
Using a Software Testing Technique to Improve
Theorem Proving

Reiner Hähnle and Angela Wallenburg

Chalmers University of Technology and Göteborg University
Department of Computing Science

SE-412 96 Göteborg, Sweden
{angelaw,reiner}@cs.chalmers.se

Abstract. Most efforts to combine formal methods and software testing go in
the direction of exploiting formal methods to solve testing problems, most com-
monly test case generation. Here we take the reverse viewpoint and show how the
technique of partition testing can be used to improve a formal proof technique (in-
duction for correctness of loops). We first compute a partition of the domain of
the induction variable, based on the branch predicates in the program code of the
loop we wish to prove. Based on this partition we derive a partitioned induction
rule, which is (hopefully) easier to use than the standard induction rule. In partic-
ular, with an induction rule that is tailored to the program to be verified, less user
interaction can be expected to be required in the proof. We demonstrate with a
number of examples the practical efficiency of our method.

1 Introduction

Testing and formal verification at first glance seem to be at opposing ends in the spec-
trum of techniques for software quality assurance. Testing is a core technique used by
practitioners every day, while formal verification is difficult to master, and employed
mostly by specialists in academia. Most practitioners agree that formal verification is
too cumbersome and difficult to be useful in practice. On the other hand, testing cannot
be used on its own to prove the absence of errors, because exhaustive testing is usually
impossible. In practice, one stops testing once the number of found errors drops below
a certain threshold (or simply when the testing budget is used up). Formal verification,
although costly, can ensure that a program meets its (formal) specification for any in-
put. Given this state of affairs, it might seem surprising that testing and verification can
fruitfully interact—nevertheless, this is what we want to show in the present paper.

There is one fairly established connection between formal methods and testing (doc-
umented, for example, in several papers collected in this proceedings): test case gener-
ation from formal specifications. The presence of a formal specification can also solve
the oracle problem. One obstacle of this approach is that availability of a formal speci-
fication is the exception rather than the rule. On the other hand, if the cost for providing
a formal specification has been invested already, one can use it as a basis not only for
testing, but even for formal source code verification. The contribution of this paper is
to show that techniques from testing can considerably simplify the verification effort.
Hence, the availability of a formal specification is doubly useful: on the one hand, with

c© Springer-Verlag

by now established techniques one can generate test cases automatically. In addition,
as we show below, by employing techniques from testing, even formal verification may
come into reach. We see our work as a first step towards a framework, where both
testing and verification can be usefully combined.

Partition testing is a software testing technique used to systematically reduce test
volume. A program’s possibly infinite input space is divided into a finite number of
disjoint subdomains. Testing is done by picking one or more elements from each sub-
domain to form a test set that is somehow representative for the program behaviour.
Ideally, all elements in a subdomain behave in the same way with respect to the spec-
ification, that is, they are all processed correctly or they are all processed incorrectly.
Subdomains with this property are called revealing [1] or homogeneous [2].

There is a line of work in software testing theory [3, 4, 1, 5, 2], where it is shown
that testing can be used to show the absence of errors provided that certain properties
in the test case selection are fullfilled. In the context of partition testing, the sought-after
property is that subdomains are revealing. Unfortunately, establishing this property in
practice means usually to give a formal correctness proof (for each subdomain). Hence,
given the difficulties of general theorem proving, this was often discarded as impracti-
cal. Our results may be considered as a step towards obtaining such correctness proofs
practically, because it suggests that proving correctness for each subdomain separately
requires less user interaction than giving a proof simulteanously for the entire domain
(as usually done in theorem proving).

In a nutshell, here is what we do: the implementation basis for our work is a soft-
ware verification system for the programming language JAVA CARD called KeY [6].
The verification paradigm of KeY is to execute programs with symbolic values, which
then are checked (symbolically) against the formal specification. More exactly, KeY is
based on a first order dynamic logic with arithmetic [7, 8]. It uses a sound and relatively
complete calculus which contains rules mimicking symbolic execution. This idea was
first presented in [9] and formalized in [10, 11].

The main obstacle in automating software verification to an acceptable degree is
the handling of programs with loops or recursive methods. These constructs require
induction on one of the inductive data structures occurring in the program (for example,
numbers or lists). The difficulty is to find a suitable induction hypothesis. This can be a
formidable challenge even for formal methods experts. The complexity of the induction,
of course, depends on the complexity of the loop or method body and post condition
at hand. In simple cases, the induction can be performed automatically. Therefore, it
would be extremely beneficial to simplify the required induction hypotheses. The key
insight that we work out in the present paper is that the technique of partition testing is
in fact a fairly general and automatic divide-and-conquer concept that can be used to
simplify inductions in formal verification proofs.

Roughly speaking, to verify a loop, we use a white-box partition analysis based on
the branch predicates of its body and condition, to compute a partition of the domain of
the induction variable. This partition is then used to derive (mechanically) an induction
rule which takes the partition into account: let us call the standard induction rule for
natural numbers the rule that allows to conclude that a statement φ(n) holds for all
n ∈ N provided that it holds for the single base case (“φ(0)”) and for the single step

case (“for any i, if φ(i) then φ(i + 1)”). This is replaced by an induction rule that has
m base cases and r step cases, each of which matches a subdomain of the partition and,
hopefully, needs much less user interaction.

Other work that is related to ours can be found elsewhere. For instance, there was
an early effort [12] to use test data to aid in proving program correctness. In contrast to
this approach, we do not actually run any tests, but our approach relies on a test case
generation technique (partition analysis). Also, there is a recent runtime analysis tech-
nique to generate invariants inductively from test cases, presented in [13]. For higher
order functional programming languages, [14] describes how to formally derive induc-
tion schema for recursively defined functions. However, our work has the advantage to
be applicable to a real object-oriented programming language, JAVA CARD.

The remainder of the paper is organized as follows. We start with a motivating
example in Sect. 2. In Sect. 3 we describe the method. Then we show it at work. First, we
revisit the introductory example (Sect. 4.1), followed by a more sophisticated problem
(Sect. 4.2). We close by pointing out current limitations (and, hence, future work).

2 Motivating Example

In this section we describe a simple example of a loop that is not possible to prove
(without complex user interaction) using a standard induction rule, but is easy with
our approach. The description here is brief. Our method is explained in detailed in the
following section. Here is the JAVA CARD code of the loop:

int final c = ... ;
int i ;
...

while(i > 0) {
if (i >= c) {

i = i − c;
} else{

i−−;
}

}

For this while-loop to terminate in a state where i = 0 we need in the precondition that
i ≥ 0 and c ≥ 1. c is constant. In dynamic logic (briefly DL—the essentials of our
logical framework are described in Sect. 4.1) the proof obligation is ∀i · φ(i), where
φ(i) is:

i ≥ 0 ∧ c ≥ 1 →
〈 while (i > 0) {

if (i >= c) {
i = i − c;

} else {
i−−;

}
} 〉 i = 0

The formula contains a total correctness assertion: the program within the brackets 〈 〉
(here the code of the while-loop) terminates and in the final state the postcondition
following the brackets must hold (here i = 0).

The simplest possible choice for the induction hypothesis when proving correctness
of the loop is to take φ(n). It is completely schematic and requires no interaction with
the user. This hypothesis, however, is too weak when using the standard induction rule.
Roughly speaking, in a proof attempt of the standard step case, ∀n ∈ N · φ(n) →
φ(n + 1), the following happens: the while-loop is unwound for n + 1 and the proof
branches at the if-statement. One case (the one with “i--;”) is possible to prove,
because “(n+1)--;” is equal to n after symbolic execution. The proof obligation
for this case simplifies to ∀n ∈ N · φ(n) ∧ n < c → φ(n), which is valid. In the
other case symbolic execution gives n + 1 − c so that the resulting proof obligation
∀n ∈ N · φ(n) ∧ n ≥ c → φ(n + 1 − c) is in general unprovable. With standard
induction, a more powerful induction hypothesis must to be found—a difficult task for
a user with no training in formal methods!

In our approach we instead create mechanically a new, partitioned induction rule.
For our example loop the partitioned induction rule has two base cases and one step
case:

φ(0) (1)

φ(1) ∧ · · · ∧ φ(c− 1) (2)

∀n ∈ N · φ(n) → φ(n+ c) (3)

These are constructed from a branch coverage partition of the induction variable i.
For instance (2) above corresponds to the subdomain with all values of i causing the
“else” branch inside the loop to be executed. The creation of the partitioned induction
rule for this particular example is described in more detail in Sect. 4.1. Note that this
partitioned induction rule is powerful enough to make the proof go through automati-
cally with the unchanged induction hypothesis φ(n) that is just what we desire in our
effort to minimise the user interaction.

3 Computing Partitioned Induction Rules

The idea is to create for each loop that we want to prove a new, tailor-made induction
rule based on partitions. A partition is used, through the new induction rule, to divide
the proof into smaller and hopefully simpler (in terms of user interaction) parts. Here is
an overview of the method:

1. Compute a partition based on the branch predicates in the program code. We em-
ploy techniques readily available in the software testing community. Details are out
of the scope of this paper, but the approach we use here is similar to the construction
of the implementation partition in [5].

2. Refine this partition, thereby making use of the implicit case distinction contained
in operators (such as mod or ÷) that occur in branch predicates. The goal of the
partition refinement is to arrive at subdomains of a syntactic form that is suitable
for generation of the new induction rule.

3. Based on the refined partition, create a new (program-specific) induction rule with
one base case for each finite subdomain of the partition and one step case for each
infinite subdomain.

4. Prove correctness of the loop as usual, but use the new induction rule. This requires
typically less user interaction than with the standard induction rule.

Now to the details. Specifically, assume that we have a program loop with input domain,
or in our case, a domain of the variable that we want to perform induction over:D ⊆ N.
From a partition analysis as described in step 1 above we obtain a finite number of
disjoint subdomains, say,D = D1 ∪ · · ·∪Dm. Let di be the characteristic predicate for
each i ∈ 1, . . . ,m with x ∈ Di iff di(x) holds. Hence, x ∈ D iff d1(x) ∨ · · · ∨ dm(x).
The di are called branch predicates.

The branch predicates originate from the branching conditions in the program code
and might contain operators defined by case distinction, for instance, ÷, mod, and ≥.
These implicit case distinctions drive further partitioning.

For each such operator, if necessary, we create a partition such that each case distinc-
tion in the definition of the operator gives rise to a new subdomain. In the future, we plan
to create a library of partitions for all operators that occur in JAVA CARDexpressions
and the standard JAVA CARD API so that refining partitions can be looked up mechan-
ically. In general, we strive to refine the original partition to obtain new subdomains of
a particular syntactic form:

1. {} (the empty set)
2. A finite set {x1, . . . , xk}. Such a set is important to distinguish because it can quite

simply be used as a base case in the new induction rule.
3. An infinite set of the form {λx.f(x) | x ∈ C}, where C ⊆ N. It is important

that f(x) always increases its argument, because it is eventually to be used as an
induction step in our new induction rule. We use λx.f(x) because we aim for an
expression (and not the value of a function) to describe a set of values that we want
to perform induction over.

Here is an example of a partition refinement based on an operator definition by case dis-
tinction: in the example from Sect. 2 one of the branch conditions contains the operator
≥, which has an implicit case distinction. We use the following definition of ≥:

x ≥ z =

{

true if ∃y ∈ N · (x = z + y)
false if ∃y ∈ N · (x = z − 1 − y)

Each case gives directly a simple expression of the desired form: λn.(c + n), respec-
tively, λn.(c − 1 − n) would be used to refine a subdomain defined by the predicate
i ≥ c.

More precisely, we refine the subdomain of the original partition ({i ∈ N | i ≥ c})
into two new subdomains by replacing i with (c+ n) and (c− 1− n) respectively. We
then get {c− 1−n |n ∈ N∧ c− 1−n ≥ c} = {} and {c+n |n ∈ N∧ c+n ≥ c} =
{c + n |n ∈ N}, which are both of the form required above. The latter can be used to
derive an induction step case.

Assume now that we have a refined partition of the syntactic form detailed above,
where operators with implicit case distinctions are eliminated.

We create a new induction rule with the following set of proof obligations:

1. For each non-empty finite subdomain {x1, . . . , xk}, we create a base case consist-
ing of the proof obligation

φ(x1) ∧ · · · ∧ φ(xk)

2. For each infinite subdomainDi a new step case needs to be proven:

∀n ∈ Ci · φ(n) → φ((λx.fi(x))n)

For the new induction rule to be sound it is important that some criteria are fulfilled:

1. For each step case of the form ∀n ∈ Ci · φ(n) → φ((λx.fi(x))n) the following
holds:

∀n ∈ Ci · fi(n) > n

This is to ensure that it really is a step, and it is achieved by constructing fi(x) such
that it increases its argument.

2. Each element of the domain D of the induction variable is covered in at least one
of the step or base cases. Let B be the union of all finite subdomains giving rise to
a base case and let f1, . . . , fr be the functions that define the step cases. Then we
require

∀x ∈ D · (∃k ∈ {1, . . . , r} · ∃y ∈ Ck · x = fk(y)) ∨ x ∈ B

This property is guaranteed by construction, because the partition property is in-
variant in the process; we only refine partitions or do not change them at all.

The first property entails that the minimal element of D cannot be in the subdomain
defined by any step case. The second property says that all elements of D is in either a
step case or a base case. As a consequence, there must be at least one base case of the
induction.

4 Examples

4.1 Simple Example Revisited

Now we return to the motivating example from Sect. 2 and show how we actually com-
puted the partitioned induction rule for it.

In KeY, the logical infrastructure is JAVA CARD DL [8], an extension of dynamic
logic (DL) [7] to handle side effects, aliasing, exceptions and other complications of
a real object-oriented programming language such as JAVA CARD. In DL, a formula
ϕ → 〈p〉ψ is valid if for every state s satisfying precondition ϕ a run of the program p

starting in s terminates, and in the terminating state the post-condition ψ holds. The
proof obligation from Sect. 2, that was written using pure DL, is slightly more compli-
cated in JAVA CARD DL. Our proof obligation is ∀ il · φ(il). Let φ(il) be the following
formula:

il ≥ 0 ∧ cl ≥ 1 →
{i := il}{c := cl} 〈 while (i > 0) {

if (i >= c) {
i = i − c;

} else {
i−−;

}
} 〉 i = 0

The curly brackets in front of the formula are called (state) updates. Updates are the
JAVA CARD DL solution to deal with aliasing and assignment in the calculus. They are
basically primitive assignments of the form {loc := val} where val must be a logical
(side effect free) term and loc a program variable.

To prove correctness of the loop we need to perform induction on the variable i. In
JAVA CARD DL one cannot quantify over program variables, so the induction variable
is a corresponding logical variable il. The domain of the induction variable is N. From
the branching conditions in the program we obtain the first partition of i’s domain:

D1 = {x ∈ N | d1(x)} = {x ∈ N |x ≤ 0} =

= {0}

D2 = {x ∈ N | d2(x)} = {x ∈ N |x > 0 ∧ x < c} =

= {1, . . . , c− 1}

D3 = {x ∈ N | d3(x)} = {x ∈ N |x > 0 ∧ x ≥ c} =

= {x ∈ N |x ≥ c}

The subdomains D1 = {0} and D2 = {1, . . . , c− 1} are finite and thus already in one
of our desired formats.

Then, to refine/rewrite the original subdomain D3, remember from Sect. 3 that for
the operator x ≥ z, we may use the expressions λy.z + y and λy.z − 1 − y to refine a
subdomain. This gives a refinement ofD3 = {x ∈ N |x ≥ c} into two new subdomains
D3 = D31 ∪D32, where

D31 = (replace x in D3 w ith c+ y)

= {c+ y | y ∈ N ∧ c+ y ≥ c}

= {c+ y | y ∈ N}

D32 = (replace x in D3 w ith c− 1 − y)

= {c− 1 − y | y ∈ N ∧ c− 1 − y ≥ c}

= {}

So the new subdomains D1, D2 and D31 are of the form we need to construct the
new induction rule. To prove ∀n ∈ N · φ(n), it is then enough to prove

φ(0) (1)

φ(1) ∧ · · · ∧ φ(c− 1) (2)

∀n ∈ N · φ(n) → φ(c+ n) (3)

where (1) is a base case and coversD1, (2) is also a base case and coversD2, and (3) is
a step case that covers all elements in the subdomainD31.

The proving process in KeY is partially automated, though it is an interactive the-
orem prover. When using the partitioned induction rule above, the following kinds of
user interaction are required to complete the proof:

Instantiation means a single quantifier elimination by supplying a suitable instance
term. In the KeY system, the user can simply drag-and-drop the desired term.

Induction rule application: when applying the partitioned induction rule, one can state
the induction hypothesis by drag-and-dropping the existing proof obligation, and
then pick the induction variable.

Unwinding of the loop needs to be initiated, but is done automatically.

Decision procedure is an automatic procedure that tries to decide the validity of arith-
metic expressions over the integers. The decision procedure is sound but not com-
plete. The user decides when (if) to run it.

Compared to the user interaction needed when using standard induction, this is less
complicated. Using standard induction, if one uses the unmodified induction hypothesis
and the same induction variable as above, one is left with an open proof goal and no
rules to apply: one has to figure out a strong enough induction hypothesis.

4.2 Russian Multiplication Example

Let us see how the method works for proving the correctness of a more complicated
algorithm—russian multiplication. The loop has more complicated control flow than in
the previous example.

int russianMultiplication (int a, int b) {
int z = 0;
while (a != 0) {

if (a mod 2 != 0) {
z = z + b;

}
a = a /2;
b = b∗2;

}
return z;

}

For this loop we have the precondition a0 ≥ 0 and the post-condition z = z0 + a0 ∗ b0,
where a0, b0, z0 are the values of a, b and z before the loop. In JAVA CARD DL the

proof obligation for the total correctness of this loop is ∀a0 · φ(a0), where φ(a0) is

∀b0 · ∀z0 · a0 ≥ 0 →
{a := a0}{b := b0}{z := z0}〈 while (a ! = 0) {

if (a mod 2 ! = 0) {
z = z + b;

}
a = a / 2;
b = b * 2;

} 〉 z = z0 + a0 ∗ b0

where a0, b0 and z0 are new logical variables.
This cannot be proven using standard induction unless the induction hypothesis is

strengthened in a non-trivial way. In an attempt to prove the standard step case using
φ(a) as the induction hypothesis in ∀a ∈ N · φ(a) → φ(a + 1), after unwinding and
symbolically executing the loop we end up with ∀a ∈ N · φ(a) → φ((a+ 1)/2) which
is unprovable without induction.

Now let us compute a partitioned induction rule for this loop instead. The induction
variable is a (the corresponding logical variable is a0). Its domain is N and the first
partitioning, using branch predicates, gives the following subdomains:

D1 = {x ∈ N | d1(x)} = {x ∈ N |x = 0}

= {0}

D2 = {x ∈ N | d2(x)}

= {x ∈ N |x 6= 0 ∧ x mod 2 6= 0}

D3 = {x ∈ N | d3(x)}

= {x ∈ N |x 6= 0 ∧ x mod 2 = 0}

In words, we have the singleton set containing zero and the sets with the odd and (non-
zero) even numbers respectively.

Consider the branch predicate d3(x) ↔ x 6= 0 ∧ x mod 2 = 0, which defines sub-
domainD3. The definition of d3(x) contains an operator with implicit case distinction:
mod. We look up the definition of mod 2:

x mod 2 =

{

0 if ∃y ∈ N · (x = 2 ∗ y)
1 if ∃y ∈ N · (x = 2 ∗ y + 1)

Hence, we use the expressions λy. 2∗y and λy. 2∗y+1 to refine the original partition.
Using the case distinction in the definition of x mod 2, gives us the refinement of the
original subdomain D3 = {x ∈ N |x 6= 0 ∧ x mod 2 = 0} into two new subdomains
D3 = D31 ∪D32:

D31 = (replace x in D3 w ith 2 ∗ y)

= {2 ∗ y | y ∈ N ∧ (2 ∗ y) 6= 0 ∧ (2 ∗ y) mod 2 = 0}

= {2 ∗ y | y ∈ N ∧ y 6= 0 ∧ 0 = 0

= {2 ∗ y | y ∈ N1}

D32 = (replace x in D3 w ith 2 ∗ y + 1)

= {2 ∗ y + 1 | y ∈ N ∧ 2 ∗ y + 1 6= 0 ∧ (2 ∗ y + 1) mod 2 = 0}

= {2 ∗ y + 1 | y ∈ N ∧ 1 = 0}

= {}

Similarly, for the branch predicate d2(x) of the original partition, we get

D21 = {2 ∗ y + 1 | y ∈ N}

D22 = {}

After refinement, we have non-empty subdomains of the form:

D1 = {0}

D21 = {2 ∗ y + 1 | y ∈ N}

D31 = {2 ∗ y | y ∈ N1}

Thus, the new subdomains have the syntactic form we need to construct an induction
rule. With this rule, to prove ∀n ∈ N · φ(n), it is enough to prove that

φ(0) (1)

∀n ∈ N1 · φ(n) → φ(2 ∗ n) (2)

∀n ∈ N · φ(n) → φ(2 ∗ n+ 1) (3)

where (1) is the base case, coveringD1, (2) the first step case, covering all elements in
the subdomainD31 and (3) the second step case, coveringD21.

To prove the russian multiplication algorithm in KeY with the partitioned induction
rule the required user interactions are basically the same as in the previous example. In
particular, the induction now goes through completely unmodified.

5 Limitations and Future Work

In this paper we demonstrated that the technique of partition testing can be turned into
a divide-and-conquer concept to simplify inductions in formal verification proofs. We
have defined a syntactic framework that allows us to derive tailor-made induction rules
based on partitions in a practically efficient manner. Resulting induction rules are sound
and complete by construction. The actual verification in KeY using the partitioned in-
duction rules can often be performed automatically. Several examples were carried out
not just by hand, but as concrete experiments in an interactive theorem prover. The
experimental findings confirmed our conjecture. We think that our work is a first step
towards a framework, where both testing and formal verification can be usefully com-
bined.

In the current setting, our method has a number of limitations but its reach could be
extended considerably. For a start, we considered induction not over arbitrary inductive
data structures, but only the natural numbers. Future work is to extend our approach to
also include induction over lists, trees, etc.

Our focus has been entirely on the verification of loops, and not on arbitrary pro-
grams. Since loops are usually the major source of complexity in verification, in testing
as well as in theorem proving, it is here that we expect the largest gain. Still, we also
wish to investigate the idea of partitioning proofs for loop-free programs, since it has
been seen [15] that in the case of very large proof obligations, it is beneficial to split the
proof into parts which can be handled separately.

Clearly, not all induction proofs can be simplified with our approach. The crucial
point is that our method requires that the branch predicates somehow capture what is
being computed in the corresponding branch. This is often the case, but not always. If
the branch predicates are completely unrelated to the induction variable, we simply get
no information from the branch predicates on how to partition the domain of the induc-
tion variable. For instance in array-sorting algorithms, it is common that the induction
goes over the indexes of the array, but the branch predicates typically have a comparison
between the elements to be sorted and these might be randomly ordered. In future work
we plan to remedy this by also using the weakest preconditions of updates to induction
variables when we refine the partition. In KeY there is already a strongest postcondition
generator.

Finally, the process of transforming general branch predicates into predicates of the
form that our method requires (using λ-expressions) is non-trivial; in particular for the
process to be mechanised. In our examples, quite simple branch conditions occurred. It
is future work to investigate what exactly can be done mechanically. It includes dealing
with predicates containing arbitrary linear operators and method calls, but quadratic
operators and operators like sin, we expect to be beyond reach. However, our method
is conservative in the sense that if it does not find a useful refinement of a partition for
a certain subdomain, the subdomain stays the same. In that case the proof will not be
simplified, but it will not be more complicated either.

Acknowledgements

We thank the anonymous reviewers and the editors for their many helpful comments.
This work was also supported by a STINT (the Swedish Foundation for International
Cooperation in Research and Higher Education) grant.

References

1. Weyuker, E.J., Ostrand, T.J.: Theories of Program Testing and the Application of Revealing
Subdomains. IEEE Transactions on Software Engineering 6 (1980) 236–246

2. Hamlet, D., Taylor, R.: Partition Testing Does Not Inspire Confidence. IEEE Transactions
on Software Engineering 16 (1990) 1402–1411

3. Goodenough, J.B., Gerhart, S.L.: Toward a Theory of Test Data Selection. IEEE Transac-
tions on Software Engineering 1 (1975) 156–173

4. Howden, W.E.: Reliability of the Path Analysis Testing Strategy. IEEE Transactions on
Software Engineering 2 (1976) 208–215

5. Richardson, D., Clarke, L.: Partition Analysis: A Method Combining Testing and Verifica-
tion. IEEE Transactions on Software Engineering 11 (1985) 1477–1490

6. Ahrendt, W., Baar, T., Beckert, B., Giese, M., Hähnle, R., Menzel, W., Mostowski, W.,
Schmitt, P.H.: The KeY system: Integrating object-oriented design and formal methods. In
Kutsche, R.D., Weber, H., eds.: Fundamental Approaches to Software Engineering. Volume
2306 of LNCS., Springer-Verlag (2002) 327–330

7. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
8. Beckert, B.: A dynamic logic for the formal verification of Java Card programs. In Attali, I.,

Jensen, T., eds.: Java on Smart Cards: Programming and Security. Revised Papers, Java Card
2000, Cannes, France. Volume 2041 of LNCS., Springer-Verlag (2001) 6–24

9. Burstall, R.M.: Program proving as hand simulation with a little induction. In Rosenfeld,
J.L., ed.: Information Processing 74, Proceedings of IFIP Congress 74. (1974) 201–210

10. Hähnle, R., Heisel, M., Reif, W., Stephan, W.: An interactive verification system based on
dynamic logic. In Siekmann, J., ed.: Proc. 8th Conference on Automated Deduction CADE,
Oxford. Volume 230 of LNCS., Springer-Verlag (1986) 306–315

11. Heisel, M., Reif, W., Stephan, W.: Program verification by symbolic execution and induc-
tion. In: Proc. 11th German Workshop on Artifical Intelligence. Volume 152 of Informatik
Fachberichte., Springer-Verlag (1987) 201–210

12. Geller, M.M.: Test data as an aid in proving program correctness. Communications of the
ACM 21 (1978) 368–375

13. Nimmer, J.W., Ernst, M.D.: Automatic generation of program specifications. In: Proceedings
of the international symposium on Software testing and analysis, ACM Press (2002) 229–239

14. Slind, K.: Derivation and use of induction schemes in higher-order logic. In Gunter, E.L.,
Felty, A., eds.: Proc. 10th International Theorem Proving in Higher Order Logics Confer-
ence. Volume 1275 of LNCS., Springer-Verlag (1997) 275–290

15. Claessen, K., Hähnle, R., Mårtensson, J.: Verification of hardware systems with first-order
logic. In Sutcliffe, G., Pelletier, J., Suttner, C., eds.: Proc. Problems and Problem Sets
Workshop, affiliated to CADE-18, Copenhagen, DIKU, University of Copenhagen, Denmark
(2002) Technical Report.

