
From Informal to Formal Specifications in UML

Martin Giese and Rogardt Heldal

Chalmers University of Technology
Gothenburg, Sweden

{giese|heldal}@cs.chalmers.se

Abstract. In this paper, we consider a way of bridging informal and for-
mal specification. Most projects have a need for an informal description of
the requirements of the system which all people involved can understand.
At the same time, there is a need to make some of the requirements more
formal. We present a way to relate informal requirements, in form of use
cases, to more formal specifications, written in the Object Constraint
Language (OCL). Our approach gives the customers of software systems
a way of guiding the development of formal specifications. Conversely,
the formal specification can improve the informal understanding of the
system by exposing gaps and ambiguities in the informal specification.

1 Introduction

The development of software systems using the Unified Modeling Language
(UML) [14, 13] has become the de facto standard for modeling object-oriented
software systems. There are several reasons for this: it is relatively easy to un-
derstand and learn, it permits several views of software systems, and it gives a
good overview of the software’s architecture.

The simplicity of UML has its cost: it is less precise than many other specifi-
cation languages, for example that of the B-method [1]. Some of the strength of
these other specification languages can be obtained by adding Object Constraint
Language (OCL) [13, 17] constraints to UML models. The added precision of a
formal specification can greatly enhance the quality of the produced software.
Tools like the KeY system [2] can be used to assist the authoring of OCL con-
straints, to check their consistency, and even to verify that an implementation
adheres to the constraints.

On the other hand, it is not at all clear at which point in the development
process OCL constraints should be written. Who is going to add them to the
UML diagrams: customers, analysts, or designers? Who should understand OCL?
This missing integration into the development process might be a reason why
OCL is hardly used in industry.

We believe that the customers of the software system to be built need to
be one of the driving forces behind producing OCL constraints. After all, only
the customers can know what behavior they want from the system. However to
expect the customer or even all of the developers to know OCL is unrealistic.

Thus, there is a need for an informal description that everybody involved in the
project can understand.

This is indeed the purpose of use cases. Use cases describe the system be-
havior in an informal way, usually using only text. In contrast to some research
[7] which tries to add formal specifications directly to use cases, we will stick to
text, because we believe that there needs to be an informal description of the
system somewhere. Even for informal, textual use cases however, templates are
used to structure the descriptions, e.g. the base use case description template
in the Rational Unified Process (RUP), and these templates normally include
pre- and post-conditions. In contrast to the OCL constraints usually attached
to operations in a class diagram, these textual constraints can be understood by
and negotiated with the customer.

In this paper, we investigate the relationship between the informal, tex-
tual pre- and post-conditions of use cases and the formal OCL pre- and post-
conditions of operations in the class diagram. Apart from being a step from
informal to formal specification, this is also a step from the analysis phase (use
cases) to the design phase (sequence and class diagrams). The primary goal will
be to make sure that all the behavior specified together with the customer in the
use cases is also captured by the formal OCL specification attached to operations
in the class diagrams.

Another important aspect when going from informal to formal description
is the need to become more precise. It is often necessary to add contextual in-
formation in a formalization that was implicitly assumed, or simply forgotten
in the textual use case description. We will consider ways to cope with such
additional information, either by enhancing the use case text or at by acknowl-
edging contextual information as such, thus making the formalization process
more transparent. In other words, not only does the informal specification help
in writing the formal one, but the formalization can also help in improving the
informal one. Including customers in the development of the formal specification
in this way gives them more power, but also more responsibility. We believe that
it can add significantly to the value of a formal specification.

We should note that our method does not, in general, give OCL specifications
for all operations in the model. In fact, there will usually be two categories of
constraints: The first kind directly reflects the customer’s requirements, and it
is only this kind we consider in this paper. The other kind relates to the internal
structure of the system, and is dependent on the design. Conditions on the type
and range of method arguments belong to this category, as well as specifications
of auxiliary methods used to implement the required functionality. Although this
second kind of constraints is also important, they cannot easily be linked to the
information in use cases.

This work is concerned with three types of UML diagrams: use case diagrams,
state chart diagrams and class diagrams. Before we explain the approach itself,
we briefly discuss use cases and state chart diagrams. In Sect. 2, we present the
theoretical basis of our approach, which we then use in a case study in Sect. 3.
The case study suggests a refinement of the theory which is presented in Sect. 4.

1.1 Use Case diagrams

Use cases were invented by Jacobson [10]. They are part of the UML [13] and
supported by UML tools, and widely used in the industry. There are a number
of books dedicated only to use cases and countless papers discussing possible in-
terpretations of use cases. Some of the more recent papers which have influenced
our understanding of use cases are [5, 6, 9] and the book [3].

The informal nature of use cases allows more or less any textual description
of a system to be categorized as a use case. This is both a strength and a
weakness: on one side they can be used in many contexts, but on the other side
their informal nature creates problems like choosing the right level of abstraction
and ensuring inconsistency both inside and between use cases. Writing good use
cases is a far from trivial task, but they can make a valuable contribution to the
understanding of a project.

In our work, the style of writing use case descriptions is less important, as long
as they create a common understanding between customers and developers, in
such a way that sensible pre- and post-conditions can be obtained. In our case
study, we describe the flows of the use cases in an abstract way, keeping out
details like the user interface, in a style often referred to as essential use cases
[5, 4]. This style of use cases was enough to obtain the required pre- and post-
conditions. The text of pre- and post-conditions should be precise, but there is
no need for formal or mathematical notation at this level.

Alternative flows [3] are crucial for our usage of use cases. There is nearly
always more than one path through a use case, and the user should specify what
happens in these alternative scenarios. Technically, alternative flows may be split
into separate use cases, but we think having a use case for what is actually an
error condition goes against the intention of use cases as satisfying a goal.

On the other hand, we do not explicitly consider ‘include’ and ‘extends’ [3]
relationships for the time being. They may be treated by a transformation to
‘flat’ use cases that moves the extensions, resp. inclusions into the extended,
resp. including use case.

1.2 State chart diagrams

We want to consider all scenarios, i.e. all possible paths through a use case. To
describe all paths, we use a state chart diagram [13]. We are only interested in a
limited part of the state chart: the final call event for each path, together with
all the branching conditions for that path. In Sect. 2, we will show that this
information suffices to capture the properties we want to hold.

Sequence or collaboration diagrams are commonly used to illustrate a sce-
nario of a use case. The problem with these diagrams for our purpose is that
they generally show only one path through a use case.1

Even though we use state chart diagrams to model all possible paths through
a use case, it is useful to start with a sequence diagram for some of the important

1 It might be possible to use generic interaction diagrams[16] instead, including con-
ditional behavior and iteration.

scenarios. This simplifies the process of creating the state chart diagram, since
it helps to identify the important calls.

2 From Use Cases to Operation Post-Conditions

We start from a use case UC equipped with a post-condition PostUC formulated
in natural language. We will not consider pre-conditions of use cases in this work,
because the usual understanding of a pre-condition is that the post-condition
need only be guaranteed if the pre-condition is met before the use case. In other
words, having “the customer entered the correct PIN” as a pre-condition means
that we will not specify what happens if the customer enters a wrong PIN. This
is a much weaker statement than saying that the use case cannot be executed
if the pre-condition is not met. It is easy to get confused by these two readings.
To avoid this trap, we leave use case pre-conditions completely empty.

In the implementation, we expect the use case UC to correspond to a se-
quence of calls into the system, which we model as a single system object s.
This is the only object we will talk about, and all OCL constraints are to be
understood in the context of s, i.e. self = s. Depending on what exactly the
user does, the sequence of operations might be different. Whatever the sequence
is however, PostUC should finally hold, so ultimately it needs to be guaranteed
by the post-condition of the last operation.

A post-condition PostUC , given in natural language by the customer, will
probably refer not only to the final state. It is natural to refer to the sequence of
events, like in “when the customer entered the wrong PIN three times, ...”. We
will capture the possible sequences of events in a state chart which we attach
to the system object s. Paths through the state chart correspond to possible
sequences of events. The important aspects of this state chart are the events
that correspond to operation calls from the outside, i.e. from the agent. The
state chart can also contain conditions which refer to the arguments of these
events.

The goal of this section is to match the post-conditions of the operations
and conditions from the state chart to the use case post-condition. While the
use case post-condition PostUC is an informal artifact of the analysis phase,
and thus necessarily informal, the conditions in the state chart and the post
conditions of the operations are written in OCL as part of the design.

Given a state chart, we can collect the set Σ of all paths π from the initial
state to some final state. Depending on the state chart, there may be infinitely
many of these. For every path π with events op1(args1), . . . , opk(argsk) let

final(π) := opk

be the last operation called. For correctness, we want every final state that the
post condition of this method allows to also be permitted by the post condition
of the use case. As a first approximation, we want the post-condition of the last
operation to imply the post condition of the use case:

Postfinal(π) → PostUC

Now, as PostUC includes requirements for all possible different paths, this
implication will usually hold only if we add information about the path taken.
As OCL does not allow to refer to the values of attributes in different states, we
have to impose the restriction that the conditions (guards) in the state chart do
not refer to attributes, and that the names for event arguments are all distinct.
Let Cond(π) be the conjunction of the conditions encountered on the path π,
together with an expression of the form oclInState@pre(x) which expresses
the state before the call of the last operation. What we want is then the weaker
statement

Cond(π) → (Postfinal(π) → PostUC)

or equivalently (Cond (π) ∧ Postfinal(π)) → PostUC . Finally, this should be the
case for all paths π ∈ Σ:

∧

π∈Σ

(

(Cond (π) ∧ Postfinal(π)) → PostUC

)

(I)

Note that we do not require PostUC to be given in formal syntax. Instead,
we will consider all paths π, formally calculate the conjunction Cond(π) ∧

Postfinal(π) and then informally ask ourselves whether the formal post-condition
does enough and whether all it does is intended. We shall see in the case study
that it is valuable to ask this question, even without fully formal reasoning.

So far, we have considered only correctness, in the sense that every behavior
allowed by the formal specification is also allowed according to the informal
one. We shall see that it is also interesting to investigate the opposite direction,
namely whether every behavior the informal specification allows is still allowed
by the formal one. This would be the case if

PostUC → Postfinal(π)

holds on every path, so

∧

π∈Σ

(

(Cond (π) ∧ PostUC) → Postfinal(π)

)

(II)

Typically, as we will see in the case study, information is added when an
informal specification is formalized. This might be domain knowledge that is
taken for granted by the authors of the informal specification, or even simple
everyday knowledge (red 6= green). In such cases, requiring (II) to hold would
make the informal post specification PostUC unnecessarily verbose. After all,
PostUC should be something that can be negotiated with a customer. We could
however keep track of the added information Extra(π) (which might be formal
or informal) for every path and require

∧

π∈Σ

(

(Cond (π) ∧ PostUC ∧ Extra(π)) → Postfinal(π)

)

(III)

This would ensure that every requirement expressed in the formal post con-
dition could be traced either to PostUC or to Extra(π).

3 Case Study

Bank System

withdraw

Customer

– If the customer entered the PIN stored on the Card,
and the customer’s balance was greater or equal to the
requested amount, then the customer got the requested
amount and the amount was deducted from the balance.

– If the customer entered the wrong PIN three times, the
card was retained.

– If the customer requested too much money, the card was
returned to the customer.

Fig. 1. The ‘withdraw’ use case for the ATM example, with its textual post condition

We take a simple automated teller machine (ATM) scenario as a case study.
We will look at only one use case, named “withdraw”, in which the customer
attempts to withdraw money from a bank account, see Fig. 1. For this, a PIN
has to be entered and the requested amount must not exceed the balance on
the customer’s bank account. If the wrong PIN is entered three times, the card
should be retained.

We can phrase these requirements as a post-condition for the withdraw use
case, as shown in Fig. 1. Note that this postcondition is stated in natural lan-
guage, in accordance with the informal nature of Use Cases. Also, it refers to the
course of events in the past tense, that is from the perspective of having gone
through the use case.

The normal flow of control is illustrated in Fig. 2. The whole sequence of
events is initiated by the user presenting the card to the ATM, which is modeled
by the call insertCard(card) to the system object atm. To be able to check the
PIN entered by the user, the card is queried for the correct PIN, cardPin.

We neglect the modeling of other ATM operations, for example balance in-
quiry. As is customary, we do not model the control of the user interface, which
would of course request the user to enter the PIN number at this point. We
just assume that the completed PIN is given to the ATM controller with the
call givePin(userPin). For the normal flow of control, the subsequent call of
checkPinsEqual() would return true.

:BankCentralSystemcard:Card :CashDispensercustomer:Customer

atm

ATMController

3.6: returnCard():void

3.3: checkSufficientBalance():boolean

3.2: balance:=getBalance(id):long

3.1: id:=getID():ID

2.1: checkPinsEqual():boolean

1.1: cardPin:=getPin():int
1: insertCard(card):void

3: giveAmount(amount):void

2: givePin(userPin1):void

3.5: giveOutCash(amount):void

3.4: debit(id,amount):void

Fig. 2. Sequence diagram for the normal flow of the “withdraw” use case

Now, the user interface would be updated to ask the customer for the desired
amount, which is passed to the controller in the call giveAmount(amount). This
amount needs to be compared to the customer’s bank account balance. For this
purpose, an identification id of the bank account is fetched from the card, and
used to query balance from the bank’s central system. After checking that the
balance is sufficient, the CashDispenser unit is instructed to deliver the required
amount to the user. Finally, the card is returned to the user.2

Comparing the post condition in Fig. 1 with this sequence diagram, one
immediately notices the shortcoming of the latter: it does not say anything about
the alternative flows of control. What happens if the call to checkPinsEqual or
checkSufficientBalance returns false? For the normal flow of control, it is
obviously the operation giveAmount which is responsible for ensuring the post-
condition of the use case, simply because it is the last operation called. But what
if the user enters the wrong PIN three times? Then the customer will never be

2 It can be questioned where the call of returnCard() should be directed. We chose
card, because the controller obviously communicates directly only with the card
reading device and not with the card itself. If card stands for the card reader, than
it is the right goal for the returnCard() call. One might also argue that the initial
insertCard() call should then come from the card reader and not from the customer
actor. However, this confuses more than it helps, and it is not really essential to our
investigation.

cardInserted

gotRightPin

gotRequestedAmount

gotCustomerID

gotBalance

insufficientBalance

finishedTransaction

sufficientBalance

gotWrongPinThrice

gotWrongPinOnce

gotWrongPinTwice

gotCardPin

/returnCard()

/notifyInsufficientBalance()

[balance < amount]

/balance:=getBalance(id)

/id:=card.getID()

giveAmount(amount)

insertCard(card)

[balance >= amount]

/debit(id,amount);

/giveOutCash(amount)

/complain, keep card

givePin(userPin2)[userPin2 =

cardPin]

givePin(userPin3)[userPin3 =

cardPin]

givePin(userPin2)[userPin2

<>cardPin]

givePin(userPin3)[userPin3

<>cardPin]

givePin(userPin1)[userPin1 =

cardPin]

/cardPin := card.getPin()

givePin(userPin1)[userPin1

<>cardPin]

Fig. 3. State Chart for the “withdraw” use case of the ATM example

asked to enter an amount. In that flow of control, the giveAmount operation will
never be called, so it can no longer be responsible for ensuring the post-condition.

In order to cope with all the different possible flows of control, we attach a
state chart to the system object atm, which we use essentially as a condensation
of all sequence diagrams for all the flows of control of this use case. The following
parts are captured here:

1. The events which correspond to the calls into the system in the sequence
diagram. These are the calls insertCard(card), givePin(userPin) and
giveAmount(amount). Some transitions have no event associated to them.
This is convenient to capture a sequence of actions (e.g. get the id, get the
balance, check the balance) triggered by a single event. In some paths, the
givePin method gets called several times, so we call the argument userPin1,
userPin2, etc. to ease later reference.

2. The conditions which determine which transitions will be chosen, depending
on the data coming with the events. These are the items in square brackets,
like [userPin=cardPin] or [balance<amount].3

Due to the structure of the state chart, we can now see at a glance that there
are at most 7 possible flows of control, one for each path from the initial state
to some final state. In fact, one can check that the conditions on each of these
paths are non-contradictory, so there are actually exactly 7 flows of control. One
also sees immediately that the last event, and thus the last operation called for
6 of these is giveAmount and for one flow it is givePin.

According to the plan outlined in Sect. 2, we want the post condition of the
last operation on every path, together with the accumulated conditions, to imply
the post condition of the use case. So the post condition of givePin will have
to take care of the situation that the wrong PIN was entered three times, while
the post condition of giveAmount will cover all other cases.

To start with the simpler case, here is a possible OCL formulation of a post
condition for givePin:

Context ATMController::givePin(userPin:int):void post:

if (userPin = card.getPin()) then

oclInState(gotRightPin)

else if (oclInState@pre(gotCardPin)) then

oclInState(gotWrongPinOnce)

else if (oclInState@pre(gotWrongPinOnce)) then

oclInState(gotWrongPinTwice)

else

not card^returnCard()

Note that we use the expression card.getPin() for the PIN stored on the
card. Using an operation in an OCL constraint requires it to be free from

3 In this diagram, the conditions unambiguously determine which transitions will be
taken. This need not be the case in every diagram. Our method applies without
changes even for indeterministic state charts.

side effects, i.e. a query. We assume that this is no problem for getPin() of
Card. Finally, we use the ‘has Sent’ operator ^ of OCL 2.0 to express that the
returnCard() method of card has not been called.

The post condition of giveAmount(amount:long) has to take care of all
paths through the state chart where the correct PIN was eventually entered.
Here is a possibility:

Context ATMController::giveAmount(amount:long) post:

if (amount <= bank.getBalance(card.getID())) then

cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

else

not cashDispenser^giveOutCash(?)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID())

and card^returnCard()

We see that there are two cases, according to whether the required amount
is below the bank account balance or not. The methods getID() of Card and
getBalance(id:ID) of BankCentralSystem are both queries.

Now we can investigate the relationship of these post conditions to that of
the use case, given in Fig. 1. We will only do this for four of the paths:

1. The “normal flow” with no wrong PIN entered and a sufficient balance.
2. First PIN entered is correct, but insufficient balance.
3. First PIN entered is incorrect, then like in normal flow
4. Three wrong PINs entered.

The three remaining flows are very similar to these four.

Normal flow of control. Let π1 be the normal flow of control. The last
operation final(π1) is giveAmount(). The conditions gathered on the normal
path are

Cond (π1) = (userPin1 = cardPin ∧ balance >= amount)

Using the logical tautology A ∧ (if A then B else C) ↔ A ∧B, we can
simplify the conjunction

Cond(π1) ∧ Postfinal(π1)

to

userPin1 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

One can now easily check that this implies all three of the points expressed
informally in Fig. 1: the first point because the actions prescribed (give out
cash, deduce amount from balance) have taken place. The other two, because
the conditions (“If the customer. . . ”) of PostUC are contradicted by the gathered
conditions Cond (π1). Of course, they will receive proper treatment when we look
at the other flows of control. One difficulty here is that expressions using @pre

refer to the state before the execution of giveAmount, instead of that before the
use case. We have to convince ourselves that the balance has not been changed by
the previous operations. Alternatively, one might introduce a means of referring
to the state before the use case in the post condition. How to avoid this problem
is a topic for future research.

So, for the normal flow of control, the post condition of giveAmount is pow-
erful enough: if the implementation of that operation fulfills the post condition,
then it will also correctly fulfill the post condition of the use case. But there
is another aspect: in the informal post condition PostUC , there was no men-
tion of the card being returned. The clause card^returnCard() is something
we added when we formulated the OCL constraints. Maybe the author of the
informal specification forgot about this information, in which case it should prob-
ably by added to PostUC . But it might also be information that may be taken
for granted, and would only encumber the informal specification. It is hard to
decide in general what to do with such added information, but our methodol-
ogy does not depend on the choice taken. If the instruction to return the card
is not added to PostUC , it might still be added to Extra(π1), and then (III)
holds, as one easily sees. The main point here is that a careful comparison of
Cond (π1) ∧ Postfinal(π1) and PostUC can reveal such extra information added
during the formalization, and that tool support could help to keep track of it.

Correct PIN but insufficient balance. Let π2 be the flow of control where
the correct PIN is entered at the first attempt but the amount requested is too
high. The final operation is still giveAmount, but the gathered conditions are
now:

Cond(π2) = (userPin1 = cardPin ∧ balance < amount)

For Cond (π2) ∧ Postfinal(π2), we get

userPin1 = cardPin

and balance < amount

and not cashDispenser^giveOutCash(?)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID())

and card^returnCard()

Now the condition of the first two items in PostUC are not fulfilled, but that
of the third (“If the customer requested too much money”) is. And indeed, the
conjunction of conditions and post condition states that the card was returned.
Again, there is additional information that was missing in PostUC , namely that

no cash was delivered to the customer, and that the balance on the bank account
did not change.

Correct PIN at second attempt. Let π3 be the flow of control where the
correct PIN is entered at the first attempt but the amount requested is too high.
The final operation is giveAmount again, the conditions are

Cond (π3) =





userPin1 != cardPin

∧ userPin2 = cardPin

∧ balance >= amount





Cond(π3) ∧ Postfinal(π3) is

userPin1 != cardPin

and userPin2 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

Except for the slightly changed conditions, this is the same as for the normal
flow π1. Indeed, PostUC is implied for the same reason as in π1, as it says “If
the user entered the PIN on the card. . . ” and does not specify in which attempt
the correct PIN was entered. We will come back to this observation in Sect. 4.

Wrong PIN three times. We call π4 the flow of control where the customer
enters the wrong PIN three times in a row. The final operation final(π4) is the
fatal third givePin. The gathered conditions are

Cond (π4) =





userPin1 != cardPin

∧ userPin2 != cardPin

∧ userPin3 != cardPin





Cond (π4) includes the information that oclInState@pre(gotWrongPinTwice)

is true, so Cond (π4) ∧ Postfinal(π4) reduces to

not card^returnCard()

This obviously implies PostUC , the second point being the relevant one in this
case. Note that we have to assume that the condition “If the customer requested
too much money” is not met. In fact, the customer did not get a chance to
request any amount of money at all. That there is a problem here can be seen
by considering the condition “If the requested amount lies below the customer’s
balance”, which on one hand looks like the negation of the one above, but on the
other hand might also be considered false in the present case where no amount
was requested. One sees that the handling of undefined values is by no means
trivial.

There are three more paths in the state chart, but they are very similar to the
ones discussed. We think that this case study shows the validity and relevance
of the theoretical concepts developed in Sect. 2. There is however a question of
practicality remaining, which we will discuss in the following section.

4 Grouping Similar Paths

In our case study, there were only seven possible paths through the state chart.
But in general, there might be very many, even infinitely many paths. In that
case, it becomes impractical to consider each path separately. On the other hand,
we already noticed in the previous section, that similar paths can require similar
reasoning. It is therefore worthwhile to divide the set of possible paths into
partitions which require similar reasoning. How this is best done is research in
progress, but we want to give some ideas in this section.

We first remark that the post condition PostUC is actually composed of a
number of clauses, each of which contains some condition on the path taken.
The structure in the case study is

PostUC = (C1 → P1) ∧ (C2 → P2) ∧ (C3 → P3)

To show condition (I) of Sect. 2, it is sufficient to show

∧

π∈Σ

(

(Cond (π) ∧ Postfinal(π) ∧ Ci) → Pi

)

for i = 1, 2, 3. We now have three conditions to show, but for each of them, many
paths are immediately excluded by Ci. For instance

C3 = “If the customer requested too much money”

is only fulfilled on the three paths that go through the state ‘insufficientBalance’
in the state chart. Further, note that the last operation final(π) is giveAmount
on all these paths and that the condition balance < amount is on all three
paths. It is thus sufficient to show

(balance < amount∧ PostgiveAmount ∧ C3) → P3

which can easily been seen to hold, because neither PostgiveAmount nor P3

require the information about the PIN verification process that was lost in taking
only the conditions that were present on all three paths.

We believe that this approach can be generalized to reduce the number of
paths that need to be considered in many practical cases.

5 Related Work

Grieskamp and Lepper [7] used executable Z to describe use cases. The benefit
is that this gives a complete formal specification which can even be run. This is

good for testing use cases. The drawback is the lack of informal description of
the system to be made. It is hard for people without formal specification skills to
understand the use cases. This makes use cases difficult to use as communication
between customers and developers.

There have been a number of papers about relating the formal specification
language B to UML [11, 12, 15]. In the papers [11, 15] the focus is on deriving a
B model from a UML class description. Neither of these papers has a customer
focus. The work of Levy, Marcano and Souquières [12] considers the mapping
from informal to formal specification in a way similar to ours, using the B spec-
ification language instead of OCL. It is a short paper which gives a very brief
overview of their process. They have not made clear the relationship between
informal and formal specification, and no theory is stated in the paper.

6 Conclusion

Both informal and formal specification has its merits. A formal specification
is more precise and therefore better suited for supporting the production of
code, testing and proving. On the other hand, formal specifications are harder to
read, and therefore informal specifications are needed. But for both the informal
and formal specification to make sense, there has to be consistency between
them – at least in those places where the system is described in both ways. In
this paper, we have shown a process of relating informal specifications on use
cases to formal OCL specifications on operations. Without a process like the one
presented in this paper it is hard to justify the forces behind the writing of OCL
constraints related to the customer’s requirements. We have shown how to obtain
formal specifications from informal ones, but also how the formal specification
can improve the informal one.

One important field for further research is to find ways to handle state charts
with infinitely many paths, extending the ideas from Sect. 4. Also, ways to handle
@pre in post conditions correctly need to be investigated.

We also plan to provide a certain extent of tool support within the KeY sys-
tem [2], to help developers in documenting and tracing the process of formalizing
the customers requirements.

Finally, we want to try to automatically translate OCL constraints back
to natural language: To automatically go from informal descriptions to formal
descriptions is very hard. The other way around is more feasible, since a formal
description is unambiguous. There is work by Hähnle, Johannisson, and Ranta [8]
in going from OCL constraints to text descriptions. Having OCL pre and post
conditions make it possible to obtain better textual description for use cases.
The text produced might be used to validate the original description – even the
customer can take part in this process since no OCL constraints are involved.
Furthermore, the original text might be strengthened or replaced by the new text.
This kind of round-trip engineering, involving a formally untrained customer on
one side and a precise, formal specification on the other, would add tremendously
to the value of formal specifications.

Acknowledgments

We would like to thank Wolfgang Ahrendt, Peter Gammie, and the anonymous
referees for their helpful comments on drafts of this paper.

References

1. J. R. Abrial. B-Book. Cambridge Univ. Press, 1996.
2. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,

W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software

and System Modeling, 3, 2004. To appear.
3. F. Armour and G. Miller. Advanced Use Case Modeling. Addison-Wesley, 2001.
4. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2001.
5. L. L. Constantine and L. A. D. Lockwood. Structure and Style in Use Cases for

User Interface Design, chapter 7, pages 245–279. Object Technology. Addison-
Wesley, 2001.

6. G. Génova, J. Llorens, and V. Quintana. Digging into use case relationships. In
J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002, volume 2460 of
LNCS, pages 115–127. Springer Verlag, 2002.

7. W. Grieskamp and M. Lepper. Using use cases in executable Z. In ICFEM, pages
111–120, 2000.

8. R. Hähnle, K. Johannisson, and A. Ranta. An authoring tool for informal and for-
mal requirements specifications. In R.-D. Kutsche and H. Weber, editors, Funda-

mental Approaches to Software Engineering, volume 2306 of LNCS, pages 233–248.
Springer Verlag, 2002.

9. S. Isoda. A critique of UML’s definition of the use-case class. In P. Stevens,
J. Whittle, and G. Booch, editors, UML 2003, volume 2863 of LNCS, pages 280–
294. Springer Verlag, 2003.

10. I. Jacobson, M., Christerson, P. Johnsson, and G. Övergaard. Object-Oriented

Software Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.
11. R. Laleau and F. Polack. Coming and going from UML to B : A proposal to

support traceability in rigorous IS development. In ZB’2002 – Formal Specification

and Development in Z and B, pages 517–534. Springer Verlag, 2002.
12. B. N. Levy, R. Marcano, and J. Souquières. From requirements to formal specifi-

cation using UML and B. In International Conference in Computer Systems and

Technologies, CompSysTech’2002, Sofia, Bulgaria, 2002.
13. OMG. Unified Modeling Language Specification.
14. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-

ence Manual. Object Technology. Addison-Wesley, 1999.
15. C. Snook and M. Butler. Verifying dynamic properties of UML models by trans-

lation to the B language. In Proceedings UML 2000 WORKSHOP Dynamic Be-

haviour in UML Models: Semantic Questions, York, October 2000.
16. P. Stevens and R. Pooley. Using UML: software engineering with objects and

components. Object Technology Series. Addison-Wesley, 2000. Updated edition
for UML1.3: first published 1998.

17. J. Warmer and A. Kleppe. The Object Constraint Language. Object Technology.
Addison-Wesley, 2003.

