictions, with
lemma generation, etc. Difficulties can arise with adaptations to tableau calculi for other logics,
in particular if the notion of equality itself is affected (e.g. if sorted terms are used).

3 The Two Paradigms for Adding Equality

Constructing a tableau for a formula ¢ can be considered a search for a model of ¢. Therefore,
methods have to be employed for:

1. adding formule that are valid in a model M of ¢ to the tableau branch that corresponds
to M (i.e., that is a partial definition of M);

2. recognizing formule or sets of formule that are unsatisfiable; these formule close branches
on which they occur.



In canonical models, on the one hand, additional formule are valid and, thus, have to be added
to a branch: If P(a) and a = b are true in a canonical model M, then M is a model of P(b), too.
On the other hand, there are additional inconsistencies: =(a & a) is false in all canonical models.

Accordingly, there are two possibilities for handling equality in semantic tableaux: The first
and more straightforward method is to define additional tableau rules for expanding branches by
all the formulee valid in the canonical models they (partially) define; then very simple additional
closure rules can be used. The second possibility is to use a more complicated notion of closed
branch: Different versions of E-unification (depending on the version of semantic tableaux) are
used to decide whether a tableau branch is unsatisfiable in canonical models and, therefore,
closed. Then, no additional expansion rules are needed.

4 Handling Equality Using Additional Expansion Rules

4.1 Additional Expansion Rules for Ground Tableaux

The first methods for adding equality to the ground version of semantic tableaux have been de-
veloped in the 1960s [14, 19]. R. C. Jeffrey introduced the following additional tableau expansion
rules: If a branch B contains a signed formula ¢[t] and an equality T (¢t & s) or T (s & t), that
can be “applied” to ¢[t] to derive a formula ¢[s],® then ¢[s] may be added to B.

T(t=s) T(s=t)
¢[t] ¢[t]
¢[s] ¢[s]

In addition to the new expansion rules there is a new closure rule: A branch is closed if it
contains a formula of the form F (¢ &~ t):

Definition 6. A tableau 7" with branches By, ..., By is closed iff for 1 < i <k
— there are complementary formulee ¢;, ; on B;, or

— there is an inequality F (¢; ~ ¢;) on B;

Ezample 1. Figure 1 shows an example for the application of Jeffrey’s additional tableau expan-
sion and closure rules. Note, that it is not possible to derive T P(b,b) in a single step.

(1 (a = b) (1) T(amb) (1) T(amb)
| | |

(2) T Pa,a) (2) T Pa,a) (2) T Pa,a)
| a4 | |

(3) FP(bb) (3) FP(bb) ~~> (3) FP(bb)

(4) TlP(a,b) (4) TlP(a,b)

(5) TlP(b, b)

Fig. 1. Example for the application of Jeffrey’s additional rules to expand and close a tableau branch.
The equality (1) is applied to the formula (2) to derive formula (4) and to (4) to derive (5). The branch
is closed by the complementary formula (2) and (5).

Besides being based on the ground version of tableaux, the new expansion rules have a major
disadvantage: they are symmetrical and their application is completely unrestricted. This leads

° ¢[s] is constructed by substituting one occurrence of ¢ in ¢[t] by s.



to much indeterminism and a huge search space; an enormous number of irrelevant formulae can
be added. If, for example, a branch B contains the formulee T (f(a) & a) and T P(a) then all the
formulee T P(f(a)), T P(f(f(a)), T P(f(f(f(a)))), ... can be added to B.

The rules presented by S. Reeves [20] generate a smaller search space, because only ato-
mic formulee that potentially close a branch are used for expansion. The rules are based upon
the following fact: If in a canonical model M the inequality F (f(ayi,...,an) & f(b1,...,by)) is
valid or the formulee T P(ay,...,a,) and F P(by, ... by), then at least one of the inequalities
F(ay = b1),...,F(an = by) has to be valid in M. With these rules, too, it is sufficient to use the
notion of closed tableau from Def. 6.

Th(a, ..., a) F(f(as,...,an) % f(bi,.... b))
FPby,...,bn) = ~ A Ao b
F(alzbl/\.../\an%bn) (alN ! anNn)

Ezample 2. Figure 2 shows the application of Reeves’s additional rules to expand and close the
same tableau branch as in Figure 1.

(1) T(amb)
|
(2) T P(a,a)
(3) Fb@ﬁ)
— ™~
(4) Flamb) (5) Flamb)

Fig. 2. Example for the application of Reeves’s additional expansion rule. It is applied to the atomic
formula (2) and (3) to generate the inequalities (4) and (5). The branches are closed by the formule (1)
and (4) and (1) and (5) respectively.

Reeves’s approach, however, can lead to heavy branching, because the new expansion rules
can as well be applied to pairs of equalities and inequalities. In the worst case the number of
branches generated is exponential in the number of equalities on the branch.

Frample 3. Figure 3 shows an example for the heavy branching that can occur using Reeves’s
expansion rules.

4.2 Additional Expansion Rules for Free Variable Tableaux

M. Fitting [10] extended Jeflrey’s approach and adapted it to free variable tableaux. The main
difference is that equality rule applications may require substituting free variables. These sub-
stitutions can be obtained in a similar way as those needed to close a branch in free variable
tableaux: If an equality T (¢ & s) is to be applied to a formula ¢(#'), the application of a most
general unifier (MGU) p of ¢t and ¢’ to the tableau is sufficient to derive (¢[s])p. However, the
unifier p has to be applied not only to the formule involved but to the whole tableau:

T(t=s) T(s=t)
o[t'] o[t']
(¢[s)u (¢[s)u
uis a MGU of ¢t and ¢ that is uis a MGU of t and #' that is
applied to the whole tableau. applied to the whole tableau.

Unification can as well become necessary if a branch is to be closed using equality; for example,
a branch that contains the inequality F (f(z) = f(a)) is closed if the substitution {z/a} is applied
(to the whole tableau):



(1) T(ag =~ b1)

(2) T(az = b2)

(3) T(ag = b3)

(4) F(cmd)

(7) F(az = a1) (S)/F(bz\zc) (9)/F(a2 ~ 1) (10)/F (b<d)
F(agzaQ) F(bgzal) F(agsz) F(bgzc) F(agzaQ) F(bgzbl) F(agsz) F(bgzd)
(11) (12) (13) (14) (15) 16) (17) (18)

Fig. 3. The disadvantage of Reeves’s method: The three equalities (1), (2), (3) and the inequality (4) re-
sult in eight branches; and even more branches could be added to the tableau. By applying the expansion
rule, the inequalities (5) and (6) are derived from (1) and (4), (7) and (8) from (2) and (5), (9) and (10)
from (2) and (6), (11) and (12) from (3) and (7), (13) and (14) from (3) and (8), (15) and (16) from
(3) and (9), (17) and (18) from (3) and (10).

Definition 7. A free variable tableau 7" with branches By, ..., By is closed iff there are

1. a grounding substitution o,

2. for 1 <i<k
(a) signed formulae ¢;,1; € B; such that ¢;0 and ¢;0 are complementary, or
(b) an inequality F (¢; = ;) € B; such that t;0 = to.

Ezample 4. Figure 4 shows a free variable tableau for the set of formulae

(1) (V&) ((9(z) ~ f(2)) V =(z ~ a))

(2) (V) (g(f(x)) = x)
(3) b c

(4) P(g(g(a)),b)
(5) —P(a,c)

The framed formulee have been added using Fitting’s additional tableau rules. The tableau is
closed with the substitution {x1/a, #2/a} (Def. 7).

The example demonstrates a difficulty involved in using additional expansion rules: If Equa-
lity (9) is applied to (4) in the wrong way, i.e., if the formula (12°) T P(f(g(a)),b) is derived
instead of (12) T P(g(f(a)),b), then the term g(a) is substituted for #2 and the tableau cannot
be closed. Either a new instance of (8) has to be generated by applying the y-rule to (1), or
backtracking has to be initiated.

4.3 Additional Rules for Tableaux with Universal Formula

Fitting’s method can easily be extended to free variable tableau weith universal formule. When
equalities are used to derive new formulee, universality of both the equality T (¢ = s) (resp.
T (s = t)) and the formula ¢[t'] it is applied to has to be taken into consideration. The difference
to the additional equality expansion rules from Section 4.2 is, that instead of the MGU p of ¢
and ¢’ only its restriction g to those variables is applied w.r.t. which T (¢ & s) (resp. T (s & 1))
and ¢[t'] are not universal, i.e., u' = py\vy where U = (B, T (t = 5)) N (B, $[t']).

When branches are closed, the universality of formule has to be taken into consideration as
well. The following notion of closed tableau is a combination of that given in Definitions 5 and 7:



Fig.4. A free variable tableau for the formule from Example 4 (Formula (1) to (5)). By applying the
standard free variable tableau rules, Formula (6) is derived from (5), (7) from (2), (8) from (1), (9) and
(10) from (8), and (11) from (9); The framed formula are added to the left branch by applying Fitting’s
additional expansion rules for handling equality: Formula (12) is derived by applying Equality (9) to (4)
(the substitution {z2/a} has to be applied), Formula (13) by applying (7) to (12) (the substitution
{z1/a} has to be applied), and formula (14) by applying (3) to (13). Formule (14) and (6) close the
left branch. The right branch is closed by Formula (11). The whole tableau is closed (Def. 7) using the
substitution {z1/a, z2/a}. The substitution of free variables is not shown in the figure.

Definition8. Let 7 be a method for recognizing universal formulae. A free variable tableau T’
with branches By, ..., By is closed iff there are

1. a grounding substitution o,
2. for 1 <i<k
(a) formule ¢;,¢; € B; or F (¢; = t}) € By,
(b) grounding substitutions o;
such that

1. ¢;0; and ¢;0; are complementary or t;0; = t}oy;
2. o; differs from ¢ only on variables with respect to which both ¢; and ; are universal, i.e.

oi|(w\u) = o|(v\v) Where U = Y (B, ¢:) NT(Bs, ¢).

Frample 5. If the method from Theorem 4 for recognizing universal formule is used, the tableau
in Figure 4 (without the framed formule) is closed using the substitution {z2/a}. 21 does not
have to be instantiated, because Equality (7) is recognized to be universal w.r.t. to ;.

5 Handling Equality Using E-Unification

5.1 Universal, Rigid and Mixed E-Unification

There are different versions of E-unification that are important for handling equality in seman-
tic tableaux: the classical “universal” E-unification [22], “rigid” F-unification [11] and “mixed”



FE-unification which is a combination of both [5]. The different versions of E-unification allow
equalities to be used differently in an equational proof: in the universal case the equalities can
be applied several times with different instantiations for the variables they contain; in the rigid
case they can be applied more than once but with only one instantiation for each variable; in
the mixed case there are both types of variables.

Which type of E-unification problems has to be solved to decide whether a tableau is clo-
sed, depends on the version of semantic tableaux that equality is to be added to: Universal
FE-unification can only be used in the ground case. For handling equality in free variable ta-
bleaux, rigid E-unification problems have to be solved.® For tableaux with universal formulae
both versions have to be combined [5]; then, equalities contain two types of variables, namely
universal and rigid ones. To distinguish them syntactically, equalities (V1) - - - (Vap)(l & ) are
used that can be explicitly quantified w.r.t. variables they contain.

Definition9. A mixed E-unification problem (| s,¢) consists of a finite set F of equalities
of the form (Va1) - (Van)(l & r) and terms s and ¢.

A substitution ¢ is a solution to the problem, iff Fo |= (so & to) where the free variables
in Eo are “held rigid”, i.e. treated as constants.”

The major differences between this definition and that generally given in the literature on
(universal) E-unification are:

— The equalities in E are explicitly quantified (instead of considering all the variables in F to
be implicitly universally quantified).

— In contrast to the “normal” notion of logical consequence, free variables in Fo are “held
rigid”.

— The substitution ¢ i1s applied not only to the terms s und ¢ but as well to the set F.

We call a mixed E-unification problem (F,s,t) purely universal if there are no free va-
riables in E, and purely rigid if there are no bound variables in E;® Table 1 shows some simple
examples.

Table 1. Examples for the different versions of E-unification. Note, that the fourth problem has no
solution, since the free variable x would have to instantiated with both « and b. Contrary to that, the
empty substitution :d is a solution to the third problem, where the variable # is universally quantified.

|E | s |t || MGUS|Type
{f(z) =z} f(a) a {z/a} |purely rigid
fo~a i3 «|[{z/a} [gromd
{(Vz)(f(z) = z)} g(f(a), f(b))|g(a,b) | id purely universal
{f(z) =z} g(f(a), f(b))|g(a,b) || — purely rigid
{(Ve)(f(=,y) = fy,2))} | f(a,b) f(b,a) || {y/b} |mixed

For handling equality in semantic tableaux, several F-unification problems—one for each
branch—have to be solved simultaneously:

Definition10. A finite set {(EF1,51,%1),...,{En, sn,tn)} (n > 1) of mixed E-unification pro-
blems is called simultaneous F-unification problem.

A substitution o 1s a solution to the simultaneous problem iff it is a solution to every com-
ponent (Ey, s, t5) (1 <k < n).

6 Using universal F-unification corresponds to not applying the substitutions necessary for applying
equalities (Sec. 4.2) to the whole tableau—correctness would be destroyed.

" Here, |= is the logical consequence in normal models, i.e., (so = to) is true in all normal models
of Fo.

8 If F is ground, the problem is both purely rigid and purely universal.



Since purely universal F-unification is already undecidable, (simultaneous) mized E-unifica-
tion is—in general—undecidable as well. Is is, however, possible to enumerate a complete set of
MGUs. (Simultaneous) purely rigid E-unification is decidable [11, 12].°

5.2 Closing Semantic Tableaux with E-Unification

The common problem of all the methods described in Section 4, that are based on additional
tableau expansion rules, is that there are virtually no restrictions on the application of equalities.
Because of their symmetry this leads to a very large search space; even very simple problems
cannot be solved in reasonable time.

It 1s difficult to employ more elaborate and efficient methods for handling equality in semantic
tableaux, such as completion-based approaches, because 1t is nearly impossible to transform these
methods into (sufficiently) simple tableau expansion rules.'®

Contrary to that, arbitrary algorithms can be used, if the handling of equality is reduced
to solving E-unification problems. Then, no additional expansion rules are needed; once the E-
unification problems have been extracted, the tableau does not have to be taken into consideration
any more. In [7] it has been shown that methods based on E-unification are much more efficient
than that based on additional rules—even if the comparatively inefficient algorithm from [7] is
used to solve F-unification problems.

The equality theory defined by a tableau branch B consists of the equalities on B; they
are (explicitly) quantified w.r.t. to the variables w.r.t. which they can be recognized as being
universal:

Definition11. Let B be a tableau branch and 7" a method for recognizing universal formulee
(Def. 3). Then the set E(B) of equalities consists of the equalities (V1) - (Va,)(s & t) such
that

1. T (s & t) is formula on B,
2. {x1,.. ., 2y} =1 (B, T (s = 1)).

FEzample 6. As an example we use the tableau from Figure 4. Its left branch is denoted by B
and its right branch by Bs. If the method for recognizing universal formule from Theorem 4 is
used, F(Bz) contains the equalities b = ¢ and (Va)(g(f(z)) ~ ). E(B1) contains in addition the
equality g(z2) = f(x2).

Definition12. Atomic formule T P(s1,...,s,) and F P(¢1,...,t,) with the same predicate
symbol and complementary signs are called a pair of potentially closing atoms.

Definition13. Let B be a tableau branch and 7 a method for recognizing universal formulze.
Then the set P(B) of unification problems consists exactly of the sets of term pairs:

{{s10,t10),...,{sp0,tnh0)}

for each pair T P(s1,...,8y), F P(t1,...,1,) of potentially closing atoms on B such that P # =,

and
{{so,to)}

for each inequality F (s = t) on B.
The substitution o renames all the variables

21, .., 8m €T(B, T P(s1,...,80)) NT(B,FP(t1,...,t,)) ,

? Purely rigid E-unification is NP-complete [11]; simultaneous purely rigid E-unification is NEXPTIME-
complete [12].

10 R.J. Browne [9] describes a completion-based method for handling equality, that uses additional ex-
pansion rules. It is; however, only applicable to the ground version of tableaux and cannot be extended
to free variable tableaux.



or

21, 2m €T(A F(s=1)) ,

respectively, i.e., 0 = {x1/y1, ..., m/Ym} and y1, ..., ym are new variables.

If one of the problems in the set P(B) of unification problems of a branch B has a solution &
(w.r.t. the equalities F(B)), Bo is unsatisfiable in canonical models; therefore the branch B is
closed under the substitution o. The pair of potentially closing atoms corresponding to the solved
unification problem has been proven to actually be complementary; or the the corresponding
inequality has been proven to be inconsistent (provided the unifier is applied to the tableau).

Frample 7. If, again, By denotes the left and Ba the right branch of the tableau in Figure 4
(without the framed formulae), and 7" is the method from Theorem 4 for recognizing universal
formulee, then both P(By) and P(B3) contain the set {{g(g(a)),a), (b,c}}. P(B2) contains in
addition the set {{z2,a)}.

The following is a formal definition of the simultaneous mixed E-unification problems that
have to be solved to close a tableau. The soundness of this notion of closed tableau has been
proven in [3]:

Definition14. A tableau 7" with branches By,..., By is closed iff in the sets of unification
problems P(B;) (1 <i < k) (Def. 13) there are elements {{s;1,%:1), ..., {Sin,, tin,) } € P(B;) such
that there is a solution to the simultaneous mixed E-unification problem (Def. 10)

{(E(B1),s11,t11), -, (E(B1), Sinys ting ),

(E(B), 5515 51),s - s (E(Br)s skmes tions) }

Frample 8. If the method from Theorem 4 for recognizing universal formule is used, the ta-
bleau from Figure 4 is closed w.r.t. Def. 14 (the framed formulee not taken into consideration):
The substitution ¢ = {#s/a} is a solution to the simultaneous mixed FE-unification problem

{((E(Bl),g(g(a)), a>’ <E(Bl)’ b, C), E(BZ)’ 2, a>}

Actually, it is not necessary to split pairs T P(sy,...,s,) and F P(¢1,...,%,) of potentially
complementary atoms into n term pairs {s1,%1), ..., {8n,t,) that have to be unified. Instead the
problem {(P(s1,...,85), P(t1,...,tn)) could be used. That, however, is inefficient, because the
n simpler problems can be solved independently.

Since purely rigid E-unification is decidable [12], it is decidable whether a given free variable
tableau without universal formule is closed (Def. 14). However, if a tableau is not closed it may,
nevertheless, be unsatisfiable (and, thus, be expandable to a closed tableau). It is undecidable
whether a tableau with universal formula is closed, because simultaneous mixed FE-unification is
undecidable.

5.3 Solving E-Unification Problems

To solve the E-unification problems that are extracted from tableaux (Def. 14), arbitrary algo-
rithms can be used.

The problems extracted from ground tableaux consist solely of ground terms. There are very
efficient methods for solving these ground E-unification problems, that are based on computing
the equivalence classes of the terms to be unified (w.r.t. to the relation defined by the equalities
on the branch) [21, 16].

Algorithms based on computing equivalence classes can be used as well to solve rigid and
mixed F-unification problems, i.e., to add equality to free variable tableaux with universal for-
mulee [7].



However, for solving non-ground problems, it is much better to use completion-based me-
thods. Unfortunately, the Unfailing Knuth-Bendix-Algorithm [15, 1] with narrowing [17], that
is generally considered to be the best algorithm for universal E-unification and has often been
implemented, cannot be used to solve rigid or mixed problems. Completion-based methods for
rigid F-unification have been described in [11, 12]; these, however, are non-deterministic and
unsuited for implementation, since the “guess” that is part of the algorithm is highly complex.

Recently, deterministic completion-based methods have been introduced, both for purely rigid
E-unification [2] and for mixed E-unification [4, 5].1! Besides being completion-based, there are
several reasons why these methods are well suited for adding equality to free variable semantic
tableaux: Firstly, the terms to be unified do not become part of the completion (in contrary to the
method in [11]); this is important because the E-unification problems in Definition 14 that share
the same set of equalities can, thus, be solved using a single completion. Secondly, simultaneous
FE-unification problems are solved by searching for common specializations of solutions to its
components; this is of advantage, because the different F-unification problems consist of the
same components.

6 Efficient Implementation

Using algorithms based on solving simultaneous rigid E-unification problems,; all branches of a
tableau are closed simultaneously. Another possibility, that is easier to implement, is to close the
branches one after the other; the first substitution found to close a branch B; is applied to the
whole tableau. If, later on, it is not possible to close a branch B; (j > ¢), backtracking is initiated
to compute further closing substitutions for B;. In [3] it has been proven that this method leads
to a correct and complete calculus, provided the search for further substitutions closing a branch
1s limited. To preserve completeness the limit has to be incremented if no proof 1s found.

It is, however, more efficient to handle all (or several) branches of a tableau in parallel.
Then, the information contained in the branches can be used simultaneously. Backtracking can
be avoided and the search space can be restricted. For example, it is often possible to reco-
gnize branches for which only one closing substitution exists; these substitutions can be applied
immediately, before other branches are closed.

If a completion-based method is used to solve the F-unification problems that are extracted
from a tableau, it is advantageous to combine the completion process and the expansion of the
tableau. Thus, if a S-rule is applied, the (partial) completion that has been computed up to that
point can be shared by the new subbranches and has only to be computed once.

On the other hand, all described methods are much easier to implement if the handling of
equality is separated from the expansion of tableaux [7, 10]: First, the (classical) tableau expan-
sion rules are applied until the tableau is exhausted (observing a limit for y-rule applications).
Then, the F-unification problems are extracted and solved (resp. the equality expansion rules
are applied).

7 Conclusion

Although it is easier to add equality to the ground version, to prove even simple theorems, free
variable tableaux have to be used. These are sufficient as long as each branch is relatively easy
to close, even if there i1s a large number of branches. If however, complex equational theories
have to be applied to close the branches, universal formulae and elaborate methods for solving
FE-unification problems have to be used.

1 The method described in [4, 5] has been implemented as part of the tableau-based theorem prover
3TAP [6]. The implementation is written in Quintus Prolog. Besides the possibility to prove theorems
from predicate logic with equality, the F-unification module can be used “stand alone” to solve simul-
taneous mixed E-unification problems. Upon request, the source code is available from the author.



After the handling of equality has been reduced to solving rigid and mixed E-unification
problems, the search for efficient methods has not come to an end. However, the difficulties that
have to be overcome have been identified.

Completion-based methods for solving mixed E-unification have just recently been developed,;
first experiments show promising results. Further investigations are necessary to combine these
methods and semantic tableau in a more efficient way.
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