
A Calculus for Type Predicates and
Type Coercion

Martin Giese

Johann Radon Institute for Computational and Applied Mathematics,
Altenbergerstr. 69, A-4040 Linz, Austria

martin.giese@oeaw.ac.at

Abstract. We extend classical first-order logic with subtyping by type
predicates and type coercion. Type predicates assert that the value of
a term belongs to a more special type than the signature guarantees,
while type coercion allows using terms of a more general type where the
signature calls for a more special one. These operations are important
e.g. in the specification and verification of object-oriented programs. We
present a tableau calculus for this logic and prove its completeness.

1 Introduction

When mathematicians have shown that the ratio p
q is in fact a natural num-

ber, they have no qualms about writing (p
q)!, even though the factorial is not

defined for a rational argument which p
q , syntactically speaking, is. This is very

different from the common practice in strongly typed programming languages,
like e.g. Java: here, an explicit type coercion or cast is needed in most cases to
adjust the type of the fraction to the the required argument type of the fac-
torial function, maybe (rat-to-nat

(
p
q)

)
!. The compiled program might check at

runtime that the value of the fraction is indeed a natural number, and signal
an error otherwise. Typically, such a strongly typed programming language will
also provide type predicates, which allow checking whether a value is indeed of a
more special type than its syntax implies.

Previous work published about tableaux for logics with subtyping (’order-
sorted logic’), e.g. [3,2] does not consider type coercions. There are no type
predicates in the work of Schmitt and Wernecke, whereas Weidenbach does not
consider static typing. We will amend these shortcomings in the present paper,
by first defining in Sect. 2 a logic with static typing, subtypes, type coercions,
type predicates, and equality, which is not too complicated. In Sect. 3, we give a
tableau calculus for this logic, which is somewhat more complicated than might
be expected. And in Sect. 4, we give the completeness proof for that calculus,
which is actually the main contribution of this paper.

2 A Logic with Type Predicates and Type Coercions

2.1 Types

Let us first clarify an important distinction. In the definition of our logic, there are
going to be two kinds of entities that will carry a type: terms and domain elements.

B. Beckert (Ed): TABLEAUX 2005, LNAI 3702, pp. 123–137, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 M. Giese

– The type of a term is given by the signature, more precisely, a term’s type
is the type declared as return type of the term’s outermost function symbol.
The syntax is defined in such a way that a term of a certain type can be used
wherever the syntax calls for a term of a supertype. To make it clear that
we mean this notion of type, we will talk about the static type of a term.

– When we evaluate a term using some interpretation, we get an element of the
domain. Every element of the domain has exactly one type. Our semantics is
defined in such a way that the type of the value of a term will be a subtype
of, or equal to the static type of the term. When we mean this notion of
type, we will talk about the dynamic type of a domain element.

For example let us assume two types Z, signifying the integers, and Q, sig-
nifying the rationals. We want Z to be a subtype of Q. zero, one, two : Z are
constants of static type Z. The operation div : Q, Q → Q produces a term
of static type Q from two terms of static type Q. Since Z is a subtype of Q,
we can use two as argument for div. The static type of the term div(two, two)
is Q, since that is the return type of div. The domain of the standard model
consists of the set of rational numbers, where the integers have dynamic type
Z, and all other elements have dynamic type Q. In the standard model, the
value of div(two, two) is the domain element 1. The dynamic type of the value
of div(two, two) is therefore Z, which is all right since Z is a subtype of Q.

We assume as given a set of types T with a partial ordering �. We require
T to be closed under greatest lower bounds, i.e. for any two A, B ∈ T , there is
a C ∈ T with C � A and C � B, such that for any other D ∈ T with D � A
and D � B, D � C. It is well known that C is then uniquely defined, and we
write A � B for C.

In the approach of Weidenbach [2], types are just unary predicates and the
relationship between types is given by axioms of a certain form. These unary
predicates correspond to our type predicates, which limit the dynamic type of
a domain element. There is no concept of static typing of terms and variables.
Indeed, there is a straightforward modelling of type casts in the Weidenbach
setting, but it requires working with ill-typed terms. In our calculus, only well-
typed formulae are ever constructed.

2.2 Syntax

A signature for our logic consists of a set of function symbols and predicate
symbols. Each function and predicate symbol has a (possibly empty) list of
argument types and function symbols also have a return type. We write

f : A1, . . . , An → A

resp.
p : A1, . . . , An

to express that the function f , resp. predicate p has argument types A1, . . . , An

and return type A. Constants are included in this definition as functions without
arguments.

A Calculus for Type Predicates and Type Coercion 125

To simplify things, we do not allow overloading: any function or predicate
symbol can have only one list of argument types and return type.

We also provide ourselves with a set of variables, each of which has a type.
We write v : A to say that v has type A.

The syntax of our logic is like that of usual classical first order logic, except
that we have a series of function symbols and a series of predicate symbols with
a predefined meaning, and for which we will use a special syntax.

Definition 1. We inductively define the system of sets {TA}A∈T of terms of
static type A to be the least system of sets such that

– x ∈ TA for any variable x : A,
– f(t1, . . . , tn) ∈ TA for any function symbol f : A1, . . . , An → A,

and terms ti ∈ TA′
i
with A′

i � Ai for i = 1, . . . , n,
– (A)t ∈ TA for any term t ∈ TA′ where A′ is an arbitrary type.

We write the static type of t as σ(t) := A for any term t ∈ TA.

A term (A)t is a type coercion, also called a type cast or cast for short. Its
intended semantics is that whatever the static type of t, if the dynamic type of
the value of t is � A, then the value of (A)t is the same as that of t, but the
term has the static type A, permitting it to be used in a context where a term
of that type is required.

Definition 2. We inductively define the set of formulae F to be the least set
such that

– p(t1, . . . , tn) ∈ F for any predicate symbol p : A1, . . . , An and terms ti ∈ TA′
i

with A′
i � Ai for i = 1, . . . , n,

– t1
.= t2 ∈ F for any terms t1 ∈ TA1 and t2 ∈ TA2 ,

– ¬φ, φ ∨ ψ, φ ∧ ψ, . . . ∈ F for any φ, ψ ∈ F .
– ∀x.φ, ∃x.φ ∈ F for any φ ∈ F and any variable x.
– t �− A ∈ F for any term t and type A.

The formulae t1
.= t2 and t2

.= t1 are considered syntactically identical. An atom
is a formula of the shape p(t1, . . . , tn), or t1

.= t2, or t �− A. A literal is an atom
or a negated atom. A closed formula is defined as usual to be a formula without
free variables.

The formula t �− A is intended to express that the dynamic type of the value of
t is a subtype of or equal to A.

2.3 Semantics

The terms and formulae of our logic will be evaluated with respect to a structure
S = (D, I), consisting of a domain and an interpretation.

The semantics of a term is going to be a value in the domain D. Each domain
element x ∈ D has a dynamic type δ(x) ∈ T .

126 M. Giese

While each domain element has a unique dynamic type, it may still occur
as the value of terms of different static types. Our semantic definitions will be
such, that the dynamic type of the value of a term is guaranteed to be a subtype
of the static type of the term. We denote the set of valid domain elements for a
certain static type by

DA := {x ∈ D | δ(x) � A}
We will require each of these sets to be non-empty:

DA 	= ∅ for all types A ∈ T .

This restriction spares us the trouble of handling quantification over empty do-
mains.

An interpretation I assigns a meaning to every function and predicate symbol
given by the signature. More precisely, for a function symbol

f : A1, . . . , An → A ,

the interpretation yields a function

I(f) : DA1 × . . . × DAn → DA

and for a predicate symbol
p : A1, . . . , An

some set of tuples of domain elements.

I(p) ⊆ DA1 × . . . × DAn .

For type coercions, we require I to exhibit a particular behaviour, namely

I((A))(x) = x if δ(x) � A.

Otherwise, I((A))(x) may be an arbitrary element of DA. Finally, for type pred-
icates, we require that

I(�−A) = DA .

A variable assignment β is simply a function that assigns some domain value
β(x) ∈ DA to every variable x : A.

βd
x denotes the modification of the variable assignment β such that βd

x(x) = d
and βd

x(y) = β(y) for all variables y 	= x.
For a structure S = (D, I), we can now define the valuation function valS

that takes a variable assignment and a term and yields the domain element that
is the value of that term. Our definitions will ensure that valS(β, t) ∈ DA for
any t ∈ TA.

Definition 3. We inductively define the valuation function valS by

– valS(β, x) = β(x) for any variable x.
– valS(β, f(t1, . . . , tn)) = I(f)(valS(β, t1), . . . , valS(β, tn)).
– valS(β, (A)t) = I((A))(valS(β, t)).

A Calculus for Type Predicates and Type Coercion 127

For a ground term t, we simply write valS(t).

Next, we define the validity relation S, β |= φ that says whether a formula φ
is valid in S = (D, I) under some variable assignment β.

Definition 4. We inductively define the validity relation |= by

– S, β |= p(t1, . . . , tn) iff (valS(β, t1), . . . , valS(β, tn)) ∈ I(p).
– S, β |= t1

.= t2 iff valS(β, t1) = valS(β, t2).
– S, β |= ¬φ iff not S, β |= φ, etc. for φ ∨ ψ, φ ∧ ψ, . . .
– S, β |= ∀x.φ iff S, βd

x |= φ for every d ∈ DA where x : A, i.e. A is the static
type of the variable x. Similarly for S, β |= ∃x.φ.

– S, β |= t �− A iff δ(valS(β, t)) � A.

We write S |= φ, for a closed formula φ, since β is then irrelevant. A closed
formula φ is unsatisfiable iff S |= φ for no structure φ.

3 A Tableau Calculus

The main difficulty in finding a complete calculus for this logic is that it must be
possible to prove e.g. a formula s

.= t containing casts in the presence of various
type predicate literals u �− A, v �− B, if the latter imply the equality of s and t.
The first idea would be to have a rule

φ[z/(A)t]
t �− A
φ[z/t]

wrong

that allows us to remove a cast if there is a type predicate that guarantees
that the cast is successful. The problem here is that the formula φ[z/t] might
no longer be well-typed, since the static type of t might be too general for the
position where (A)t stood – in fact, that is probably why the cast is there in the
first place. One needs to go the opposite way: there must be a rule that allows to
add casts wherever they are guaranteed not to change the semantics of a term.
But this leads to difficulties in the completeness proof, since such a rule makes
terms grow, defying the usual induction arguments employed in a Hintikka style
completeness proof. We show how to solve this problem in Sect. 4.

In order to avoid the duplication of rules due to duality, we give a calculus
for formulae in negation normal form, i.e. negation appears only before atoms
p(. . .), or t1

.= t2, or t �− A.
The calculus is a ‘ground’, i.e. Smullyan style tableau calculus, without free

variables. We expect it to be possible without difficulties to design a free variable
version of the calculus, using order-sorted unification, in the style of [3,2].

See Fig. 1 for the rules of our calculus. Starting from an initial tableau
containing only one branch with one formula, namely the one that we want
to prove unsatisfiable, we build a tableau by applying these rules, adding the
formulae beneath the line whenever the ones above the line are present. The β

128 M. Giese

φ ∧ ψ
φ

ψ

α
φ ∨ ψ

φ ψ
β

∀x.φ

φ[x/t]
γ

with t ∈ TA ground, if x : A.

∃x.φ

φ[x/c]
δ

with c : A a new constant, if x : A.

φ[z/t1]
t1

.= t2
φ[z/t2]

apply- .=

if σ(t2) � σ(t1).

φ[z/t1]
t1

.= t2
φ[z/(A)t2]

apply- .=′

with A := σ(t1).

t1
.= t2

t2 �− σ(t1)
t1 �− σ(t2)

type- .=

t �− A

t �− B
t �− A � B

type-�

t �− σ(t)
type-static

φ[z/t]
t �− A

φ[z/(A)t]
cast-add

where A � σ(t).

(¬)(A)t �− B

t �− A
(¬)t �− B

cast-type

φ[z/(A)t]
φ[z/t]

cast-del

where σ(t) � A.

t �− A

¬t �− B
⊥ close-�

with A � B.

¬t
.= t

⊥ close- .=

φ,¬φ

⊥ close

Fig. 1. The rules of our calculus

rule splits the current branch into two new branches, all other rules don’t split.
A tableau is closed, if ⊥ is present on all branches.

Note in particular the cast-add rule, which can add a cast around a term,
whenever there is a type predicate to guarantee that the value of the term
remains the same with the cast.

The type- .= rule might be a little unexpected at first. Remember that if
t1

.= t2 holds, the terms have the same value v ∈ D, so their values have the
same dynamic type δ(v). On the other hand, the dynamic types of the values of
terms are subtypes of their static types, so δ(v) � σ(t1) and δ(v) � σ(t2), which

A Calculus for Type Predicates and Type Coercion 129

motivates the type- .= rule. It is needed to deal with equalities between terms of
unequal static types, see the proof of Lemma 4.

The rule cast-type allows us to remove the cast from (A)t, if t�−A is present,
but only in the special case of the top-level of a type predicate literal. Such
literals are a special case in our completeness proof, see Lemma 6.

Theorem 1. A closed tableau can be constructed from a closed formula φ, iff φ
is unsatisfiable.

The proof of soundness, i.e. that a formula for which a closed tableau exists
is indeed unsatisfiable, is rather standard, so we will not go into it here. The
interesting part is the completeness proof, which is the main result of this paper.

4 Completeness

The standard approach for proving completeness fails because the cast ‘normal-
ization’ rule cast-add, which is to be used to make semantically equal terms
syntactically equal, makes terms grow. We can however work around this by
using a modified signature and calculus.

Modified Signature. We show completeness in a modified calculus that uses
an extended signature. We then show how a proof in the modified calculus can
be transformed into one in the normal calculus. We modify the signature by
adding a function symbol fA : . . . → A for any function symbol f : . . . → B
with A � B. The semantics of fA(. . .) will be defined to be the same as that of
f(. . .), only with the static type A. Similarly, we add modified casts (B)At with
static type A for A � B. We will say that fA(. . .) and (B)At carry a superscript
cast to A. The idea of these superscript casts is to normalize terms such that
each term carries a cast to the most specific type known for it. The modified
calculus is just like the one of Fig. 1, except that rules cast-add and cast-type
are replaced by those shown in Fig. 2, and the cast-strengthen rule is added.

φ[z/t]
t �− A

φ[z/tA]
cast-add

where A � σ(t).

(¬)tA �− B

t �− A
(¬)t �− B

cast-type

φ[z/tA]
t �− B

φ[z/tB]
cast-strengthen

where B � A.

Fig. 2. Alternative rules in the modified calculus

In these rules, tA stands for either fA(. . .) or (B)At′, depending on what
kind of term t is. However, t itself may not have a superscript cast in the rules
cast-add and cast-strengthen, since a term can have only one superscript cast.
The rule cast-del of the original calculus can now be applied for casts with or
without superscript casts.

130 M. Giese

To show completeness of this modified calculus, we need to show a model
lemma that states that a (possibly infinite) open branch on which a certain set
of relevant rule applications has been performed has a model. Showing from
this that there is a closed tableau for every unsatisfiable formula φ is then
standard.

The initial formula φ contains only a finite set of types as static types of
terms or in type predicates t�−A. Some of the rules of our calculus can introduce
finite intersections of types, but there will still always be only finitely many types
in a tableau. In particular, � is a Noetherian ordering on T .

Therefore, we can state the following definition:

Definition 5. We call a tableau branch H type-saturated, if every possible appli-
cation of type-� and type-static for all ground terms t has been performed on H.

Let H be a type-saturated branch. For any term t, we define the most specific
known type κH(t) w.r.t. H to be the unique least type A under the subtype
ordering with t �− A ∈ H.

Existence and uniqueness of κH(t) are guaranteed by the saturation w.r.t. the
type-static and type-� rules.

The purpose of our applications of cast-add, cast-strengthen, and cast-del is
to bring terms to a normalized form, where the top operator of every subterm is
superscripted with the most specific known type for the subterm, and there are
no casts (A)t which are redundant in the sense that σ(t) � A.

Definition 6. Let H be type-saturated. A term t is normalized w.r.t. H iff

– t = fA(t1, . . . , tn) where all ti are normalized, and A = κH(f(t1, . . . , tn)),
or

– t = (B)At′ where t′ is normalized, A = κH((B)t′), and σ(t′) 	� B.

We designate the set of ground terms normalized w.r.t. H by NormH . An atom
φ is normalized w.r.t. H, iff for some terms ti ∈ NormH ,

– φ = t1
.= t2,

– φ = p(t1, . . . , tn), or
– φ = f(t1, . . . , tn) �− A, or
– φ = (B)t1 �− A, where σ(t1) 	� B.

A normalized literal is a normalized atom or the negation of one. Note: normal-
ized type predicate atoms do not have superscript casts on the top level operator.

Definition 7. We call a tableau branch H saturated, if H is type-saturated, and
for each of the following rules, if all premisses are in H, then so is one of the
conclusions:

– the α, β, and δ rules,
– the type- .=, cast-type, cast-strengthen, cast-del, and close-. . . rules on literals,
– the γ rule for every formula ∀x.φ ∈ H and every normalized ground term

t ∈ NormH ∩ TA for A � B if x : B.

A Calculus for Type Predicates and Type Coercion 131

– the apply- .= rule for equations t1
.= t2 with equal static types σ(t1) = σ(t2),

– the cast-add rule, except on the top level of a type predicate literal, i.e.
φ[z/t] = t �− A for some A.

We do not apply cast-add on the top level of type literals t �− A: normalizing
t�−A to tA �−A would of course destroy the information of the literal. And rather
than normalizing t �− B to tA �− B, we join the literals to t �− A � B.

Saturation w.r.t. cast-add and cast-strengthen implies that terms will be
equipped with superscript casts for their most specific known types. Conversely,
the following lemma guarantees that a superscript cast cannot appear without
the corresponding type predicate literal, if we forbid spurious applications of the
γ-rule for non-normalized terms.

Lemma 1. Let H be a saturated branch obtained by a derivation in which the
γ rule is only applied for terms tA with t�−A ∈ H. Let φ ∈ H contain a subterm
tA, i.e. either fA(. . .) or (B)At′. Then H also contains the formula t �− A.

Proof. We show this by induction on the length of the derivation of φ from
formulae without superscript casts. As induction hypothesis, we can assume
that the statement is true for the original formulae in the rule application which
added φ to the branch. If φ results from a rule application where one of the
original formulae already contained the term tA, we are finished. Otherwise, φ
might be the result of an application of the following rules:

– γ: The assumption of this lemma is that a quantifier can get instantiated
with a term tA only if t �− A ∈ H .

– apply- .=: If the superscript cast tA does not occur in the term t2, there
must have been some sA[t1] in φ which contains an occurrence of t1 and
tA = sA[t2]. By the induction hypothesis, s[t1]�−A ∈ H . But if H is saturated,
then we must also have s[t2] �− A ∈ H .

– cast-add: If φ is the result of adding A to t, then t �− A is of course present.
But tA might also be sA[rC] where where r �− C ∈ H and C was added to
r. Like for apply- .=, the induction hypothesis guarantees that s[r] �− A ∈ H .
Due to saturation, we then also have s[rC] �− A ∈ H

– cast-strengthen: The same argument as for cast-add applies.
– cast-del: The argument is again the same.

None of the other rules can introduce new terms tA. ��

Domain for Saturated Branch. Given a saturated branch H , we will con-
struct a model that makes all formulae in H true. We start by defining the
domain as

D := NormH/ ∼H ,

where ∼H is the congruence induced by those (normalized) ground equations in
H that have equal static type on both sides, i.e.

s ∼H t :⇔ s = t or [s .= t ∈ H and σ(s) = σ(t)]

132 M. Giese

We will denote the typical element of D by [t] where t is a normalized term, and
the [] denote taking the congruence class.

∼H is a congruence relation on normalized terms, meaning that

– ∼H is an equivalence relation on NormH .
– If t ∼H t′, then fA(. . . , t, . . .) ∼H fA(. . . , t′, . . .) for all argument positions

of all function symbols fA.
– If t ∼H t′, then (B)At ∼H (B)At′ for all casts (B)A.

These properties follow from the saturation w.r.t. apply- .=.
We need to assign a dynamic type to every element [t] ∈ D. We will simply

take the static type of t. As t is normalized, this is the superscript on the outer-
most operator. The dynamic type is well-defined: the static type of all elements
of the congruence class is the same, as we look only at equations of identical
static types on both sides.

Interpretation for Saturated Branch. We now define the interpretation I
of function and predicate symbols. We will give the definitions first, and then
show that all cases are actually well-defined.

We define

I(f)([t1], . . . , [tn]) := [fC(t1, . . . , tn)] [A]

where C := κH(f(t1, . . . , tn)). Similarly,

I((B))([t′]) :=

{
[t′] if σ(t′) � B,
[(B)C t′] otherwise,

[B]

where C := κH((B)t′).
We want the function symbols with superscript casts to be semantically

equivalent to the versions without, but we need to make sure that the static
types are right. We use the interpretation of casts to ensure this.

I(fA)([t1], . . . , [tn]) := I((A))(I(f)([t1], . . . , [tn])) . [C]

Similarly, for casts with superscript casts,

I((B)A)([t′]) := I((A))(I((B))([t′])) . [D]

For predicates, we define

([t1], . . . , [tn]) ∈ I(p) ⇔ p(t1, . . . , tn) ∈ H , [E]

as usual in Hintikka set constructions.
To show that these are valid definitions, we will need the following lemma:

A Calculus for Type Predicates and Type Coercion 133

Lemma 2. Let H be a saturated branch and t ∼H t′. Then κH(t) = κH(t′).

Proof. To see that this is the case, note that due to the definition of ∼H , we have
either t = t′ or t

.= t′ ∈ H . If t = t′, the result follows immediately. Otherwise,
due to the saturation w.r.t. apply- .=, it follows that t �− A ∈ H iff t′ �− A ∈ H for
all types A. Thus, the most specific known types for t and t′ must be equal. ��

We will now show the validity of definitions [A] to [E].

Proof. For [A], we need to show that

– fC(t1, . . . , tn) ∈ NormH , if all ti ∈ NormH .
– The static type of fC(t1, . . . , tn) is a subtype of the result type of f .
– [fC(t1, . . . , tn)] is independent of the choice of particular t1, . . . , tn.

Now, fC(t1, . . . , tn) is indeed normalized w.r.t. H , if all ti are normalized, since
C is defined as κH(f(t1, . . . , tn)), as required by the definition of normalized
terms. As for the second point, the result type of f is of course the static type
of f(t1, . . . , tn), which is a supertype of C = κH(f(t1, . . . , tn)), which in turn
is the static type of fC(t1, . . . , tn). Finally, if ti ∼H t′i for i = 1, . . . , n, then
κ(f(t1, . . . , tn)) = κ(f(t′1, . . . , t′n)), due to Lemma 2, so C is independent of the
choice of representatives. Also, fC(t1, . . . , tn) ∼H fC(t′1, . . . , t

′
n), since ∼H is a

congruence relation.
For [B], we need to make sure that the cast doesn’t change its argument if

its dynamic type is � B. Since the dynamic type of [t′] is the static type of
t′, this is ensured by the first case. In the other case, one sees that (B)C t′ is
indeed a normalized term of static type C � B. As for the choice of representa-
tives, if t′ ∼H t′′, then they have the same static type, so the same case applies
for both. In the first case, [t′] = [t′′] trivially holds. In the second case C is
well-defined due to Lemma 2, and (B)C t′ ∼H (B)Ct′′, again because ∼H is a
congruence.

For [C], and [D], note that I((A)) will deliver a value with dynamic type
� A in both cases, as we required for superscript casts. These definitions do not
require any choice of representatives.

Finally, for [E], n-fold application of the saturation w.r.t. apply- .= guaran-
tees that if ti ∼H t′i for i = 1, . . . , n, then p(t1, . . . , tn) ∈ H iff p(t′1, . . . , t

′
n) ∈ H .

Therefore, the definition of I(p) is independent of the choice of the ti.
��

A central property of our interpretation is that normalized ground terms get
evaluated to their equivalence classes:

Lemma 3. Let H be a saturated branch and let S = (D, I) be the structure
previously defined. For any normalized ground term t ∈ NormH , valS(t) = [t].

Proof. One shows this by induction on the term structure of t. Let t = sA be
a normalized ground term, i.e. all its subterms are normalized, the top level
operator carries a superscript cast to A = κH(s), and the top level operator is
not a redundant cast. By the induction hypothesis, valS(ti) = [ti] for all subterms

134 M. Giese

ti of t. If the top level operator is a function term, t = fA(t1, . . . , tn), valS(t) =
I((A))(I(f)([t1], . . . , [tn])) = I((A))([fA(t1, . . . , tn)]) = [fA(t1, . . . , tn)] = [t]. If
t = (B)At′ is a cast, then valS(t) = I((A))(I((B))([t′])). Since the cast is not
redundant, this is equal to I((A))([(B)At′]) = [(B)At′] = [t]. ��

Model Lemma. We now need to show that the constructed model satisfies all
formulae in a saturated tableau branch. As usual, this is done by induction on
some notion of formula complexity. However, for different kinds of formulae, the
required notion will be a different one. We therefore split the whole proof into a
series of lemmas, each of which requires a different proof idea.

First, we will show that all normalized literals are satisfied in S = (D, I).

Lemma 4. Let H be a saturated open branch and let S = (D, I) be the structure
defined previously. S |= φ for any literal φ ∈ H that is normalized w.r.t. H.

Proof. Lemma 3 tells us that all normalized subterms ti of φ get evaluated to [ti].
We will start with positive literals, i.e. non-negated atoms. For φ = p(t1, . . . , tn),
the result follows directly from our semantics and point [E] in the definition of
the interpretation I. For a type predicate f(t1, . . . , tn) �− A,

valS(β, f(t1, . . . , tn)) = [fB(t1, . . . , tn)]

for B = κH(f(t1, . . . , tn)) � A. Hence, the dynamic type of the value will be
� A, and therefore S |= f(t1, . . . , tn) �− A. Similarly, for (B)t1 �− A,

valS(β, (B)t1) =

{
[t1] if σ(t1) � B,
[(B)C t1] otherwise,

where C = κH((B)t1) � A. The first case is excluded, because (B)t1 �− A is
normalized. In the second case, the dynamic type is clearly C � A, so we are
done.

For an equality atom t1
.= t2 ∈ H with t1 and t2 of equal static types,

valS(β, t1) = valS(β, t2), since t1 ∼H t2, so S |= t1
.= t2. If t1 and t2 are of un-

equal static types A and B, respectively, since t1 and t2 are normalized, t1 = sA
1

and t2 = sB
2 for some terms s1 and s2. Also due to normalization, there must be

literals s1 �−A ∈ H and s2 �−B ∈ H . Due to saturation w.r.t. the type- .= rule, we
must also have literals s1�−B ∈ H and s2�−A ∈ H . Now since H is type-saturated,
H also contains s1 �−A�B and s2 �−A�B which, given that A 	= B, means that
sA
1 and sB

2 are in fact not normalized which contradicts our assumptions.1

If φ is a negative literal, we again have to look at the different possible forms.
If φ = ¬p(t1, . . . , tn), assume that S 	|= φ. Then S |= p(t1, . . . , tn), which implies
that also p(t1, . . . , tn) ∈ H , in which case H would be closed, which is a con-
tradiction. For a negated type predicate φ = ¬t �− A, t will be evaluated to an
1 One sees here why the apply- .=′ rule that inserts a cast to make static types fit is not

necessary, just convenient. It is not even necessary (but probably very convenient) to
allow application of equations where the static type gets more special. Application
for identical types is enough if we have the type- .= and cast normalization rules.

A Calculus for Type Predicates and Type Coercion 135

object of dynamic type C := κH(t). Assume S 	|= φ. Then C � A. There must
be a literal t �−C ∈ H , and therefore H is closed by the close-� rule. Finally, for
a negated equation φ = ¬t1

.= t2, assume S 	|= φ. Then S |= t1
.= t2, and since t1

and t2 are normalized, t1 ∼H t2. Then, either t1 = t2, implying that H is closed
using close- .=, or there is an equation t1

.= t2 ∈ H . Saturation w.r.t. apply- .=
tells us that ¬t2

.= t2 must then also be in H , so H would again be closed,
contradicting our assumptions. ��

Based on the previous lemma, we can show that almost all atoms are satisfied,
with the exception of one special case which requires separate treatment.

Lemma 5. Let H be a saturated open branch and S the same structure as before.
S |= φ for any literal φ ∈ H, except if φ is a type predicate literal φ = (¬)tB �−A
with a superscript cast on the top-level operator.

Proof. We show this by induction on φ with an order � defined as follows: φ � ψ
iff sct(φ) � sct(ψ), where sct(φ) is the multiset of the superscript cast types
of terms occurring in φ, except at the top-level of type predicate atoms, terms
without superscript cast being mapped to a pseudo-type ∞, which is larger than
all other types. � is the multiset ordering induced by the supertype ordering �,
with the mentioned extension for ∞.

So let us assume as induction hypothesis that S |= ψ for all ψ ∈ H with
φ � ψ, except for the case that ψ is a type-predicate literal with a superscript
cast on the top-level.

The case that φ is normalized is covered in Lemma 4. Otherwise, φ contains

(a) a redundant cast (B)u, or
(b) a subterm u that is a function or cast application without superscript cast,

and that is not at the top-level of a type predicate atom, or
(c) a subterm u that is a function or cast application uB with a superscript cast

to B where a more specific type C � B is known, i.e. u �− C ∈ H .

In case (a), saturation w.r.t. cast-del guarantees the existence of a formula
φ′ ∈ H that results from deleting the superfluous cast (B) from u. Since φ′

has one operator less than φ, sct(φ′) results from sct(φ) by deleting one ele-
ment.2 Therefore φ � φ′, and the induction hypothesis tells us that S |= φ′.
We also know that valS((B)u) = valS(u). Let ψ be such that φ = ψ[z/(B)u]
and φ′ = ψ[z/u]. The substitution lemma gives us S |= φ iff S |= ψ[z/(B)u] iff
S, {z ← valS((B)u)} |= ψ iff S, {z ← valS(u)} |= ψ iff S |= ψ[z/u] iff S |= φ′.

In case (b), due to the type completeness of H , there is some literal u�−C ∈ H .
This literal must be smaller than φ: if φ is a type predicate literal, u must be be-
low the top level, so sct(u�−C) is only a subset of that for φ, otherwise, sct(u�−C)
lacks at least the top level superscript cast of u. Thus, we can apply the induction
hypothesis, to get S |= u �− C, and therefore valS((C)u) = valS(u). Saturation
w.r.t. cast-add tells us that there is also φ′ ∈ H in where φ′ results from replac-
ing u by uC in t. Since the term u without superscript cast is considered to be
2 In the case of deleting a redundant cast (B)u�−A at the top level of a type predicate

atom, the removed element is actually the superscript cast of u and not that of (B)u.

136 M. Giese

larger than uC by our ordering, φ � φ′ and the ind. hyp. gives us S |= φ′. Like
for (a), the result follows by an application of the substitution lemma.

Finally, in case (c), it is saturation w.r.t. cast-strengthen which tells us
that if φ ∈ H , then also φ′ ∈ H , where φ is the result of replacing uB by
uC in φ. Now, u �− C ∈ H , and this literal is smaller than φ under �, as
in case (b). Hence, S satisfies u �− C, and since B � C, also u �− B. Thus,
valS((B)u) = valS(u) = valS((C)u). Like for (b), we can apply the ind. hyp. to
get S |= φ′, and the substitution lemma gives us S |= φ. ��

This is easily extended to also allow type predicate literals with top-level
superscript casts:

Lemma 6. Let H be a saturated open branch and S the same structure as before.
S |= φ for any literal φ ∈ H.

Proof. Most literals φ are covered by Lemma 5. For the special case of type
predicate literals (¬)tA�−B for terms with superscript casts, Lemma 1 guarantees
that t �− A will also be present, so κH(t) � A, and therefore valS(tA) = valS(t).
Due to saturation w.r.t. cast-type, we must have (¬)t�−B ∈ H , and by Lemma 5,
S |= (¬)t �− B. Since t and tA are evaluated the same we also get, using the
substitution lemma, S |= (¬)tA �− B. ��

Now, we can finally show that S is actually a model for all of H .

Lemma 7 (Model Lemma). Let H be a saturated open branch and let S =
(D, I) be the structure defined previously. S is a model for H, i.e. S |= φ for all
φ ∈ H.

Proof. We prove this as usual by an induction on the number of ∧, ∨, ∀, ∃ occur-
ring in φ.

Let φ ∈ H , and assume that S |= ψ for all ψ smaller than φ.
If φ is a literal, the result is provided by Lemma 6.
The cases for conjunction, disjunction, and existential quantifiers are com-

pletely standard. For universal quantifiers, we convince ourselves that instanti-
ation with normalized ground terms is enough:

Let φ = ∀x.φ1 with x : A. Then φ1[x/t] ∈ H for all normalized ground terms
t ∈ TB ∩NormH of static type B � A. For all such t, we may apply the ind. hyp. ,
since φ1 lacks the occurrence of ∀, so S |= φ[x/t]. Due to the substitution lemma,
S, {x ← valS(t)} |= φ, and because of Lemma 3, S, {x ← [t]} |= φ. Now {[t] | t ∈
NormH , σ(t) � A} = DA in our structure, so S |= φ. ��

Proof Transformation to Original Calculus. Now that we have shown
completeness of the calculus with superscript casts, it only remains to show how
to emulate a proof in that calculus using the original rule set of Fig. 1.

The idea is quite simple: every occurrence of fA(. . .) can be replaced by
(A)f(. . .), and every (B)At by (A)(B)t. The modified cast-add, cast-strengthen,
and cast-type rules can then be emulated by the original ones as follows:

φ[z/t], t �− A

φ[z/tA]
cast-add �

φ[z/t], t �− A

φ[z/(A)t]
cast-add ,

A Calculus for Type Predicates and Type Coercion 137

(¬)tA �− B, t �− A

(¬)t �− B
cast-type �

(¬)(A)t �− B, t �− A

(¬)t �− B
cast-type ,

and for C � A:

φ[z/tA], t �− C

φ[z/tC]
cast-strengthen �

φ[z/(A)t], t �− C

φ[z/(A)(C)t]
cast-add

φ[z/(C)t]
cast-del

.

5 Conclusion and Future Work

We have defined a logic with static subtyping, type coercions and type predi-
cates, given a tableau calculus for this logic, and shown its completeness.

Future work includes the accommodation of free variables. This should be
possible without difficulties along the lines of [3,2], using order-sorted unifica-
tion for branch closure. More interestingly, we believe that our cast normaliza-
tion rules cast-add, cast-del, etc. can be formulated as destructive simplification
rules. In that case the completeness proof would probably have to be based on
saturation modulo redundancy in the style of [1].

The presented calculus is not very efficient as an automated theorem proving
calculus, even with destructive cast normalization rules: One should at least get
rid of the type-static rule. One can also think of a criterion that limits the in-
sertion of casts to those cases where they can actually be of help in closing some
branch. Maybe cast normalization can be restricted to cases where two literals
are already unifiable except for some casts.

Acknowledgments

The author would like to thank Bernhard Beckert and Richard Bubel for the
interesting discussions that led to these results, and the anonymous referees for
their useful comments.

References

1. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 2, pages 19–99. Elsevier Science, 2001.

2. Christoph Weidenbach. First-order tableaux with sorts. Journal of the Interest
Group in Pure and Applied Logics, IGPL, 3(6):887–906, 1995.

3. Wolfgang Wernecke and Peter H. Schmitt. Tableau calculus for order-sorted logic.
In U. Hedstück, C.-R. Rollinger, and K. H. Bläsius, editors, Sorts and Types in
Artificial Intelligence, Proc. of the Workshop, Ehringerfeld, volume 418 of Lecture
Notes in AI, pages 49–60. Springer Verlag, 1990.

	Introduction
	A Logic with Type Predicates and Type Coercions
	Types
	Syntax
	Semantics

	A Tableau Calculus
	Completeness
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

