UITP 2003 Preliminary Version

Taclets and the KeY Prover

Martin Giese

Chalmers University of Technology
Department of Computing Science
S-41296 Gothenburg, Sweden
e-mail: giese@ira.uka.de

Abstract

We give a short overview of the KeY prover — which is the proof system belonging
to the KeY tool [1] — from a user interface perspective. In particular, we explain the
concept of taclets, which are the basic building blocks for proofs in the KeY prover.

Key words: interactive theorem proving, user interface, taclets

1 Introduction

The goal of the ongoing KeY Project [1] is to make the application of formal
methods possible and effective in a real-world software development setting.
One of the main products of the KeY Project is the KeY Tool, which allows
the specification and verification of Java Carp [16] programs. The KeY Prover
is an integrated interactive and automated theorem prover that is used in the
KeY tool to reason about programs and specifications.

The logic employed by the KeY prover is a dynamic logic for Java Carbp,
known as Java Carp DL [2]. This can be viewed as a kind of first order multi-
modal logic, where modal operators are indexed by programs. A diamond
formula (7) ¢ means that there is a terminating execution of the program
7 after which ¢ holds, a box formula [r]¢ means that ¢ holds after every
terminating execution. Proofs are constructed in a sequent-style calculus.

Most of the proof rules available in the KeY system symbolically execute
programs in DL formulae. For instance, the rule to cope with the if statement
is essentially: !

e,I'F (a; ¢y p, A —e, ' (b; ¢) ¢, A
'+ (if ethenaelseb; c) ¢, A

There are also some induction rules to reason about loops and recursion.
The “core” of the calculus is however first-order, in the sense that there is no

1 The real rule is more involved, due to complications of the Java language like side effects
in e, abrupt termination etc., see [2]
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

GIESE

= KeY -- Prover Bl==]
File View Proof Options Tools Help
Autoresume
‘ GO Apply Heuristics ‘C’J £ Run SIMPLIFY H [% Goal Back »
heuristics
User Constraint | Current Goal ﬁ demo.key
Proof r Goals |
Proof
i ==
I Proof Tree i
inti; {1 . :0}
int_induction
@ [JBase Case <{
hide_right . q
¢ OPEN GOAL : while € i>0)
@[step Case i --: k
@& [JUse Case i '
}> i =20 =
| 1 D
Kﬁy Integrated Deductive Software Design: Ready
L Il

Fig. 1. The main window of the KeY prover

quantification over functions or sets, no lambda abstraction, etc. The prover
augments the standard calculus for first order logic augmented with meta
variables which allow the delayed choice of quantifier instantiations, similarly
to the free variables used in first order tableau calculi. Meta variables are
place-holders for ground terms which can be introduced instead of quantifier
instantiations, and which are later instantiated using unification. Together
with a suitable presentation mechanism, this permits to conduct efficient au-
tomated proof search and interactive proof construction using one common
calculus, see [7].

As program verification cannot be done fully automatically for realistic
programs, it was important to make the interactive user interface of the KeY
prover intuitive and powerful. In this paper, we describe the KeY prover from
a user interface perspective, without going to deeply into technical details. We
will however present the idea of taclets, which are at the basis of interactive
and automated proof construction in the KeY prover.

The KeY tool can be downloaded free of charge from the KeY project home
page at http://www.key-project.org/

2 The Prover Window

In Fig. 1, the main window of the KeY prover is shown. In the left part of
the window, the whole proof tree is displayed as a tree structure, showing
the applied rules and the case distinctions, which correspond to splits in the
proof tree. Note that the labels displayed are sometimes the names of rules
(or rather taclets, as will be explained later), like int_induction or hide_right.
But in many cases, more useful information is printed, for instance int i; refers

2

http://www.key-project.org/

GIESE

to the symbolic execution of a variable declaration statement, and {} to the
removal of an empty block. Also, branching rules can assign useful names to
the different branches, as can be seen here for an induction rule. 2

Clicking on the proof steps displayed in the proof tree view brings up a
pop-up menu which allows the user e.g. to cut off parts of the proof at a
certain point. It is also possible to fold and unfold parts of the proof tree,
a very valuable feature for larger proofs. Using the “tabs” at the top of the
left pane, one can also choose to display only a list of open goals, or the user
constraint. The user constraint mainly contains the quantifier instantiations
that were chosen by the user in the course of the proof, but it allows to correct
faulty instantiations in existing proof without rolling back the whole proof,
see [7].

The right pane contains a list of opened proofs. In this case, only one
problem file demo.key is opened, but in general there might be a number of
proof obligations from a program verification task here. It seemed preferable
to allow switching between proofs this way to opening one window for each of
a possibly large number of proofs.

The central part of the window displays the sequent that is currently being
worked on. A formatting engine in the style of Oppen’s pretty-printer [12] is
used to print sequents with a structured layout. As visible in the figure, the
formula, sub-formula, term, etc. that is currently under the mouse pointer
is highlighted. Highlighting, in conjunction with layout, helps the user in
understanding the structure of a complex formula. Note that we have chosen
to restrict ourselves to the ASCII character set in our syntax for formulae,
although quantifiers, junctors, etc. in mathematical notation would have easily
been possible. It is our experience that although such a feature is welcomed
by theoreticians, it rather disturbs the software engineers who are ultimately
the intended clients of the KeY system.

The {i:=0} in the displayed formula is an update, a special feature of our
calculus which denotes that the following formula should be interpreted in a
modified state. The formula after the update is a diamond formula containing
a Java program. The program is surrounded by an extra pair of curly braces,
mainly to simplify parsing of Java Carp DL formulae.

Clicking on an operator in a formula displays a pop-up menu giving a
choice of rule applications possible for that sub-formula, see Fig. 2. In the
KeY prover, the rules from which proofs are built are combined with the
information of how the user should interact with these rules, to form entities
called taclets, which are described in the next section.

In this case, there are only two applicable taclets at that particular position
in the sequent. One will unwind one execution of the loop. The other will

2 The induction rule allows to prove an arbitrary statement inductively on the ‘Base Case’
and ‘Step Case’ branches. The proved statement can then be used on the ‘Use Case’ branch
to prove the original goal.

GIESE

File View Proof Options Tools Help
Autoresume
‘ GO Apply Heuristics ‘C’J £ Run SIMPLIFY H [% Goal Back »
heuristics
User Constraint | Current Goal G demo.key
Proof r Goals |
Proof
i ==
I Proof Tree
inti; i s .
' 0 i:=0
i i t ¥
int_induction
@ [[JBase Case <
hide_right))
& OPEN GOAL while (i=0 2
© [step Case i . unwind_while
: i -
@ [JUse Case : diamond 2box
: }>1i =10 m
to clipboard
[— Create abbreviation =
il |:1:1:1: |

Kﬁy Integrated Deductive Software Design: Ready

Fig. 2. Choosing a taclet to apply

apply duality to transform this formula into a box formula on the right of the
sequent.

The set of available rules is designed in such a way as to minimize the
amount of keyboard interaction. For instance, propositional reasoning is done
simply by selecting an appropriate rule for the formula to be affected. The
usual way to instantiate a quantifier is to click not on the quantified for-
mula, but on the term for which an instance is required. If one selects the
taclets inst_all or inst_ex, one then gets a dialog in which the quantified for-
mula to be instantiated can be chosen among the universal formulae on the
left, resp. the existential formulae on the right of the sequent. The same ef-
fect can also be achieved using a drag and drop gesture. The user clicks on
the term and drops it onto one of the top level quantifiers occurring in the
sequent. Only when an instance is needed that is not yet present in the se-
quent, will the user select the instantiation rule that allows to enter a term
directly using the keyboard. A further reduction of the complexity of user
interactions stems from the fact that most quantifier instantiations in usual
theorem provers are required to obtain instances of axioms and lemmmas. In
the KeY prover, these are typically encoded as taclets, see Sec. 3, which can
obtain most of the required information from the context in which they are
applied.

A number of useful functionalities may be reached via the set of toolbar
buttons at the top of the window. The ‘Apply Heuristics’ and ‘Autoresume
heuristics’ buttons refer to the automated application of taclets explained
in the next section. The ‘Run SIMPLIFY’ button extracts the arithmetic
formulae from the goal and tries to close it using the external theorem prover
Simplify [11]. ‘Goal Back’ removes the last proof step on the current branch.
Finally, the fast-forward symbol is used to control the proof reuse mechanism

4

GIESE

that is currently being implemented, and that will allow to reuse earlier proof
attempts to show properties after the program has changed, e.g. due to fixing
a bug.

3 Taclets

As this paper is focussed on user interface aspects, we can give only a brief
introduction to the concept of taclets. For an in-depth, technical discussion
of taclets, that also takes account of the particular difficulties associated with
a calculus for Java Carp DL, see [3].

Most existing interactive theorem provers are “tactical theorem provers”.
The tactics for which these systems are named are programs which act on the
proof tree, mostly by many applications of primitive rules, of which there is a
small, fixed set. The user constructs the proof by selecting the tactics to run.
Writing a new tactic for a certain purpose, e.g. to support a new data type
theory, requires expert knowledge of the prover.

In the KeY prover, both tactics and primitive rules are replaced by the
taclet concept.® A taclet combines the logical content of a sequent rule with
pragmatic information that indicates how and when it should be used. In
contrast to the usual fixed set of primitive rules, taclets can easily be added to
the system. They are formulated as simple pattern matching and replacement
schemas. For instance, a very simple taclet might read as follows:

find (b —> ¢ ==>) if (b ==>) replacewith(c ==>) heuristics(simplify)

This means that an implication b —> c on the left side of a sequent may be
replaced by c, if the formula b also appears on the left side of that sequent.

Apart from this “logical” content, the keyword find indicates that the taclet
will be attached to the implication and not to the formula b for interactive
selection, i.e. it will appear in the pop-up menu when the implication is clicked
on.

The clause heuristics(simplify) indicates that this rule should be part of the
heuristic named simplify. A heuristic is simply a named set of taclets. The
user can interactively change which heuristics should be active at a certain
time. Pushing the ‘Apply Heuristics’ button applies all taclets that belong
to some activated heuristic as long as possible. If the ‘Autoresume heuristics’
button is checked, heuristics are automatically applied after each interactive
taclet application. It is sometimes convenient to switch this behaviour off
temporarily, to apply several interactive steps in sequence.

As further examples of taclets, here are the quantifier instantiation taclets

3 Taclets have been introduced under the name of schematic theory specific rules (STSR)
by Habermalz [10], see Sec. 5

GIESE

mentioned earlier:

inst_all { if (all u.b ==>) find (t) add ({u t}(b) ==>)}
inst_ex { if (==> ex u.b) find (t) add (==> {u t}(b))}

These rules are presented when the user clicks on some term t if there is a
universal resp. existential quantifier on the left, resp. right of the sequent.
If there are several, the user can pick which one to instantiate. The syntax
{u t}(b) denotes the result of substituting t for all occurrences of u in b.*

While taclets can be more complex than the typically minimalistic prim-
itive rules of tactical theorem provers, they do not constitute a tactical pro-
gramming language. There are no conditional statements, no procedure calls
and no loop constructs. This makes taclets easier to understand and easier
to formulate than tactics. In conjunction with an appropriate mechanism for
heuristic application, they are nonetheless powerful enough to permit com-
fortable interactive theorem proving [10]. For the automated execution of
heuristics, the idea is that any possible taclet application will eventually be
executed (fairness), but certain taclets may be preferred by attaching priorities
to them.

Also note that taclets are rather lightweight entities. It is for instance
absolutely possible to introduce dozens of ad-hoc taclets to reason about some
specific data type in an intuitive way. The set of taclets should and can be
designed in such a way that usual human reasoning about some application
domain is reflected by the available taclets. An important consequence of
attaching taclets to operators is that the taclets for a certain data type will
almost all be attached to operators of the according type. For instance, taclets
for reasoning about numbers are attached to operators like + or >=, etc. This
means that when the user clicks on a specific operator, only those taclets will
be visible that are relevant for that operator in that context. This significantly
reduces the burden on the user that is usually associated with a large set
of rules. For instance, the cancellation law for addition which states that
x4+ z =y + 2z implies x = y can be coded in a taclet

find(x + z =y + z) replacewith(x = vy)

This taclet would be attached only to equalities where there actually are iden-
tical summands on both sides.

In principle, nothing prevents the formulation of a taclet that represents
an unsound proof step. It is possible however, to automatically generate a
first-order proof obligation from a taclet, representing its logical content. If
that formula can be proved using a restricted set of “primitive” taclets, then
the new taclet is guaranteed to be a correct derived rule. For instance, the

4 The actual rules are slightly more complicated due to difficulties with non-rigid terms in
first-order modal logics.

GIESE

proof obligation for the cancellation law taclet above would simply be:
a+c=b+c—a=>
for some new constants a, b, c. For the inst_all taclet, one gets:

(Va.p(z)) — plc)

where p is a new function symbol and ¢ is a new constant. In this respect,
taclets are different from many systems based on higher-order logic, where the
justification of a derived rule is done in some meta-logic. Proof obligations
for taclets are in the same logic as the one the taclets act upon. See [3] for a
detailed description of how proof obligations are computed.

No provision is currently made in the user interface for the interactive
construction of taclets. They are given in the textual form shown above and
read into the system by a parser. In future versions, a possibility to define
taclets within the user interface might be added to the system.

4 Implementation

The KeY prover is implemented in the Java programming language (see [8]),
using the Swing GUI library (see [17]). The coordination between the dis-
played proof tree, the current sequent, etc. and the underlying logical data
structures follows the Model, View, Controller architecture, making intensive
use of the Observer design pattern (see [5]). Every change in the data struc-
tures representing the proof tree triggers an event for which the concerned user
interface components wait. While this is not the fastest conceivable technique,
it has helped to provide a good modularization of the system.

4.1 Highlighting

To assist the user in selecting the formula or term a taclet should act upon,
the KeY prover highlights the whole sub-formula or term the mouse pointer
is over as it moves over the sequent. For instance, in the formula

p&(q|r&5)a

given that conjunction (&) has priority over disjunction (|), the right conjunct
(g | r & s) is going to be highlighted when the pointer is over the | or one
of the parentheses, r & s will be highlighted when the pointer is over the
right &, and the whole formula if it is over the left & If the pointer is over
one of the symbols p, g, r, or s, only that symbol is highlighted. The imple-
mentation of this feature relies on a fast mechanism to find the term position
corresponding to a certain character in the displayed sequent. This is achieved
using position tables, which record the start and end of nested formulae and
terms in every sub-formula/term of the sequent. Position tables are built by
the pretty-printer during layout, at a low additional cost, and they are very

7

GIESE

TacletApplindex

Goal +getTacletAppsAtPosition ()
+formulaAdded ()
+formulaRemoved ()
+formulaChanged ()

*

1
* * Tacletindex

Taclet

+getCandidateTacletsForPosition ()

Fig. 3. Indexing Data Structures for Taclets

efficient. There is no perceivable delay due to highlighting when the mouse
is moved over the sequent. The position tables have the same tree structure
as the represented terms, so the time to find the position corresponding to
a character is linear in the depth of the term. This has so far proved to be
fast enough. An additional feature of the position tables is that they store
only offsets of sub-terms for each position, instead of absolute positions in the
string representation of the sequent. This makes it possible to reuse the posi-
tion table for a formula that is not affected by a taclet application, provided
its layout does not change. This optimization has not yet been implemented
in the KeY system though. Once the text range to be highlighted has been
calculated using the position tables, the actual painting is done using the
standard highlighting functionality provided by the Java libraries.

4.2 The Taclet Application Index

For a pleasant user experience, it is also important that the available taclets
at a certain position are displayed with minimal delay when the user clicks
somewhere. The first ingredient for this is of course the position table, which
yields a handle on the logic data structures corresponding to the mouse po-
sition. The actual list of applicable taclets is computed from this using a
number of indexing data structures, see Fig. 3. Considering that the taclet
set for Java Carp DL comprises hundreds of taclets, it is clearly not an option
to iterate through the whole set of taclets while the user waits for the menu.
Instead, for every open goal, a taclet application index is kept, that stores all
taclet applications possible in a sequent at any position. A taclet application
consists of a taclet along with a position where it is applied and a number of
schema variable bindings determined by the position.® The taclet application
index is organized in such a way that quick access to the applicable taclets is
possible based on the position in the sequent. Only taclet applications that are

5 There may be unbound schema, variables left; the instantiations of those are asked for
interactively.

GIESE

actually possible are stored. Regard for instance the taclet quoted in Sec. 3,
which has to be applied on an implication in the antecedent. Only for such
positions is a taclet application going to be put in the taclet application in-
dex, and only then will it be displayed to the user. The nice thing about the
taclet application index is that most of a sequent usually remains unchanged
between taclet applications, and accordingly most of the taclet applications
remain valid. It is sufficient to remove taclet applications referring to changed
formulae and to add some for new formulae after each proof step. This opti-
mization is in the course of being implemented. In the current version of the
KeY prover, the taclet application index is simply recalculated before each
proof step, which has so far been fast enough.

4.3 The Taclet Index

The reason why one can afford to recompute the taclet application index after
each proof step is of course that another indexing data structure permits to do
this efficiently: The taclet indez. This contains the set of all available taclets,
and provides an operation to determine a set of candidates that might be
applicable, given some formula and its position in a sequent. The idea is to go
through all sub-formulae of a newly introduced formula in a sequent and ask
the taclet index for a (hopefully small) set of potentially applicable taclets.
For each taclet in this set, it is then checked whether all conditions for the
application are actually satisfied, and if so, a corresponding taclet application
is put into the taclet application index.

What indexing mechanism is sensible for the taclet index is of course de-
pendent on the set of taclets in use. For instance, many of the taclets currently
used in the KeY prover serve the symbolic execution of programs. Therefore,
we make sure that the indexing can differentiate between taclets for various
kinds of Java statements. We use a hash table indexed by the top operator
of the formula or term in question, and in case of program modalities, by the
type of the first executable statement in the program in question. This gives
very acceptable performance for interactive use: the time required to apply
a rule, to build the new taclet application index and to layout and display
the new sequent lies mostly below half a second. The standard set of taclets
usually worked with comprises several hundred taclets for propositional and
predicate logic, integers, sets and above all for Java Carp. When taclets are
applied automatically using the heuristics, performance ranges between 20 rule
applications per second for the more complicated symbolic execution taclets
to about 500 per second for simple propositional logic on a current Linux
workstation.

The performance of the taclet index might become unacceptable in the
future, due for instance to an enlarged taclet base. In that case, our course
will be to progressively optimize the indexing data structures. In fact, this has
already been done twice in the past: originally there was no taclet index at

9

GIESE

all. As the number of predicate logic rules grew, hashing on the top function
symbol was introduced. Finally, with the addition of DL rules, indexing on
program statements became necessary.

Another conceivable future optimization is to compile taclets: As taclets
have a quite operational semantics, it would be possible to produce Java byte
code for the actions of a taclet. In particular the matching part might become
faster than with the current approach of comparing two term data structures.
It is not clear whether this will become necessary, as the system performs
quite satisfactorily so far.

5 Related Work

Taclets were first introduced under the name of schematic theory specific rules
(STSR) by Habermalz [9,10]. The concept of interactive theorem proving by
pointing the mouse at the the formula a rule should act upon was strongly
inspired by the theorem prover InterACT [6]. That theorem prover allowed
reasoning about abstract data types algebraically specified by sets of condi-
tional equations. It provided only a relatively hard-wired set of rules however.
Domain-specific reasoning was only possible through the application of condi-
tional equations. The interesting aspect was that the user could click on the
term where an equation should be applied. With taclets, it becomes possible
to do domain-specific reasoning in a way that matches human reasoning in
the domain and not the underlying specification language.

An idea for using mouse gestures to control a theorem prover, known as
“Proof by Pointing” has already been suggested earlier by Bertot, Kahn, and
Théry [4]. The peculiarity of that approach is that a single mouse click on some
sub-formula can trigger a whole series of rule applications that decompose a
formula until the selected sub-formula is on the top level of the sequent. Proof
by pointing is limited to a fixed sequent calculus, with no domain-specific rules
at all.

Semantically, taclets bear an obvious resemblance to tactics and/or derived
rules in systems based on higher-order logic like Isabelle [14] or PVS [13],
but also to concepts from the proof planning world like the methods of the
QOMEGA system [15]. Indeed, in a taclet-based theorem prover, taclets often
play the role of derived rules or tactics, in that they can a complex deduction as
a single entity. They also encode knowledge about domain-specific reasoning
like methods. Taclets differ from the named concepts in that they

e include an operational semantics for both automated and interactive appli-
cation, and

* do not provide any programming constructs, and thus

e can be justified with respect to other taclets by reasoning in the object logic,
and not in some meta-logic.

The taclet mechanism was carefully designed to display all these properties.

10

GIESE

6 Conclusion

We have briefly described the KeY prover from a user interface perspective.
In particular, we have introduced the concept of taclets, which consist of the
logical content of a sequent rule, paired with pragmatic information on how
and when to apply it. We have also given a short overview of some of the
non-trivial implementation issues involved.

The KeY system has repeatedly been used in undergraduate education,
and students have been able to show simple properties of Java programs using
the prover. We take this to be an indication that our user interface is good
enough to allow it to be used by non-experts after a reasonable amount of
coaching. Some larger case studies conducted by more experienced members
of the KeY group are presented in [1].

Acknowledgement

The author is indebted to Richard Bubel for providing some of the technical
details, to Wolfgang Ahrendt for helpful comments on a draft version of this
paper and to the anonymous referees for their numerous suggestions.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin
Giese, Reiner Hahnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth,
Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and System
Modeling, 2004. To appear.

[2] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In Isabelle Attali and Thomas P. Jensen, editors, Java on
Smart Cards: Programming and Security. Revised Papers, Java Card 2000,
International Workshop, Cannes, France, volume 2041 of LNCS, pages 6-24.
Springer-Verlag, 2001.

[3] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Héhnle, Andreas
Roth, Philipp Riimmer, and Steffen Schlager. Taclets: a new paradigm for
writing theorem provers. Revista De La Real Academia De Ciencias Exactas,
Fisicas Y Naturales, 2004. to appear.

[4] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In
M. Hagiya and J. C. Mitchell, editors, Proc. Intl. Symp. on Theoretical Aspects
of Computer Software, LNCS 789, pages 141-160. Springer, 1994.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

11

GIESE

[6] R. Geisler, M. Klar, and F. Cornelius. InterACT: An interactive theorem prover
for algebraic specifications. In Proc. AMAST 96, 5th International Conference
on Algebraic Methodology and Software Technology, volume 1101 of LNCS,
pages 563-566. Springer, July 1996.

[7) Martin Giese. Integriertes automatisches und interaktives Beweisen: Die
Kalkiilebene. Diploma Thesis, Fakultéit fiir Informatik, Universitdt Karlsruhe,
June 1998.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, 1997.

[9] Elmar Habermalz. Ein dynamisches automatisierbares interaktives Kalkil fir
schematische theoriespezifische Regeln. PhD thesis, Universitiat Karlsruhe,
2000.

[10] Elmar Habermalz. Interactive theorem proving with schematic theory specific
rules. Technical Report 19/00, Fakultét fiir Informatik, Universitéat Karlsruhe,
2000. http://i12www.ira.uka.de/ key/doc/2000/stsr.ps.gz.

[11] Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford
University, 1980. Also published as Xerox PARC Research Report CSL-81-10.

[12] Derek C. Oppen. Pretty-printing. ACM Transactions on Programming
Languages and Systems, 2(4):465-483, 1980.

[13] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS:
Combining specification, proof checking, and model checking. In Rajeev Alur
and Thomas A. Henzinger, editors, Computer-Aided Verification, CAV ’96,
volume 1102 of LNCS, pages 411-414. Springer, July/August 1996.

[14] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS.
Springer-Verlag, 1994.

[15] J. Siekmann, C. Benzmiiller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,
A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner,
I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.P. Wirth, and J. Zimmer. Proof
development with QMEGA. In A. Voronkov, editor, Proceedings of the 18th
Conference on Automated Deduction (CADE-18), volume 2392 of LNAI pages
144 —149, Copenhagen, Denmark, 2002. Springer Verlag, Germany.

[16] Sun Microsystems, Inc., Palo Alto/CA. Java Card 2.0 Language Subset and
Virtual Machine Specification, October 1997.

[17] Kathy Walrath and Mary Campione. The JFC Swing Tutorial: A Guide to
Constructing GUIs. Addison Wesley, 1999.

12

http://i12www.ira.uka.de/~key/doc/2000/stsr.ps.gz

	Introduction
	The Prover Window
	Taclets
	Implementation
	Highlighting
	The Taclet Application Index
	The Taclet Index

	Related Work
	Conclusion
	Acknowledgement
	References

