
KeY Version for MISRA C

Daniel Larsson

KeY Symposium
Göteborg, June 2005

KeY Version for MISRA C – p.1/11



CEDES

CEDES
(Cost Efficient Dependable Electronic Systems)

Software-based methods for fault tolerance
& fault handling

“Our” work package:
KeY version for MISRA C programs
Symbolic error propagation
Formal verification of exception handling routines

KeY Version for MISRA C – p.2/11



Symbolic Error Propagation

Would complement fault injection methods

Main problem with fault injection: coverage

Idea:
Represent whole classes of errors in logic
Perform symbolic execution to ...

verify properties in the presence of errors
calculate consequences (strongest postcondition)

KeY Version for MISRA C – p.3/11



KeY Version for MISRA C

Refactoring of KeY + addition of C datastructures

Finding and integrating C front-end

Writing parser for schemaC

Develop and implement dynamic logic and
calculus for MISRA C

KeY Version for MISRA C – p.4/11



Front-end for C

Cetus
Implemented in Java
Uses ANTLR parser generator
Is an active project

KeY Version for MISRA C – p.5/11



Refactoring of Datastructures

Should as much as possible be re-used/shared?
Save a lot of work
Avoid duplicated code

... or ...

Should structures for different languages be kept
separate?

Java semantics implicitly built-in
⇒ Bugs that are hard to find

KeY Version for MISRA C – p.6/11



Refactoring of Datastructures cont’d

Should as much as possible be re-used/shared?
Save a lot of work
Avoid duplicated code

... or ...

Should structures for different languages be kept
separate?

Java semantics implicitly built-in
⇒ Bugs that are hard to find

Decision: Go for 1st approach

KeY Version for MISRA C – p.7/11



Refactoring of Datastructures cont’d

How general?

First plan: Structure that allowed for addition of
arbitrary OO language with imperative core

Not worth the effort

Existing datastructures already fairly general

⇒ Go for ad-hoc approach

KeY Version for MISRA C – p.8/11



Refactoring of Datastructures cont’d

How general?

First plan: Structure that allowed for addition of
arbitrary OO language with imperative core

Not worth the effort

Existing datastructures already fairly general

⇒ Go for ad-hoc approach

Decision: Minimal refactoring to be able
to add C constructs

KeY Version for MISRA C – p.9/11



New Package Structure

KeY Version for MISRA C – p.10/11



New Package Structure cont’d

KeY Version for MISRA C – p.11/11


	KeY Version for MISRA C
	CEDES
	Symbolic Error Propagation
	KeY Version for MISRA C
	Front-end for C
	Refactoring of Datastructures
	Refactoring of Datastructures cont'd
	Refactoring of Datastructures cont'd
	Refactoring of Datastructures cont'd
	New Package Structure
	New Package Structure cont'd

