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CEDES

CEDES
(Cost Efficient Dependable Electronic Systems)

Software-based methods for fault tolerance
& fault handling

“Our” work package:
KeY version for MISRA C programs
Symbolic error propagation
Formal verification of exception handling routines
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Symbolic Error Propagation

Would complement fault injection methods

Main problem with fault injection: coverage

Idea:
Represent whole classes of errors in logic
Perform symbolic execution to ...

verify properties in the presence of errors
calculate consequences (strongest postcondition)
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KeY Version for MISRA C

Refactoring of KeY + addition of C datastructures

Finding and integrating C front-end

Writing parser for schemaC

Develop and implement dynamic logic and
calculus for MISRA C
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Front-end for C

Cetus
Implemented in Java
Uses ANTLR parser generator
Is an active project
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Refactoring of Datastructures

Should as much as possible be re-used/shared?
Save a lot of work
Avoid duplicated code

... or ...

Should structures for different languages be kept
separate?

Java semantics implicitly built-in
⇒ Bugs that are hard to find
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Refactoring of Datastructures cont’d

Should as much as possible be re-used/shared?
Save a lot of work
Avoid duplicated code

... or ...

Should structures for different languages be kept
separate?

Java semantics implicitly built-in
⇒ Bugs that are hard to find

Decision: Go for 1st approach
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Refactoring of Datastructures cont’d

How general?

First plan: Structure that allowed for addition of
arbitrary OO language with imperative core

Not worth the effort

Existing datastructures already fairly general

⇒ Go for ad-hoc approach
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Refactoring of Datastructures cont’d

How general?

First plan: Structure that allowed for addition of
arbitrary OO language with imperative core

Not worth the effort

Existing datastructures already fairly general

⇒ Go for ad-hoc approach

Decision: Minimal refactoring to be able
to add C constructs
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New Package Structure
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New Package Structure cont’d
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