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Abstract

With the goal of this thesis being to create a dynamic logic for object-
oriented languages, ODL is developed along with a sound and relatively
complete calculus. The dynamic logic contains only the absolute logical es-
sentials of object-orientation, yet still allows a “natural” representation of
all other features of common object-oriented programming languages. ODL

is an extension of a dynamic logic for imperative While programs by func-
tion modification and dynamic type checks. A generalisation of substitutions,
called updates, constitute the central technical device for dealing with object
aliasing arising from function modification and for retaining a manageable
calculus in practical application scenarios. Further, object enumerators re-
alise object creation in a natural yet powerful way. Finally, completeness is
proven relative to first-order arithmetic. Along with the soundness result, this
proof constitutes the central part of this thesis and even copes with states
containing uncomputable functions.
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Chapter 1

Introduction

1.1 Overview

With the goal of this thesis being to create a dynamic logic for object-oriented
languages, ODL is developed along with a sound and relatively complete cal-
culus. For that purpose, the dynamic logic and its underlying programming
language are bound to be defined so as to be able to cover all features of
object-oriented programming languages. However, the dynamic logic is not
intended to duplicate all peculiarities of current object-oriented programming
languages. Instead of defining an overloaded object-oriented dynamic logic in-
cluding native support for a large variety of language decorations with all re-
sulting technical complications, ODL rather aims for a variation of common
non-object-oriented imperative dynamic logics as simple as possible on the
one hand, but still revealing the true logical essentials of object-orientation
on the other hand. Furthermore, the dynamic logic to create should provide a
structural representation of all features of object-oriented programming lan-
guages and an effective, “natural” construction should conduct the required
translation of those features not having a direct counterpart in the dynamic
logic.

A natural construction will treat the atomic elements of the programming
language in a uniform, structural way and avoid exceptional cases or global
dependencies. Further, it will amount to a relatively straightforward repre-
sentation rather than depend on artificial encoding. For example, encoding
whole object arrays into a single – suitably large – arithmetic number is
computationally possible, but considered comparably unnatural. Moreover,
almost all programming languages would collapse to one big equivalence class
if arbitrary encodings were allowed for transformation. In other words, this
representation follows the concept of schematology (Harel et al., 2000). In this
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case, schematology demands the translation to be independent of the coding
capabilities of a specific underlying domain of interpretation. Quoting from
(Harel et al., 2000):

[schematology or the uninterpreted level of reasoning] is the most
appropriate for comparing features of programming languages,
since we wish such comparisons not to be influenced by the coding
capabilities of a particular domain of interpretation.

This thesis consists of three parts and is organised as follows. First, the
definition of a dynamic logic, ODL1, is presented along with its underly-
ing programming language. Second, an exemplary investigation why object-
oriented programming languages can be translated into the dynamic logic
by an effective though natural construction is shown. And third, a calculus
for the dynamic logic is developed, about which the soundness and relative
completeness proofs constitute the central part of this work. The relative
completeness theorem proves completeness modulo first-order arithmetic.
Vaguely speaking, in addition to the prevailing complexities of the domain
of computation itself, such a program verification calculus will be complete.
In combination with an adequate technique that handles the domain of com-
putation, such a relatively complete calculus would constitute an algorithm
with which all statements about programs could be verified automatically
that Turing machines can hope to cover at all.

Even though one area of application will be the theoretical foundation
of the KeY System (Ahrendt et al., 2004) for the Java programming lan-
guage (Gosling et al., 1996), this thesis is not intended to treat only one
particular programming language. Rather, the idea is to handle a broader
range of object-oriented programming languages by uncovering the essential
characteristics of object-oriented programming. Nevertheless, theoretical un-
derpinnings of the KeY System and its update mechanism are a worthwhile
goal. Especially §4.5.6 provides criteria for a calculus that allow to lift the
relative completeness proof for ODL to a relative completeness statement
about the full KeY System. The general hope is that a modular proof will be
less complicated to conduct and to understand by splitting into a reduced
ODL and an extended KeY part.

1ODL is short for Object Dynamic Logic. During informal statements, this work does
not explicitly distinguish the programming language ODL from the logic ODL or the
calculus presented for ODL, whenever confusions are impossible from the context.
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1.2 ODL at a Glance

From a broad perspective the structure of the programming language un-
derlying ODL is an extension of the classical non-object-oriented imperative
While programming language by parallel local updates of non-rigid function
symbols. In contrast to rigid function symbols, non-rigid function symbols
may have distinct interpretations in different states of a dynamic logic model.
An update is the finite description of a (deterministic) modification of a non-
rigid function during the transition from one state to another. Local updates
only consider changes of a function at one single position. Parallel updates
bundle multiple (but finite) simultaneous changes of possibly distinct func-
tion symbols into one combined update. A While language on top of parallel
updates essentially offers loops of conditional parallel updates to non-rigid
function symbols.

Example 1.2.1 Consider the following update formula.

〈f(x)Ca, f(y)Cb, g(x)Cc〉φ

This formula holds in a state s if the formula φ holds in the state obtained
from s by modifying the interpretation of f at (the position described by the
value of) x to the value of a while simultaneously modifying the interpretation
of f at y to b2, and g at x to c. �

While in (Harel, 1984), the idea behind the regular propositional dynamic
logic PDLreg

3 was to find the essentials of imperative programming in order
to build a more theoretically inclined foundation of the dynamic logic for
While, we now admit the generous control-structures of While as a basis
and aim to find the essentials of object-oriented programming on top of it.
Despite their superficial similarities, common non-object-oriented imperative
While and variations of While that are capable of naturally representing
object-orientation do in fact differ. In contrast to the simple While program-
ming languages considered most often, object-oriented languages provide, for
example, intrinsically unbounded data structures by a conglomerate of object

2The current stage does not yet permit to consider the case of ambiguous conflicting
updates, where x and y evaluate to the same position, but a and b differ. Those so called
clashes will have to receive a well-defined semantics, finally. Either by reducing clashes to a
no-op operation, by stopping any further execution, or by letting one update predominate
the effects of the other.

3The regular propositional dynamic logic PDLreg allows assignment to atomic pro-
gram variables, nondeterministic branching, nondeterministic repetition and conditional
continuation as statements.

3



reference structures. Apart from Gödel encoding4, those data structures of
unbounded size cannot even be emulated in While programming languages
with (finite) static arrays without pointers.

Although there are a number of other approaches to object-oriented ver-
ification, ODL is a slimmer language with – in some cases considerably –
less built-in language features, yet still proper object-orientation. KeY and
Javalight (von Oheimb, 2001), for example, are based on rather huge lan-
guages. Additionally, ODL does not simulate a programming language inter-
preter or a Hoare calculus in an even more complicated logic like higher-order
logic. Instead, ODL directly is the language of interest rather than provid-
ing yet another layer of abstraction. Except for JavaCardDL, dynamic logic
approaches like ODL are rare. Furthermore, contrary to the majority of ap-
proaches, ODL has a relative completeness proof and is the only one that
has been proven complete relative even to first-order arithmetic, which is
– in some sense – the strongest conceivable completeness statement by the
Unvollständigkeitssatz of (Gödel, 1931).

In contrast to other approaches, ODL is its own assertion language. Thus,
according to the common spirit of dynamic logics, there is no artificial dis-
tinction between programming language, assertion language and formalism
for reasoning about program specifications. In the ODL logic all those as-
pects are neatly combined into one uniform concept. Especially, ODL does
not impose unnecessary distinctions: there is no difference between program
terms and terms of the logic, which is only possible because of the prohibition
of side-effects and exceptional evaluation.

1.3 Architecture

In practical verification scenarios the predominant part of the project source
code is written in some other object-oriented programming language than
ODL. Nevertheless, the logic ODL yields a valuable contribution on the
way to progress for practical system verification. It takes three conceivable
roles in a verification scenario for a distinct source language, say, Java:

1. ODL on the specification level of Model Driven Architecture

2. ODL as intermediate verification language

3. ODL as a reliable basis for a full-custom verification calculus

4This encoding needs the infinite set of mathematical integers, because machine-sized
integers do not suffice for encoding unbounded information.
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Finally, independent of questions concerning the particular programming
language under consideration, ODL serves as an adequate basis for theo-
retical investigations of object-oriented verification. This circumstance con-
nected with the fact that ODL characterises the logical essentials of object-
orientation that deserve most attention from a theoretical perspective.

As for 1, by the intuitive simplicity of the language, it is a viable sugges-
tion to use ODL at the system specification level. The simple object-oriented
programming language underlying ODL will then constitute a replacement
for the UML action semantics in Model Driven Architecture (MDA) (Bal-
cer & Mellor, 2002; MDA, 2003). In short, MDA is a top-down approach
centring development around the model of the system. MDA-conform devel-
opment starts with the construction of a system specification, which will be
refined successively to produce the final product with as much source code
as possible generated directly from the model. The model will always be
the major artifact of development with the source code only of secondary
importance in the hope that this priorisation of artifacts always leads to con-
sistency of model and system. In order for this to be achieved, the model
should be refined at some stage to incorporate a high-level operational spec-
ification as part of the action semantics of UML 2.0. Then the simplifying
ODL is a good choice for an action semantics language in the case of an
object-oriented target language.

To be said in behalf of 2, ODL is suitable as an intermediate language in
practical verification scenarios. If, for instance, Java is the program source
language, the translation of §3 allows to express the effects of the Java

program in the simpler language ODL. This is assumed as the “default”
scenario in the course of this thesis.

Concerning 3, the ODL calculus can be used as the basic ingredient for de-
riving a full-custom calculus for the particular source code language at hand.
Although, just like in full-custom hardware design, this is a more intricate
procedure than mere5 translation on the program level. At least, a template-
like construction on the basis ODL reduces the overhead in comparison to a
design of a verification system from scratch. The nontrivial question of how
to retain completeness in such an undertaking will be examined in §4.5.6.

The “default” ODL setting number 2 primarily considered in this work
assumes a special verification architecture with ODL as its intermediate
language. Suppose that there are programs in some object-oriented source
language. More probably, there even is a collection of programs in various
object-oriented (or at least purely imperative) programming languages. In

5Semantics-preserving source language translation already is a non-trivial undertaking.
Although it is still much simpler than building a new verification system.
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order to verify such a program conglomeration each programming language
would need a dedicated verification system built on top of its own calculus
plus appropriate means for communicating semantics between the verifica-
tion systems for the respective languages. Unfortunately, building a sound
and (relatively) complete verification calculus for an object-oriented program-
ming language from scratch is a tremendous amount of work, not to mention
the effort of crafting a corresponding (semi-)automatic proof system. Even
retrofitting an existing program verification system to a new object-oriented
programming language requires considerable endeavour. Especially exchang-
ing the particular peculiarities of the old language, which are most probably
spread throughout the calculus, with those of the new language can be utterly
tedious and error-prone.

In order to solve those problems we propose an intermediate language
approach. ODL has been designed as a sufficiently abstract common heart
of object-oriented programming languages that is flexible enough to cover all
features of object-oriented programming by translation. The actual source
language programs, will then be translated into ODL. A translation on the
level of the program is by far simpler than an attempt to “translate” a pro-
gram verification calculus. The source language programs will be specified
in some specification language, assumed to be ODL. Since ODL satisfies
(almost) all needs for a proper specification language there is no advantage
in constantly considering a further indirection during the course of this work,
even though choosing UML/OCL (Rumbaugh et al., 1998; Rumbaugh et al.,
1999) or JML (Leavens et al., 1998) instead would be possible. It is a common
observation that the language of programs is usually far more restricted by
environmental and pragmatical constraints than the specification language.

What can turn out to be a further advantage of the ODL intermediate
language approach in comparison to a dedicated JavaCardDL calculus is
the greater simplicity. ODL is a language with a rather frugal and intuitive
calculus. Illustrating the effects of a simpler logic in an application context
is a more promising undertaking than explaining a very complex technical
logic. Of course, at some stage, the inherent complexities of the source pro-
gramming language have to be mastered by a verification system, anyway.
Yet, a translation on the familiar programming language level by harmless
program-transformation could be far more convenient than complicated tech-
niques on the logical layer.

As Fig. 1.1 shows, from the source language, enriched with specifications
in, say, ODL itself, a natural translation leads to one single language: ODL,
in which correctness statements about programs can be expressed. ODL has
a sound and relatively complete program verification calculus from which
a proof system can be derived. This theorem prover system can come up
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with two different outcomes to the question of whether or not the source
language program satisfies its specification: “Yes” or “No”. Of course, due to
the undecidable nature of the verification problem a third potential behaviour
is an indefinite run of the proof system, from which neither correctness of
the source program nor the presence of a bug can be concluded.

With this approach, ODL allows to treat a broad range of object-oriented
programming languages simultaneously by replacing the simple translation
on the familiar level of the programming language rather than reinventing a
verification calculus.

�� ���� ��Specification

��

�� ���� ��Source Language

natural translation

���� ���� ��ODL

qq

proof system

��
..ONMLHIJKYes GFED@ABCNo ?>=<89:;?

Figure 1.1: Verification Architecture. The source code program is translated
into ODL along with its specification. On the basis of the ODL conjecture,
the proof system outputs “Yes” along with a proof when the program meets
its specification or “No” when it provably does not. The imaginary output “?”
represents the case that the proof system cannot come to a final conclusion
but continues to search for a proof indefinitely.

§2 presents the ODL language that has been depicted in the centre of
Fig. 1.1. The questions of a natural translation from the source language will
be investigated in §3. Finally, Chapt. 4 examines the proof system arcs of Fig.
1.1. That the output “Yes” is never produced when it would be unjustified
is the topic of the soundness theorem in §4.4. That the proof system never
outputs “No” but always “Yes” for a true specification would be the tenor
of an absolute completeness statement. Since full completeness is impossible
for ODL and the verification problem itself is not even semi-decidable, ODL

only possesses the weaker form of relative completeness. The relative com-
pleteness theorem in §4.5 states that those cases in which the answer “Yes”
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fails to appear and “?” is produced6 instead, this is – broadly speaking –
not a deficiency of ODL but already due to the improvability of an equiva-
lent formula of ordinary non-modal first-order arithmetic. A result of “No”
is always justified.

1.4 Context

An implementation, called iODL, of the program verification calculus ODL

has been integrated into the KeY System. The KeY System (Ahrendt et al.,
2004) is a semi-automatic interactive proof system based on sequent calculus
for dynamic logic for Java (called JavaCardDL). KeY adds formal speci-
fication and verification facilities to UML7-based software models by means
of theorem proving. Due to the close integration into a familiar modelling
environment and a real-world programming language, KeY has surpassing
prospects of accomplishing its goal of bridging the gap between what aca-
demic case-studies demonstrate is possible with verification and what real
industrial practice adopts. In order to facilitate a smooth integration into the
modern development process and to permit a gradual involvement of formal
methods, KeY combines with usual case-tools. Currently, KeY is available as
a stand-alone prover and as a plug-in for the Together CASE-tool (Together-
Soft, 2003). The system supports UML+OCL specifications as well as JML
specifications (Leavens et al., 1998) for full JavaCard programs.

1.5 Related Work

(Stärk & Nanchen, 2001) present a calculus for a dynamic logic on abstract
state machines (ASM) (Gurevich, 2000; Börger & Stärk, 2003). The calculus
consists of about 30 schematic axioms and translates ASM rules into con-
ditional ASM-updates, which again will be translated into modal formulas.
Several update axioms depend on well-definedness conditions, for which ap-
propriate inference rules are included as well. In this context, an ASM rule is
well-defined if it terminates and does not produce clashes, i.e. contradictory
update assignments. Thus, a typical proof will check termination accord-
ing to axioms, continue to prove the absence of clashes and proceed with
computing update predicates upd(R, f, x, y)8. Subsequently, those predicates

6Reasonably careful proof systems that examine proofs in a sufficiently systematic way
will only emit “No” when justified.

7UML = Unified Modeling Language (Rumbaugh et al., 1998; Rumbaugh et al., 1999)
8upd(R, f, x, y) says that the ASM rule R performs an update of the dynamic function

symbol f at position x to the value y.
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will be translated into elementary modal equations by a rule of the form
upd(R, f, x, y) → [R]f(x)

.
= y. From those equations, the proof essentially

consists of reasoning in equational multi-modal logic. By proving the ASM
logic to be a definitional extension of first-order logic, the calculus is shown
to be complete for ASMs without recursion and iteration9. Absolute com-
pleteness of the ASM logic is possible because – unlike the usual touch of
abstract state machines – the modalities of the calculus only refer to single-
step firing of ASM rules. The implicit repetition loop, which drives an ASM
forward until termination, is not being considered.10 Unfortunately, proving
correctness of relatively simple ASMs requires an enormous effort with this
calculus.

(von Oheimb, 2001) describes a Hoare calculus for Javalight, which is
the first11 logic for an object-oriented language proven sound and relatively
complete for partial correctness. Javalight supports side-effects, recursion, dy-
namic dispatch, exception handling, static class initialisation, object creation,
static fields and methods as well as static overloading. Like in (von Oheimb
& Nipkow, 2001), the soundness and completeness proofs are formalised in
Isabelle/HOL. However, the completeness is only relative and modulo (in-
)completeness of higher-order logic. A disadvantage consists in the some-
what cumbersome assertion expressions that result from the explicit state
parameters in each assertion.

(von Oheimb & Nipkow, 2001) describe a Hoare calculus for NanoJava, a
Java-like language with conditions, loops, assignments to local variables and
fields, object creation, casts, method calls and exclusively class types (espe-
cially there are no boolean tests but only references checks for equality to
null). The calculus is formulated in Isabelle/HOL (Paulson, 1994; Nipkow
et al., 2002; Nipkow & Paulson, 2000)12 and proven sound and complete rel-
ative to higher-order logic interactively. Despite the fact that NanoJava pro-
hibits side-effects during expression evaluation, and even though the Hoare
calculus is already simplified a lot in comparison to other object-oriented
Hoare logic approaches, the calculus and proof examples still seem rather
complicated and technical due to the general nature of Hoare calculi. The

9Essentially, the ASMs without recursion and iteration considered in (Stärk & Nanchen,
2001) boil down to sequential compositions of deterministic single-step firing of conditional
parallel updates, which can be reduced equivalently to a set of conditional parallel updates.

10However, ASMs include an unbounded parallel forking command forall. In some sense,
it evaluates a possibly countable infinite amount of instantiations of rules in parallel. Hence
forall has a questionable computational complexity to consider as an atomic machine
operation.

11Except for the smaller language SPOOL (de Boer, 1999).
12With HOL based on work of (Church, 1940).
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notational and conceptional advantages of dynamic logics should achieve im-
provements on that issue.

(Nipkow, 2003) introduces a programming language, Jinja, with an oper-
ational semantics13 exhibiting core features of Java. Big step and small step14

operational semantics for Jinja are shown equivalent15, and type safety is
proven. Jinja provides boolean and integer as primitive types, references,
null pointers, object creation, casting, field access and assignment, method
calls (with static binding), local variable declarations, sequential composition,
conditions, loops, exception throwing and catching. Jinja only provides over-
riding, not overloading, and has the peculiarity of Lisp-like dynamic variable
binding. Unfortunately, the operational semantics of Jinja consist of a fairly
huge amount of rules. As an intermediate report, (Nipkow, 2003) does not
yet present a calculus for Jinja.

(Igarashi et al., 2001; Igarashi et al., 1999) present a calculus, Feather-
weight Java, for a small pure non-imperative functional core of Java, with
a touch very similar to the λ-calculus (Barendregt, 1984). As Featherweight
Java concentrates on questions of type safety, it has a different focus than
verification systems for functional behaviour. In addition to a treatment of
constantly typed programs, the authors provide an extension that deals with
parametric genericity except for generic type inference. The programming
language underlying Featherweight Java provides (mutually recursive) class
definitions, methods, fields, inheritance, method overriding, object construc-
tion, method invocation, field access, variables and casts. Featherweight Java
does not provide assignments, loops, if-conditions, sequential composition,
interfaces, overloading, super calls, null pointers, primitive types, abstract
methods, field shadowing, access control (ppublicq modifiers etc.), excep-
tions or side-effects. Without assignments and without side-effects, Feath-
erweight Java represents a pure16 functional object-oriented programming
language. By nature of a pure functional language, objects do not change
after the time of their construction. This implies that all expressions finally
reduce17 to newly constructed objects, which is the reason for the calculus

13Essentially, operational semantics define an interpreter for the programming language.
14In contrast to small step semantics, big step semantics evaluate expressions in a single

“computation” straight to their final value. Hence, only small step semantics can evaluate
an expression by iterated evaluations of different expressions in a sequence of distinct
intermediate states.

15This means that the evaluation relation of the big step semantics coincides with the
transitive closure of the small step semantics at the end of the evaluation, i.e. when only
atomic values or raised exceptions remain.

16A functional language is pure if expression evaluation does not produce side-effects.
17Actually, the calculus essentially consists of syntactical reduction rules similar to the

β-reduction of the λ-calculus.
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only working on objects of the form pnew C(e 1,...,e n)q. After all, the ob-
jects of Featherweight Java are essentially limited to mere immutable data
containers: tuple types with a type hierarchy and method overriding.

(de Boer, 1999) describes a sound and complete Hoare calculus for a
sequential object-oriented programming language, SPOOL, with main fo-
cus on pointers. SPOOL provides conditions, loops, sequential composition,
pointers, null pointers, object creation, and only synchronised18 methods.
The logic for SPOOL has monotone19 varying domain20 semantics and also
provides quantification over all finite sequences of objects of a particular type.

1.6 Basic Notions

1.6.1 Notation

This section briefly summarises the notation used in this paper. In the meta-
language let ⇒ denote the meta-level implication, and ⇐⇒ is used for
meta-level equivalence.

That there is a possible transition in interpretation ` from state s to t
when running the program α is denoted with sρ`(α)t, as will be defined for-
mally in Def. 2.3.1. This gives the modal accessibility relation for the program
α as occurring in the definition of the semantics of 〈α〉 and [α]. If the state s
is known from the context and no ambiguities arise, then “ there is sρ`(α)t ”
is a short notation for “ there is t with sρ`(α)t”, and similar when t is known
from the context.

In the course of this thesis, letters from the beginning of the alphabet, like
c, d, will be preferred for constant symbols, while x, y, z are usually preferred
for variable symbols. By convention, f, g are typical function symbols and p, q
representative choices for predicate symbols. For a formula φ, FV (φ) denotes
the set of free variables occurring in φ. Likewise, FV (M) :=

⋃
m∈M FV (m)

denotes the collective set of free variables in a set M . By an abuse of notation,
write FV (a, b, c) for FV ({a, b, c}).

1.6.2 Terminology

This section introduces some standard mathematical terminology.

18Contrary to the Java notion, here, synchronised means that at any time there can be
at most one active method call within the stack trace. This additionally prevents recursion.

19Monotone domain semantics means that there only is object creation, no deallocation.
20Varying domain semantics implies that – due to object creation – the modal formula

φ ∧ 〈α〉¬φ can be true even if V ar(φ) ∩ V ar(α) = ∅.
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Definition 1.6.1 (Lattice) A lattice is a partially ordered set L in which
every (non-empty) finite subset has an infimum and supremum. Equiva-
lently, a lattice is a set L with two binary operations ∩, ∪, which satisfy
for each a, b, c ∈ L

idempotent a ∩ a = a
a ∪ a = a

commutative a ∩ b = b ∩ a
a ∪ b = b ∪ a

associative a ∩ (b ∩ c) = (a ∩ b) ∩ c
a ∪ (b ∪ c) = (a ∪ b) ∪ c

absorption a ∩ (a ∪ b) = a
a ∪ (a ∩ b) = a

A function f : L→ N is a homomorphism of lattices if for each a, b ∈ L

f(a ∩ b) = f(a) ∩ f(b)

f(a ∪ b) = f(a) ∪ f(b)

Proof: The asserted equivalence of order-theoretic and algebraic lattices has
to be proven. Given an order-theoretic lattice, it satisfies the axioms with
operators ∩ for infimum and ∪ for supremum.

An algebraic lattice defines a partial order by defining a ≤ b :⇐⇒ a∪b =
b ⇐⇒ a ∩ b = a, which yields an order-theoretic lattice. See (Davey &
Priestley, 2002) for more detailed information. �

Example 1.6.1 Consider the prototypical example of a lattice with two
elements C and D, their supremum C ∪D and their infimum C ∩D in Fig.
1.2. The lattice further contains the top element > and the bottom element
⊥. �

Remark 1.6.2 Homomorphisms of lattices are monotone, i.e. for all a, b ∈ L
it is a ≤ b ⇒ f(a) ≤ f(b).

Definition 1.6.3 (Relational Composition) For a subset E ⊆ M and a
relation ρ on M define the relational composition as

E ◦ ρ := {t ∈M : there is s ∈ E sρt}

ρ ◦ E := {s ∈M : there is t ∈ E sρt}

Definition 1.6.4 (Multisets) A multiset is a collection of elements of a
domain D, in which the number of occurrences of each element matters but
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Figure 1.2: Dense Lattice Example

not the order of occurrence. Thus, a multiset M is a map M : D → N with
M(a) being the multiplicity of occurrences of a in M . The set theoretical
operations are extended to sets in an obvious way.

x ∈M := M(x) > 0

M ∪N := M +N

M ∩N := min(M,N) = (a 7→ min(M(a), N(a)))

M \N := max(M −N, 0) = (a 7→ max(M(a) −N(a), 0))

As a notation for finite multisets, {{a, b, b, b, c, d, d}} denotes the multiset M
with M(a) = M(c) = 1,M(b) = 3,M(d) = 2 and M(x) = 0 otherwise.

Definition 1.6.5 (Transitive Closure) The relation R∗ is the (reflexive)
transitive closure of the relation R and is defined as follows.

xR∗y ⇐⇒ there are x=x0, x1, x2, . . . , xn=y such that xiRxi+1 for each i

Definition 1.6.6 (Confluence) A relation R on a set M is confluent if
for each x, y1, y2 ∈ M with xRy1 and xRy2 there is z ∈ M such that
y1R

∗z and y2R
∗z. This leads to a situation as depicted in Fig. 1.3.

Definition 1.6.7 (Noetherian) A relation R on a set M is Noetherian (or
terminating) if there is no infinite sequence x1, x2, x3, . . . ∈ M with xiRxi+1

for each i. Noetherian relations prohibit situations like the one depicted in
Fig. 1.4.

13



y1

∃

  A
A

A
A

x

∀
>>}}}}}}}

∀   A
AA

AA
AA

z

y2

∃

>>}
}

}
}
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x1 // x2 // x3 // x4 // . . . // xi // xi+1 // . . .

Figure 1.4: Noetherian Descending Chain Condition Diagram
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Chapter 2

Update Logic

2.1 Overview

This section presents the actual structure of the update logic ODL, starting
with a brief overview. ODL is a first-order dynamic logic with programs built
from parallel updates by nesting of conditions and loops.

ODL can be obtained from first-order logic as follows: enrich first-order
logic by [] and 〈〉 modalities of a dynamic logic for the While programming
language, taking updates instead of mere program variable assignments as
atomic programs.

Example 2.1.1 For the moment, assume | to be a built-in divisibility1 rela-
tion. As an introductory motivating example, consider the ODL program α
below, for which the formal syntax and semantics will be introduced during
this section.

if(2 | c) {dCc+ 2}else{dCc+ 1}

In this program, the statement dCc+ 1 is called an update, which modifies
the interpretation of d to be the successor of c. Depending on whether 2
divides c or not, α will perform the update dCc + 2 or the update dCc + 1,
instead.

Consider the following (partial) specification of the behaviour of program
α in case that c is initially odd.

∃k :nat c
.
= 2 · k + 1 → [α]d

.
= c+ 1

This formula specifies that whenever c is odd, all executions of the program
α lead to d having a value that is the successor of the value of c. During the

1The relation x | y holds if and only if the integer x divides y.
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course of proving that this is a correct specification for α, updates will also
be promoted to subterms like the following.

([dCc+ 1]d)
.
= ([dCc+ 1](c+ 1))

From a semantical perspective, an update in front of a subterm leads to an
evaluation of the subterm with a modified interpretation of d, regardless of
the context evaluating the whole term. More syntactically speaking, moving
updates to subterms promotes the effect of an update down to the subterms.
This update promotion mechanism will further simplify the above equation
to the following tautology.

c+ 1
.
= c+ 1

After the necessary concepts have been introduced, program α will be ex-
amined in more detail again in Ex. 2.4.1 and proven correct in Ex. 4.3.1.
�

ODLm is obtained from ODL by allowing method invocations. Method
invocations are limited to the top-level expression after updates to local pro-
gram variables, though: xCm(o, e). This alleviates the problem of operator
and operand evaluation order in the presence of side-effects, since ODL ex-
pressions like o and e cannot produce side-effects.

As will be seen in Lem. 4.2.7, multiple consecutive updates can be com-
bined into a single update. This leads to ODL programs of a very simple
structure: while() {} loops and if() {}else{} conditions nested around sin-
gle parallel updates, and sequential compositions of loops or conditions. Since
parallel updates can always be split into a sequential composition of single-
ton updates, the essential difference between dynamic logic for While and
ODL is that ODL allows modifications of structured data like f(t, a) in-
stead of just program variables like x. In other words, DLWhile only allows
assignments to atomic terms, whereas ODL allows assignments to arbitrarily
nested compound terms.

For practical purposes, dynamic logics used in program verification of-
ten distinguish rigid from non-rigid symbols. Unlike (syntactically) non-rigid
symbols, (syntactically) rigid symbols share the same value in every state of
a particular interpretation per definition. In one particular interpretation, of
course, syntactically non-rigid symbols may still happen to have the same
interpretation in all states, but do not need do so to by a priori declaration.
However, the syntactic structure of ODL does not formally involve rigidity
declarations for pragmatic reasons. In spite of the practical relevance, this
simplification clarifies the presentation. Furthermore, the addition of a for-
mal concept of syntactic rigidity is straightforward. Still, several function
symbols are informally classified as rigid or non-rigid in this presentation, in
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order to support the reader’s intuition about what is intended to happen to
those symbols.

2.2 Syntax

This section presents the syntactic structure of the dynamic logic ODL.
Given a vocabulary of symbols along with type information in a correspond-
ing type-system the language ODL will be inductively defined by combining
those symbols.

2.2.1 Type-System

The type-system of ODL needs to have some way to represent the type-
system of the object-oriented source language sufficiently. This means that
the calculus can simulate all statements of an effect that depends on (com-
pile time or run-time) type information. In object-oriented programming lan-
guages, this especially includes the virtual dispatch of method calls. There
are at least two ways for achieving this. First, a plug&play type-system with
a formal description language for type-systems, which provides a way for
plugging reasonable source type-systems into the calculus, perhaps similar
to the UML Meta Model. Or second, an endogenous approach, where typing
information is focused within a single predicate instanceof . Then state-
ments with type dependent effects have to be unfolded into explicit low-level
if-then-else type check cascades.

The endogenous approach is conceptually simpler and perhaps even more
flexible. Yet, it results in a little more verbose and explicit proofs within
ODL, it relies on a finite number of classes2, and in näıve realisations it
is rather inefficient for methods appearing with an identical name and ar-
ity in many classes because of its incompetence in distinguishing types in
advance. However, this deficiency can be resolved quite easily by imposing
unique naming conventions for conceptually distinct entities, as can be en-
sured by semantical name analysis preprocessing. In the spirit of simplicity
the endogenous type system for dynamic types is chosen.

The construction of ODL begins by plugging in an arbitrary type-system
stemming from the particular source language under consideration, say Java-

CardDL. The type-system Typ is intended to contain all object types of
some source language like JavaCardDL in the corresponding class hierar-
chy.

2More precisely, a finite amount of subclasses is assumed. Intra-language translations
based on branching cascades usually require a finite number of subclasses.
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Definition 2.2.1 In the following, let Typ be an arbitrary decidable3 type-
lattice with ⊥ as bottom type, > as top type, ∩ as infimum type or greatest
common subtype, and ∪ as supremum type or smallest common supertype.
Furthermore, let Typ have a designated type nat ∈ Typ for natural numbers.
σ ≤ τ holds if σ is a subtype of τ . σ < τ holds if σ 6= τ is a proper subtype
of τ

Example 2.2.1 Note that in the case of Java the type-system will be
bounded by a superficial bottom type ⊥ which is a subtype of all classes and
interfaces. Moreover, note that type-systems of conventional object-oriented
programming languages will be rather coarse. Assuming the class hierarchy

Vehicle

Car Bike Boat Plane

Figure 2.1: UML Class Diagram of Vehicle Type Hierarchy

in Fig. 2.1 of distinct classes Car, Bike, Boat, Plane which extend a common
base class Vehicle. Then contrary to finer type-systems, rather different type
suprema result in the very same type of the class hierarchy. Consider

Car ∪ Bike = Car ∪ Boat = Plane ∪ Boat = Vehicle

Instead of supplementing the type-system with finer suprema, such a be-
haviour of the source code type-system is directly reflected in the type-lattice.
Primitive types of the source language, like int , short , boolean will be inte-
grated into the type-lattice. �

Example 2.2.2 As a simplified part of the standard Java class hierarchy,
the type-system will contain, for instance, the lattice depicted in Fig. 2.2. �

ODL assumes external or exogenous symbol typing information instead
of supporting explicit type declarations with the ODL language. Though,

3A type-lattice is decidable, if the membership and subtype relations are decidable.
This is the usual case.
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Figure 2.2: Lattice of an Excerpt of the Java Type-System

of course, insufficient from an application point of view, this is an adequate
approach for symbol typing from a theoretical perspective. Just assuming
that all symbols know their static type via some a priori mechanism outside
of the logic simplifies the language and semantics a lot. Moreover, a classical
semantical name and type analysis phase of a preprocessing compiler run can
easily provide this type declaration functionality for free.

2.2.2 Signature

A signature Σ is the set of names (called symbols) of all entities nameable
in a certain context. A signature is the vocabulary or alphabet of logical
signs from which to build well-formed formulas. It is generally assumed to be
given effectively. In addition to (constant) symbols for elements of the world,
symbols also include variables from a set V . Σ is assumed to contain the usual
signs 0, 1,+, ·, <,≤,≥, > for natural numbers. Moreover, Σ is always assumed
to contain the rigid constant symbol null of type ⊥, which is intended for
the resolution of null pointers or otherwise undefined elements. Finally, Σ is
always assumed to contain the rigid function symbols objC of type nat →
C, intended to represent newly created objects.4 The objC signs are called
object enumerator symbols. For example, objC(n) will be the newly created
object of type C with object identifier n, and different from any newly created
object with a different object identifier (OID) or different type. Symbols
possess a type and are either individual, function or predicate symbols, with

4In the notation of the λP system of (Barendregt, 1992) an alternative for using the
family of symbols objC would be to use a single symbol obj of parametric generic type
Πτ : ∗.(nat → τ).
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function and predicate symbols having a fixed arity. Variable symbols possess
a type and are always rigid, i.e. their value is the same during all states
of program execution. Constant symbols, however, are allowed to assume
different values in distinct states during the program execution.

Be aware that, on the contrary, terminology on the level of programming
languages like C++ says that constant program variables cannot change
their value5 by assignment. In the context of logic, however, variable sym-
bols are primarily intended for quantification. This quantification should also
suffice to establish a connection between the different states of program exe-
cution, because of which rigid variables constitute a significant ingredient to
dynamic logic.6

All vocabularies are assumed to contain infinitely many variable symbols
of each type, because of skolemisation, which – in the ODL calculus – works
with variables.

2.2.3 Formulas

The terms Trm(Σ ∪ V ), formulas Fml(Σ ∪ V ) and programs Prg(Σ ∪ V ) of
ODL will be defined by simultaneous induction in definitions 2.2.2, 2.2.3 and
2.2.4. They correspond to the classical notions of in a dynamic logic flavour.
FmlFOL(Σ∪V ) is the set of formulas of classical non-modal first-order logic.

Definition 2.2.2 (Terms) Trm(Σ∪V )τ is the set of terms of ODL of type
τ with variables in V over the signature Σ. It is defined as the minimal set
such that

• Trm(Σ ∪ V )σ ⊆ Trm(Σ ∪ V )τ for each σ < τ .

• Every variable x ∈ V of type τ is in Trm(Σ ∪ V )τ .

• If f ∈ Σ is a function symbol of type σ1 × · · · × σn → τ and t1 ∈
Trm(Σ∪V )σ1

, . . . , tn ∈ Trm(Σ∪V )σn
then f(t1, . . . , tn) ∈ Trm(Σ∪V )τ .

• If e ∈ Fml(Σ ∪ V ) and s, t ∈ Trm(Σ ∪ V )τ then if e then s else t fi ∈
Trm(Σ ∪ V )τ .

5Their instance fields are in general still subject to modification, though.
6In principle it is possible to make an orthogonal distinction between rigid and non-

rigid function symbols, thereby allowing more than rigid variables and non-rigid constants.
But non-rigid variables are of questionable utility, and the effect of constants syntactically
declared as rigid can always be emulated with corresponding variables or ensured by meta
lemmas ensuring rigid behaviour for particular constant symbols.
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• If φ ∈ Trm(Σ ∪ V ) and U ∈ Prg(Σ ∪ V ) is an update then 〈U〉φ ∈
Trm(Σ ∪ V ).7

Trm(Σ∪V ) := Trm(Σ∪V )> =
⋃
τ∈Typ Trm(Σ∪V )τ is the set of all terms

of any type.

Definition 2.2.3 (Formulas) Fml(Σ ∪ V ) is the set of formulas of ODL

with variables in V over the signature Σ. It is minimal with the following
properties.

• If p ∈ Σ is a predicate symbol of type (σ1 × · · ·× σn) and t1 ∈ Trm(Σ∪
V )σ1

, . . . , tn ∈ Trm(Σ ∪ V )σn
then p(t1, . . . , tn) ∈ Fml(Σ ∪ V ).

• If t ∈ Trm(Σ ∪ V ) and C ∈ Typ is a type then t instanceof C ∈
Fml(Σ ∪ V ).

• If s ∈ Trm(Σ ∪ V )σ, t ∈ Trm(Σ ∪ V )τ then s
.
= t ∈ Fml(Σ ∪ V ).

• If φ, ψ ∈ Fml(Σ∪V ) then ¬φ, (φ∨ψ), (φ∧ψ), (φ→ ψ) ∈ Fml(Σ∪V ).

• If φ ∈ Fml(Σ∪V ) and x ∈ V is a variable then ∀xφ,∃xφ ∈ Fml(Σ∪V ).

• If φ ∈ Fml(Σ∪V ) and α ∈ Prg(Σ∪V ) then [α]φ, 〈α〉φ ∈ Fml(Σ∪V ).

Usually, V is implicitly assumed to be a set of infinitely many variables
x1, x2, x3, . . . for each type. Bisubjunction φ ↔ ψ is treated as an abbrevi-
ation for mutual implication (φ → ψ) ∧ (ψ → φ) in the calculus. Likewise,
s 6= t is an abbreviation of ¬(s

.
= t).

The usual rules for bracket compaction apply, with operator precedence as
follows. Quantifiers and modalities bind strong instead of extending far to the
right. The precedence order is thus ↔,→,∨,∧,¬,∃ ,∀ , [], 〈〉,

.
=, 6=, <,≤, >,≥.

Especially note that those binding preferences imply

(∀i φ) → ψ = ∀i φ→ ψ 6= ∀i (φ→ ψ)
(〈α〉φ) → ψ = 〈α〉φ→ ψ 6= 〈α〉(φ→ ψ)

While the precise semantics of the syntactic constructs in formulas will be
defined in §2.3, their intuitive meaning is already explained here. The logical
connectives ¬,∨,∧,→,↔ have their standard meanings.

.
= is the equality on

7Updates only occur on term level during the incremental rewrite process. Term level
updates are of no importance for the initial programs or program specifications.
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terms, while the quantification ∀xφ holds if the formula φ holds for all assign-
ments of the variable x. The conditional term if e then s else t fi evaluates to
the value of s whenever e is true in the current state, but evaluates to t oth-
erwise. The type check formula t instanceof C expresses that the dynamic
type of the object referred to by t is a subtype of class C. The modal formula
[α]φ expresses that the formula φ always holds after program execution, i.e.
φ holds in all states that can be reached from the current state by executing
the program α. Likewise, 〈α〉φ holds if φ is sometimes true after program
execution, i.e. in some state that can be reached by executing program α.

2.2.4 Programs

Definition 2.2.4 (Programs) Prg(Σ ∪ V ) is the set of programs of ODL

with variables in V over the signature Σ. It is defined to be the minimal set
with

• If f1(t1) ∈ Trm(Σ∪V )σ1
, . . . , fn(tn) ∈ Trm(Σ∪V )σn

and s1 ∈ Trm(Σ∪
V )σ1

, . . . , sn ∈ Trm(Σ∪V )σn
, then f1(t1)Cs1, . . . , fn(tn)Csn ∈ Prg(Σ∪

V ) is an atomic program.8

• (For ODLm) If c ∈ Στ is a constant symbol, m a method of type σ → τ
in class ζ and o ∈ Trm(Σ ∪ V )ζ , t ∈ Trm(Σ ∪ V )σ, then 〈cCm(o, t)〉 ∈
Prg(Σ ∪ V ) is an atomic program.

• If α, γ ∈ Prg(Σ ∪ V ) then α; γ ∈ Prg(Σ ∪ V ).9

• If φ ∈ FmlFOL(Σ∪V ) and α, γ ∈ Prg(Σ∪V ) then if(φ) {α}else{γ} ∈
Prg(Σ ∪ V ).

• If φ ∈ FmlFOL(Σ ∪ V ) and α ∈ Prg(Σ ∪ V ) then while(φ) {α} ∈
Prg(Σ ∪ V ).

For convenience, formulas occurring within program examples often use the
Java logical operators like p&q instead of ∧, and p|q instead of ∨.

Note that f(s) is neither a proper identifier nor a location but only a
descriptor, since it does not unambiguously and absolutely identify a location,
but only describes a value relative to the current context of evaluation of s.

8In case of a syntactical separation of rigid and non-rigid terms, the fi are assumed non-
rigid here. Update programs like fi(r1, . . . , rn)Cs are defined similarly for higher arities of
the fi.

9Note that program composition via ; is associative, which means that no grouping
brackets are required for program composition.

22



The intuitive effect of the program α; γ is the effect of the sequential
composition of the programs α and γ, i.e. the program that begins with
the execution of α and – after its termination – continues to execute γ.
The branching statement if(e) {α}else{γ} has an effect that depends on
the value of the condition e in the current state. If e evaluates to true the
branching statement if(e) {α}else{γ} produces the same effects as α, oth-
erwise it operates like γ. The effect of the loop while(e) {α} is to repeat
the execution of α as long as e evaluates to true. The effect of an update
f1(t1)Cs1, . . . , fn(tn)Csn is to simultaneously modify the interpretations of
the (non-rigid) function symbols fi at the respective positions ti to the value
of si. The formal semantics of the above program constructs will be defined
in §2.3.

What will be added to the program language for convenience are skip
statements and single-side branches. They can be defined as abbreviations
for other programs, and – by the nature of mere syntactic sugar – do not
need a special treatment in the semantics or calculus.

• skip := xCx is a no-operation statement, where x is a new constant
symbol not occurring anywhere else.

• if(e) {α} := if(e) {α}else{skip} is a single-side branch statement.

2.3 Semantics

By interpretation, a meaning will be associated with the formulas of the lan-
guage defined by syntax. By virtue of their interpretation, some formulas
express true facts about the world while others do not. With sound logical
reasoning this truth entails from the premises of arguments to their conclu-
sion. As the value of a constant symbol can change from state to state, the
meaning of an ODL formula depends on the state of the program in which
it is interpreted.

2.3.1 Domain of Computation

The domain of computation comprises integer arithmetic as well as adequate
referents for object types. The constant symbol null stands for a specific
object of type ⊥. Especially, within the logic, any function may get assigned
arbitrary values at the position null. This results in a very simple formula-
tion of ODL, which does not have to care about questions of partial functions
and multi-valued logics. For the purpose of achieving an equivalent transla-
tion from any source language to ODL, of course, the translation will have to
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include explicit null pointer checks and exceptional treatment. Even though
this may lead to translations that attain less readability than the original
JavaCardDL program, a major advantage of the ODL approach is the
much greater simplicity of concepts. Another advantage of the uniform han-
dling of null pointers in comparison to partiality during expression evalu-
ation consists in c.x

.
= c.x + 2 always consistently being false, even in the

case of c
.
= null. This reduces the amount of exceptions for the validity of

formulas.

2.3.2 Interpretation

This section defines the central concepts of the denotational semantics of
ODL: primitive interpretations that relate syntactic structures and objects
of a (model) world.

Definition 2.3.1 (Interpretation) In general dynamic logics, an interpre-
tation ` of the signature Σ is a non-empty set W of worlds, and an accessi-
bility relation ρ`(α) ⊆ W ×W for each atomic program α ∈ Prg(Σ∪V ). For
ODL, W can be any set of states that is stable under transition with ρ`(α)
under atomic programs, while the accessibility relation ρ`(α) for atomic pro-
grams will be fixed according to Def. 2.3.8.10 Therefor, a state is a first-order
interpretation, i.e. it consists of a universe – which is the same for all states
– and an association of the symbols of the signature with elements in the
world. More precisely, for each state w ∈ W this amounts to an association
of:

• bijections val`(w, objC) : `(nat) → OC into disjoint sets OC
11 with the

object enumerator symbols objC.

• the set `(τ) :=
⋃
σ≤C

Oσ with each type τ ∈ Typ.

• an object val`(w, c) ∈ `(τ) with each individual symbol c ∈ Σ ∪ V of
type τ .

• a function val`(w, f) : `(σ1) × · · · × `(σn) → `(τ) with each function
symbol f of type σ1 × · · · × σn → τ .

10For W , this amounts to including all finite modifications, i.e. all states that only differ
at finitely many points of finitely many functions.

11Intuitively, OC is intended to contain those objects of most specific type C, i.e. which
have no proper subtype of C as type but C itself. Hence, the universe splits into a family
of disjoint sets OC.
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• a relation val`(w, p) ⊆ `(σ1)× · · · × `(σn) with each predicate symbol p
of type (σ1 × · · · × σn).

Furthermore, nat ∈ Typ, along with 0, 1,+, ·, <,≤,≥, >∈ Σ, are restricted
to have the natural numbers12 N as a fixed interpretation. As notation, fur-
ther define dom(`) := W for occasional use.

Note that in this definition, constant symbols and variable symbols are
treated homogeneously. Since, in ODL, the interpretation of function sym-
bols differs from state to state, the state w defines the value val`(w, ·) on
Σ, while the proper interpretation ` defines it on V , independent from any
states. Moreover, for simplicity, this definition follows the tradition of con-
stant domain semantics in contrast to varying domain semantics. constant do-
main semantics enforces all states to share the same universe, while vary-
ing domain semantics permits distinct universes for different states.

As a matter of convenience, the case of ⊥ can be integrated into the
common objC semantics with obj⊥ being the constant mapping into the
singleton set O⊥ = {val`(w, null)}.

Remark 2.3.2 For τ ∈ Typ, the `(τ) form a lattice with set inclusion ⊆,
set intersection ∩ and union ∪. Moreover, ` respects subtypes, which means
that ` is a monotone map on types, i.e. `(σ) ⊆ `(τ) for each σ ≤ τ .13

Proof: `(σ) =
⋃
ρ≤σ Oρ

σ≤τ

⊆
⋃
ρ≤τ Oρ = `(τ). �

Definition 2.3.3 (Semantic Modification) The operation of a semantic
modification [f(e) 7→ d] of the symbol f : σ → τ at the position e ∈ `(σ)14 to
the value d ∈ `(τ) transforms the state w of the interpretation ` by

val`(w[f(e) 7→ d], a) :=

{
f ′ ⇐ a = f

val`(w, a) ⇐ a 6= f

with f ′ := (b 7→

{
d ⇐ b = e
val`(w, a)

(
val`(w, b)

)
⇐ b 6= e

}
)

12An isomorphic copy of N as domain for the type nat would be sufficient.
13However note that ` usually is no homomorphism of lattices on types. For example

`(Car ∪ Boat) = `(Vehicle) 6= `(Car) ∪ `(Boat), because the common super class of Car

and Boat would be Vehicle. Yet there are vehicles that are neither cars nor boats but
planes.

14Note that f(e) is not a term here, since e is just an element of the domain of inter-
pretation, not a term. Further, note that a similar definition applies in the case of higher
or lower arities of f .
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The semantic modification of ` at x ∈ V to d is defined similarly by

val`[x7→d](w, a) :=

{
d ⇐ a = x

val`(w, a) ⇐ a 6= x

2.3.3 Valuation of Formulas

A homomorphic continuation extends the interpretation ` of symbols to val-
uations of compound formulas as follows. The valuation val`(w, c) is already
defined for symbols c ∈ Σ∪V according to Def. 2.3.1, and will be extended by
homomorphic continuation to all formulas. Pursuing the inductive structure
of expressions in the definitions 2.2.2-2.2.4, the semantics of a term, formula
and program will be defined by simultaneous induction in the following def-
initions 2.3.4-2.3.8.

Definition 2.3.4 (Valuation of Terms) Let w be a state of an interpre-
tation `. The valuation of terms with respect to ` and w is defined as follows.

1. val`(w, f(t1, . . . , tn)) :=
(
val`(w, f)

)(
val`(w, t1), . . . , val`(w, tn)

)
,

when f is a function symbol of arity n and t1, . . . , tn ∈ Trm(Σ∪V ) are
terms.

2.
val`(w, ifφ then r else t fi) :=

{
val`(w, r) ⇐ val`(w, φ) = true

val`(w, t) ⇐ val`(w, φ) = false

when r, t ∈ Trm(Σ ∪ V ) are terms.

3. val`(w, 〈U〉t) := val`(w
′, t) with wρ`(U)w′ like for formulas.15

Definition 2.3.5 (Valuation of Formulas) Let ` be an interpretation and
w ∈ dom(`) = W a state. The valuation of formulas with respect to ` and
w is defined as follows. Let t, t′, t1, . . . , tn ∈ Trm(Σ ∪ V ), φ ∈ Fml(Σ ∪ V ),
α ∈ Prg(Σ ∪ V ) and x ∈ V a variable of type τ .

1. val`(w, p(t1, . . . , tn)) :=
(
val`(w, p)

)(
val`(w, t1), . . . , val`(w, tn)

)
,

when p is a predicate symbol of arity n.

2. val`(w, t instanceof C) = true :⇐⇒ val`(w, t) ∈ `(C)16, when C ∈
Typ is a type.

15This is a simpler case, as updates are deterministic and terminating.
16`(C) is the set of all individual objects in the universe of interpretation ` that belong

to the type C or a subtype.
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3. val`(w, t
.
= t′) = true :⇐⇒ val`(w, t) = val`(w, t

′).

4. val`(w, φ ∧ ψ) is defined as usual. The same holds for ∨,¬,→,↔.

5. val`(w,∀xφ) = true :⇐⇒ for each d ∈ `(τ) true = val`[x7→d](w, φ).

6. val`(w,∃xφ) = true :⇐⇒ there is d ∈ `(τ) true = val`[x7→d](w, φ).

7. val`(w, [α]φ) = true :⇐⇒ for each w′ ∈ W with wρ`(α)w′ true =
val`(w

′, φ).

8. val`(w, 〈α〉φ) = true :⇐⇒ there is w′ ∈ W with wρ`(α)w′ true =
val`(w

′, φ).

Remark 2.3.6 Quantification is type-dependent. For variables x and y of
distinct types σ and τ , the formulas ∀xφ and ∀y φ express different facts
since `(τ) 6= `(σ), in general. The meaning of a quantification is always well-
defined on the basis of the predefined type of the bound variable. To support
the readability of formulas, the notation ∀x : τ φ is short for ∀xφ with an
external declaration of the type of x being τ .

2.3.4 Execution of Programs

Definition 2.3.7 (Clash) The update f1(s1)Ct1, . . . , fn(sn)Ctn produces a
clash in state w of interpretation `, whenever some si and sj with fi = fj
happen to evaluate to the same location val`(w, si) = val`(w, sj) in the current
context of valuation, but ti and tj do not. Otherwise, the update is called
clash-free.

As notation, the relation sρ`(α)t holds if in interpretation `, state t can
be reached from s by execution of the program α.

Definition 2.3.8 (Valuation of Programs) Let s, t be states of an inter-
pretation `. The valuation of programs with respect to ` is defined as follows.

1. ρ`(α; γ) := {(s, t) : sρ`(α)u , uρ`(γ)t for any u}.

2. sρ`(if(φ) {α}else{γ})t :⇐⇒

• val`(s, φ) = true and sρ`(α)t, or

• val`(s, φ) = false and sρ`(γ)t.

3. sρ`(while(φ) {α})t :⇐⇒ there is n ∈ N , s=s0, s1, s2, . . . , sn= t ∈ W
with
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• for each 0 ≤ i < n siρ`(α)si+1.

• for each 0 ≤ i < n val`(si, φ) = true.

• val`(sn, φ) = false.

4. ρ`(f1(t1)Cs1, . . . , fn(tn)Csn) := {(s, t) : s ∈W ,
t = s[f1(val`(s, t1)) 7→ val`(s, s1)] . . .[fn(val`(s, tn)) 7→ val`(s, sn)]} for
clash-free updates. Similarly for higher arities.

5. ρ`(cCm(o, t)) is defined to be the smallest relation R satisfying the equa-
tion R = ρ`(α

′), when α is the method body of m with parameter y and
return-value parameter17 r. α′ is obtained from α by replacing y by t
and r by c.18 Note that in the case of arbitrary recursion, the forming
of the fixed-point is necessary to yield a well-defined semantics.

Like JavaCardDL and While, ODL does not consider statements
about the behaviour of non-terminating programs runs other than that they
do not terminate.

ODL chooses to relate object allocation and quantification by (rela-
tivised) constant domain. This means that on the level of the logic ODL,
all objects initially exist to persist throughout the interpretation of the ex-
ecution. Then object allocation amounts to setting a flag for the particular
new object specifying that it really has been created by a program statement
execution (refer to §3.4.2 for a more circumstantial discussion). The other
objects just wait passively for their activation by program activity.

In order to avoid technical subtleties ODL disallows side-effects resulting
from expression evaluation19. Note that there is no need to specify the evalu-
ation order of ODL expressions because of the lack of side-effects. Any order
will lead to the same results in the same states. Just m(o, t) statements have
side-effects, but are syntactically limited to occur as the only expression of a
statement. Thus, in a certain way, there are no proper side-effects, but only
one complex “major” effect per statement. See §3.4.1 for more details on this
issue.

ODL did not introduce a syntactic distinction between rigid and non-
rigid constants. All constant symbols are allowed to take a different value in
distinct states. However, some symbols never will do so, as for example the
term 2+7 always ought to evaluate to the same number. So even though this

17This work does not assume a fixed formal notation for methods and formal parameters
but relies on the reader’s intuition, instead.

18For simplicity assume that the argument t is rigid for α. Otherwise consider the method
body bCt;αb

y, instead, with b being a new constant symbol.
19Except for return-value evaluation during direct method calls of the form cCm(o, t).
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term has the function symbol + as top-level symbol and is thus non-rigid,
2 + 7 will never make use of this degree of freedom. Similarly, an update like
objC(5)CobjC(2) to object enumerators would destroy the bijection property
of the interpretation of objC postulated in Def. 2.3.1, which is why they will
be forbidden.

Remark 2.3.9 ODL is restricted in order to disallow updates to terms with
top-level symbol 0,+, ·, objC, nextC.

20 For this reason, those constant symbols
behave rigidly, i.e. for each program α it is � ∀x (0

.
= x→ [α]0

.
= x).

2.3.5 Consequences

The next definitions introduce the standard concepts of satisfaction and con-
sequence relation. The concept of semi-local consequence is from (Fitting &
Mendelsohn, 1998).

Definition 2.3.10 (Satisfaction and Validity) For a state w of an in-
terpretation ` and a formula φ ∈ Fml(Σ∪ V ) define the satisfaction relation
� as

`, w � φ :⇐⇒ val`(w,Cl∀ φ) = true

` � φ :⇐⇒ for each w ∈ dom(`) `, w � φ

Where Cl∀ φ := ∀x1 . . . ∀xn φ is the universal closure of the formula φ with
the free variables {x1, . . . , xn}.

Definition 2.3.11 (Semi-Local Consequence) The consequence relation
�B between a formula χ ∈ Fml(Σ ∪ V ) and a set of local premises Ψ ⊆
Fml(Σ ∪ V ) with a set of global premises Φ ⊆ Fml(Σ ∪ V ) is defined as

Φ � Ψ B χ :⇐⇒ for each interpretation ` with ` � Φ :

for each state w (if `, w � Ψ then `, w � χ)

Where ` � Φ means that ` � φ for each φ ∈ Φ, and `, w � Ψ means that
`, w � ψ for each ψ ∈ Ψ. The local consequence relation �l and the global
consequence relation �g are defined as

Ψ �l χ :⇐⇒ � Ψ B χ

Φ �g χ :⇐⇒ Φ �B χ

In the case of Φ = ∅ the notation �l ψ shall be sufficient instead of ∅ �l ψ.

20nextC will be required and therefore introduced in §3.4.2.
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Remark 2.3.12 (Consequence Correspondence) The local consequence
relation is, in general, stronger than global consequence: �l⊆�g, i.e.

Φ �l χ ⇒ Φ �g χ

Moreover, in the case of Φ = ∅, local and global consequence coincide, because
of which it is possible to write � instead of �l in such situations.

�l χ ⇐⇒ �g χ

Lemma 2.3.13 (Local Deduction Theorem) Let Φ,Ψ ⊆ Fml(Σ ∪ V )
and F, χ ∈ Fml(Σ ∪ V ).

Φ � Ψ ∪ {F} B χ ⇐⇒ Φ � Ψ B (Cl∀ F → χ)

This deduction theorem is global with respect to variables.

Proof: simple by Def. 2.3.11 �

Lemma 2.3.14 (Global Deduction Theorem) Let Φ,Ψ ⊆ Fml(Σ ∪ V )
and F, χ ∈ Fml(Σ ∪ V ).

Φ ∪ {F} � Ψ B χ ⇐⇒ Φ � Ψ ∪
⋃

n∈N

{�nF} B χ

with {�nF} := {[α1] . . . [αn]F : αi ∈ Prg(Σ ∪ V )}

A proof of Lem. 2.3.14 is contained in §A.3 along with the required machinery.
The definitions 2.3.10 and 2.3.11 cause that local and global consequence

relations are global with respect to variables, which leads to an implicit uni-
versal treatment of free variables. Global consequence for variables is a non-
critical convenience.

Remark 2.3.15 The stronger condition below is sufficient for Φ �l ψ to
hold. Unlike the definition of �l, this stronger condition treats both, states
and free variables locally.

for each interpretation ` for each state w

( for each φ ∈ Φ val`(w, φ) = true) implies val`(w,ψ) = true

Definition 2.3.16 (Local Equivalence) The local equivalence relation ≡
between formulas φ and ψ is defined as

φ ≡ ψ :⇐⇒ for each interpretation ` for each state w

(`, w � φ ⇐⇒ `, w � ψ)
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2.3.6 Clash Semantics

Def. 2.3.8 only defined the semantics of clash-free parallel updates, while the
meaning of an update in the presence of clashes has been left undefined until
now. Now it is time for a discussion of the possible choices for clash semantics,
which exhibit considerable impact on the calculus. The justification for the
actual ODL choice of clash semantics alternatives will therefore have to
be delayed until Def. 4.2.5, when all concepts affected by the choice of the
clash semantics have been introduced. A premature judgement – as would
be possible at the current stage – could not cope with the demands of an
appropriate discussion.

Clashes occur in an update 〈f(s1)Ct1, f(s2)Ct2〉 whenever s1 and s2 hap-
pen to evaluate to the same location in the current context (i.e. state) of
valuation, but t1 and t2 do not. In this situation, 〈f(s1)Ct1〉 resp. 〈f(s2)Ct2〉
represent contradictory state updates and one has to select which modifica-
tion to the interpretation of f to execute, since performing both at once is
impossible.

There are at least five essentially different choices for clash semantics.
Last-win semantics defines that the last update to a location takes precedence
over earlier updates to the same location. In the example, f(s2)Ct2 will be
performed, while f(s1)Ct1 takes no effect in case of a clash. Although seeming
an arbitrary and odd choice from a logical perspective, last-win semantics is
closest to the semantics of imperative programming languages.

Lock semantics is guided by the intuition that conflicting updates some-
how seem ill-defined and should thus produce no sensible state transition.
Whenever an update contains a clash, execution stops (by error) as there is
no next state. More formally, in case of a clash, ρ`(f(s1)Ct1, f(s2)Ct2) = ∅.
This is the approach taken for ASM updates.

Skip semantics is guided by the intuition that conflicting updates some-
how seem ill-defined and should thus be ignored. Whenever an update con-
tains a clash, the whole update is discarded and no change occurs at all.
More formally, ρ`(f(s1)Ct1, f(s2)Ct2) = {(s, s) : s ∈ dom(`)} holds for
those states that produce a clash.

Nondeterministic clash semantics resolves the update execution choice
nondeterministically, i.e. whenever updates conflict because multiple values
should be assigned to the same location, one of the updates is chosen in an
unpredictable way. Especially this intrinsically unpredictable selection pro-
cess may come to different choices in very similar formal contexts. Formally,
ρ`(f(s1)Ct1, f(s2)Ct2) = ρ`(f(s1)Ct1) ∪ ρ`(f(s2)Ct2).

Arbitrary clash semantics resembles nondeterministic clash semantics in-
sofar as some choice is taken from the conflicting updates, but the choice
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is fixed in some arbitrary way. Thus, contrary to the nondeterministic clash
semantics, arbitrary clash semantics still is deterministic. Last-win semantics
is a special case of arbitrary clash semantics.

Although no choice of clash semantics is clearly superior to all others, we
choose last-win semantics for reasons that will be discussed in §4.2.5 after
the calculus has been introduced and all impact for the overall verification is
conceivable.

2.4 Exemplary Application

The purpose of ODL is threefold. First, ODL defines an underlying program-
ming language for object-oriented programming. Second, the logic ODL is a
specification language that can be used to specify the behaviour of programs
written in ODL. And third, ODL comes along with a verification calcu-
lus, which is able to prove conjectures about programs. The ultimate ODL

scenario will thus begin by writing an object-oriented program in ODL, spec-
ify its behaviour in the ODL logic, and prove that the program meets its
specification in the ODL calculus. As already mentioned in case 2 of §1.3
other application scenarios involve standard object-oriented programming
languages like Java, C++ or C# and work by transformation into ODL.

Example 2.4.1 As an introduction, consider the following Java program
fragment.

int round ( int c ) {
i f ( c % 2 == 0)

c = c + 2 ;
else

c = c + 1 ;
return c ;

}

For a concise ODL translation of the above program to ODL assume | as
a built-in divisibility relation.21 This relation is not necessary but simplifies
the notation. Then the translation leads to the following ODL program α.

if(2 | c) {cCc+ 2}else{cCc+ 1}

21Divisibility is definable by adding the following axiom.

a | b ↔ ∃k :int k · a
.
= b
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For simplicity, consider the simpler variant α′, first, which has already been
presented in Ex. 2.1.1.

if(2 | c) {dCc+ 2}else{dCc+ 1}

For specifying the behaviour of α′ in ODL, there are a number of possibil-
ities. It is known what happens in the case that the branching condition is
true. When 2 actually divides the current value of c, then after all executions
of the program α′ the program variable d will have the value of c plus 2. In
formulas:

2 | c→ [α′]d
.
= c+ 2

Similarly, the following formula specifies the behaviour of program α in case
that c initially is odd, though without reference to the | condition.

∃k :nat c
.
= 2 · k + 1 → [α]d

.
= c+ 1

This knowledge can be combined with the description of the behaviour in
the case of a true branching condition to form a specification of α′.

(2 | c→ [α′]d
.
= c+ 2) ∧ (¬(2 | c) → [α′]d

.
= c+ 1)

The specification below directly repeats the case distinction performed in the
program but in retrospect after the modality. This is only possible because
α′ does not modify c. For a general solution see (Platzer, 2004).

[α′]
(
(2 | c→ d

.
= c+ 2) ∧ (¬(2 | c) → d

.
= c+ 1)

)

From this a more “integrated” specification of α′ can be obtained.

[α′]d
.
= (if 2 | c then c+ 2 else c+ 1 fi)

In some scenarios, a more satisfactory solution could, however, be a more
intentional specification of α′: One describing the quality of the outcome
rather than describing the process of computation carried out to reach it.
What α′ computes is a function that rounds its input up to the next greater
even number. This result can be described with the following specification.

[α′](d > c ∧ 2 | d ∧ ∀y′ (y′ > c ∧ 2 | y′ → y′ ≥ d))

With some standard mathematical notation, however, this specification can
be refined to a far simpler version. Let c÷ d denote the integer division of c
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by d.22 Then the following ODL formula is a specification of α’.

[α′]d
.
= 2 · (c÷ 2) + 2

Moving back to the original ODL program α the question remains what
an analogue specification could look like. As far as α is concerned, there is a
problem with referents: Since α modifies its input variable c one needs some
way to distinguish the value of c prior to the run of α and the value of c after
the execution of the program α. For this purpose the specification remembers
the prestate value of c in a (rigid) variable c0 for later referral. This gives the
following specification of α.

∀c0 (c0
.
= c → [α]c

.
= 2 · (c0 ÷ 2) + 2)

By the implicit universal quantification of free variables this is equivalent to
the following specification.

c0
.
= c → [α]c

.
= 2 · (c0 ÷ 2) + 2

This formula says that – presuming a start in a state in which the prestate
value of c has been remembered in the logical variable c0 – α has the effect
that after each possible (successful) execution, c will be the sum of the pre-
vious value of c rounded down to the closest even number, and of 2. What
this specification does not talk about is whether the program α has any (suc-
cessful) terminating runs at all. The following specification says that there is
a successfully terminating run in which the postcondition holds. Yet, it does
not specify the effect of any other termination cases.

c0
.
= c → 〈α〉c

.
= 2 · (c0 ÷ 2) + 2

In the case of deterministic programs like α there can be at most one ter-
minating run. Therefore the formula φ→ [α]ψ expresses that if the program
terminates, the poststate reached will surely satisfy ψ provided that the
initial state satisfies φ. The ODL formula φ → 〈α〉ψ, on the other hand,
expresses that the program really does terminate and the poststate reached
will satisfy ψ provided that the initial state has satisfied φ. �

22This integer division takes two integers and gives the integer part of the division of c
by d with fractions round down. It is of course definable in first-order logic.

z
.
= c÷ d ↔ ∃r :nat (r < d ∧ c

.
= z · d+ r)

In general it is c÷ d 6= c
d
.
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2.5 Variation

Definition 2.5.1 (Substitution) A (uniform variable) substitution is a
total endomorphism σ : Trm(Σ ∪ V ) → Trm(Σ ∪ V )23 of finite support,
i.e.

(m) σ
(
f(t1, . . . , tn)

)
= f

(
σt1, . . . , σtn

)
for each f(t1, . . . , tn)

(var) σ|Σ = id
(fin) σ|V = id p.t.24

i.e. dom(σ) := {x ∈ Σ ∪ V : σx 6= x} is finite

Substitutions are assumed to be type-safe, i.e. they respect the type gradua-
tion: for each τ ∈ Typ map σ has the type Trm(Σ ∪ V )τ → Trm(Σ ∪ V )τ .
The precise inductive effect of substitutions is summarised in Fig. 2.3, with
a straightforward component-wise generalisation to updates of higher-arities
or simultaneous updates. [s 7→ t] is the substitution replacing s by t, and φts
denotes the result of applying [s 7→ t] to φ.

σ(if e then s else t fi) = if σe thenσs elseσt fi
σ(t instanceof C) = (σt) instanceof C

σ(s
.
= t) = (σs)

.
= (σt)

σ(φ ∨ ψ) = (σφ) ∨ (σψ)
σ∀xφ = ∀xσφ
σ〈α〉φ = 〈σα〉σφ
σ[α]φ = [σα]σφ

σ(if(χ) {γ}else{δ}) = if(σχ) {σγ}else{σδ}
σ(f(s)Ct) = (f(σs)Cσt)

σ(γ; δ) = (σγ) ; (σδ)
σ(while(χ) {γ}) = while(σχ) {σγ}

Figure 2.3: Inductive Substitution: This figure describes the effect of substi-
tutions on terms and formulas. For simplicity assume that x /∈ dom(σ) has
been ensured by α-renaming of bound variables.

As an important technical device, ODL needs the concept of admissi-
ble and wary substitutions. They constitute a syntactical approximation of
equivalence classes of modality levels and are based on standard first-order
notions of “compatible” substitutions.

23Respectively σ : Fml(Σ ∪ V ) → Fml(Σ ∪ V ) for substitutions on formulas. Formulas
are considered as a special case of terms, here. Then, of course, the condition for the
function symbol f generalises to predicates and operators.

24i.e. σ|V = id holds except for a finite number of variables.

35



Definition 2.5.2 (Admissible)

1. A substitution σ is first-order admissible or free of collisions for a for-
mula φ, if no free variable x occurs within the scope of a quantifier
binding a variable of σx.

2. A substitution [s 7→ t] is admissible (or denotation-preserving) for φ,
if it is first-order admissible and, during the process of substituting s
by t in φ for the formation of φts, neither s nor t trespass modalities
for which they are not rigid, i.e. no s occurs in the scope of a modality
updating a constant symbol of s or t.

Example 2.5.1 For the following formula φ,

x
.
= c → 〈cCc+ 1〉(c ≥ x+ 1)

the substitution [x 7→ c], which replaces all occurrences of x by c, is not
admissible. This is due to the fact that for the forming of φcx as

c
.
= c → 〈cCc+ 1〉(c ≥ c+ 1)

the inductive substitution process trespasses the modality 〈cCc+ 1〉 for which
c is not rigid. Hence, within the scope of the modality, constant symbol c sud-
denly denotes a different value than outside the modality, thereby destroying
the property of the occurrences of x, or – after the substitution – c, to share
the same value throughout the formula. Instead, a substitution of x by d+ 1
in φ to form φd+1

x is admissible for different constant symbols d. �

Remark 2.5.3 In this thesis all substitutions are assumed to be admissible.
Name clashes can always be resolved by α-renaming bound variables, which
is assumed to happen implicitly.

Definition 2.5.4 (Wariness) The wary substitution ̂[s 7→ t] corresponding
to a first-order admissible substitution [s 7→ t] works like [s 7→ t] but discon-
tinues the substitution process in front of modalities for which s or t are not
rigid25. Furthermore, by definition, substitutions never replace the top-level
symbol of the left hand side in an update.

Similarly, σ̂ is the wary26 substitution corresponding to a (non-singleton)
substitution σ.

25Of course, here, this only amounts to a syntactic criterion for rigidity like no update
to a non-rigid function symbol of t occurs within the modality.

26The notation σ̂ comes from the German word for wary, “behutsam”, of which an
etymological root is “Hut”, which also means “hat” and is a colloquial name for the sign
“ ̂”.
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Example 2.5.2 For the formula φ from Ex. 2.5.1, applying the wary substi-

tution ̂[x 7→ c] corresponding to the substitution [x 7→ c], which has turned
out to be not denotation-preserving, leads to the following admissible re-
placement

c
.
= c → 〈cCc+ 1〉(c ≥ x+ 1)

�

The concept of wariness is similar to the concept of admissibility in first-
order logic, which says that a substitution σ is admissible for a formula φ, if no
free variable x of φ occurs within the scope of a quantifier binding a variable
of σx. Both notions of admissible and wary substitutions strive to ensure that
identical symbols still denote the same values after the substitution, provided
they did so before. For proving such a behaviour formally, the introduction
of a schematic symbol is convenient that combines the treatment of multiple
syntactic entities into one notation. Occasionally, this schematic symbol will
still be of use during the next chapters as well.

Remark 2.5.5 The schematic symbol Υ matches all formula and term con-
structor symbols except quantifiers, modalities and program constructors. Υ
also concerns logical constant symbols like +, if then else fi,∧. Likewise, in
this context, u is a generalised formal parameter and may as well represent
an n-tuple of arguments for 0 ≤ n ∈ N.

Lemma 2.5.6 (Substitution Lemma) Let σ be an admissible substitu-
tion27 on a term (or formula) t, then the substitution principle holds, i.e.

for each interpretation ` for each state w val`(w, σt) = valσ∗`(w, t)

where σ∗` := `[x 7→ val`(σx)] is the semantic modification28 (of `) adjoint
to σ.

Proof: The substitution σ is a homomorphic29 continuation of σ|Σ∪V to
Fml(Σ ∪ V ). Likewise the valuation ` is a homomorphic continuation of the
interpretation `|Σ∪V to Fml(Σ ∪ V ). Assume σ = [u 7→ σ(u)] is a singleton
substitution. Since most parts of this proof only refer to state w, write –
by an abuse of notation – val`(t) or even `(t) instead of val`(w, t), whenever
appropriate. Note that this abbreviated notation is incompatible with the
original notation from Def. 2.3.1 and will only be used in this proof.

27Here the substitution σ may simultaneously replace any number of logical variables or
– in case of wariness – program variables. There are generalisations of what a substitution
can replace for which the substitution lemma still holds.

28This semantic modification `[x 7→ val`(σ(x))] is meant for all variables x ∈ V .
29In this proof this means: except for quantifiers and modalities.
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val`(w, σt) = valσ∗`(w, t)

Figure 2.4: Syntactic Substitution vs. Semantic Modification

IA If t = z ∈ Σ ∪ V is atomic then there are two cases to consider.

I z ∈ dom(σ) ⇒ `(σz) = `[z 7→ val`(σz)](z) = σ∗`(z)

II z /∈ dom(σ) ⇒ `(σz) = `(z) = σ∗`(z)

IS Because σ and ` are homomorphic, the conjecture follows as a ho-
momorphic continuation of case IA. More explicitly, consider the case
t = Υ(u) for induction. Then

`(σt) = `
(
σ
(
Υ(u)

))

σ hom.
= `

(
(σΥ)(σu)

)

` hom.
= `(σΥ)

(
`(σu)

)

IH
= σ∗`(Υ)

(
σ∗`(u)

)

σ∗(`) hom.
= σ∗`

(
Υ(u)

)

= σ∗`(t)

∃∀ There is a similar argument for the case t = ∃y φ of quantifiers. This
case makes use of the premise that σ is admissible, which results in y
not occurring in any replacements made by σ, especially y /∈ σ

(
(Σ∪V )\

{y}
)
, at least for the relevant variables that actually occur in φ. This

fact will be denoted more symbolically as y /∈ σx. After α-conversion
it can further be assumed that BV (t) ∩ dom(σ) = ∅. Then

`(σt) = `
(
σ
(
∃y φ

))

σ hom.
= `

(
∃y σφ

)

` “hom.”
⇐⇒ there is d `[y 7→ d](σφ)

IH
⇐⇒ there is d σ∗

(
`[y 7→ d]

)
(φ)
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⇐⇒ there is d `[y 7→ d][x 7→ val`[y 7→d](σx)](φ)

⇐⇒ 30 there is d `[x 7→ val`[y 7→d](σx)](φ)
σy=y
⇐⇒ there is d `[x 7→ val`[y 7→d](σx)][y 7→ d](φ)

y/∈σx,adm.
⇐⇒ there is d `[x 7→ val`(σx)][y 7→ d](φ)

⇐⇒ there is d (σ∗`)[y 7→ d](φ)
σ∗(`) “hom.”

⇐⇒ σ∗`
(
∃y φ

)

= σ∗`(t)

(I) If t = φ = [α]ψ then it remains to show the case with u ∈ FV (φ). σu
is rigid for α by premise ⇒

val`(s, σφ) = true

⇐⇒ for each sρ`(α)s′ true = val`(s
′, σψ)

IH
= val`[u7→val`(s′,σu)](s

′, ψ)
rigid
⇐⇒ for each sρ`(α)s′ true = valσ∗`(s

′, ψ)
s.b.
⇐⇒ for each sρσ∗`(α)s′ true = valσ∗`(s

′, ψ)

⇐⇒ valσ∗`(s, φ) = true

It still remains to show that ρ`(σα) = ρσ∗`(α).

(a) If α is of the form f(s)Ct, then

wρ`(σα)w′

⇐⇒ w′ = w[f(val`(σs)) 7→ val`(σt)]
IH

⇐⇒ w′ = w[f(valσ∗`(s)) 7→ valσ∗`(t)]

⇐⇒ wρσ∗`(α)w′

(b) α = γ; δ, then

wρ`(σα)w′

⇐⇒ there is w′′ wρ`(σγ)w
′′ , w′′ρ`(σδ)w

′

IH
⇐⇒ there is w′′ wρσ∗`(γ)w

′′ , w′′ρσ∗`(δ)w
′

⇐⇒ wρσ∗`(α)w′

30Since y also occurs as one of the generic names x, the first modification of y is void
because it will be overwritten by the `[x 7→ . . . ] operation. y will still be modified to d.

39



(c) α = if(χ) {γ}else{δ}, then consider the case that val`(σχ) =
true, which – by induction hypothesis – is equivalent to valσ∗`(χ) =
true. Then

ρ`(σα)

= ρ`(σγ)
IH
= ρσ∗`(γ)

= ρσ∗`(α)

The same argument holds for the case of val`(σχ) = false or
valσ∗`(χ) = false, respectively.

(d) α = while(χ) {γ} is similar.

�

In order to extend the variable substitution lemma to more general sub-
stitutions allowing to replace constants or general terms, Lem. 2.5.6 is used
for mediation. Two formulas that emanate from each other by replacement
of terms are also related by an intermediate formula involving a new variable
instead of the occurrences of the affected terms. From the variable version of
the formula, each variant can be reached by ordinary substitution, thereby
relating all three variants by a substitution principle.

Proposition 2.5.7 (Generalised Substitution Lemma) Let σ be an ad-
missible constant31 or variable substitution on a term (or formula) t, then the
substitution principle holds, i.e.

for each interpretation ` for each state w val`(w, σt) = valσ∗`(σ
∗w, t)

where σ∗` := `[x 7→ val`(σx)] and σ∗w := w[x 7→ valw(σx)] are the
semantic modifications32 adjoint to σ.

Proof: Assume σ = [c 7→ s] with a constant symbol c and term s. The
conjecture is proven by mediation. For this proof, let t0 denote the variant
of t obtained by replacing all occurrences of c by the new variable z. From t0
the term t can be reached just as well as σt by ordinary variable substitution:

t = t0
c
z

σt = tsc
= (t0

c
z)[c 7→ s]

= t0
s
z

31i.e. a variable substitution that is further allowed to substitute constant symbols by
other terms.

32The semantic modifications are meant for all variables x ∈ Σ, respectively x ∈ V .
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Then the valuation of the mediator t0 relates the valuation of t and σt.
Abbreviate val`(w, s) by d, and val`(w[c 7→ d], c) by e.

val`(w[c 7→ d], t) = val`(w[c 7→ d], t0
c
z)

2.5.6
= val`[z 7→e](w[c 7→ d], t0)

= val`[z 7→d](w[c 7→ d], t0)

c/∈t0= val`[z 7→d](w, t0) (2.1)
2.5.6
= val`(w, t0

s
z)

= val`(w, σt)

This concludes the proof. Nevertheless, for possible generalisations let us
closely examine the properties of c that have been used during this proof. In
case of a compound expression c = f(u) a semantic modification w[c 7→ d]
of c to some value d simply has to be rewritten to w[f(val`(w, u)) 7→ d]
according to Def. 2.3.3. What is important, though, is that c /∈ t0 does no
longer justify (2.1) in case of compound c (refer to Ex. 2.5.3). The condition
under which the above proof generalises to other c reads as follows.

for each interpretation ` for each state w

val`(w[c 7→ d], t0) = val`(w, t0) (2.2)

with d abbreviating val`(w, s). The abstraction of (2.2) in comparison to (2.1)
is the change in notation for the interpretation `, which is only legitimate
in this uniform way because val`(w, s) does not depend on the particular
interpretation of the new variable z. �

Example 2.5.3 Let us investigate the futile attempt to receive a similar
substitution lemma for general terms. Consider a compound term substitu-
tion [f(s) 7→ 0] on f(u) > 0 ∧ f(s)

.
= 0. Suppose there is some state w that

contingently satisfies `, w � s
.
= u with d being the value val`(w, s). Then

there is the following discrepancy.

val`(w, (f(u) > 0 ∧ f(s)
.
= 0)0

f(s))

= val`(w, f(u) > 0 ∧ 0
.
= 0)

6= val`[f(d)7→0](w, 0 > 0 ∧ 0
.
= 0)

= val`[f(d)7→0](w, f(u) > 0 ∧ f(s)
.
= 0)

�
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Chapter 3

Transformation

3.1 Overview

This section shows that a translation from a dynamic logic of an object-
oriented programming language to ODL is possible. As a representative
example for the object-oriented source language we choose JavaCardDL

(Beckert, 2000; Ahrendt et al., 2004; JavaCard, 2004). The translation will
take place on several layers. On the type layer, a representation of class, field
and method types has to be found within ODL, which contains all infor-
mation necessary for later type dependent statements. On the code layer, a
single block of source code in JavaCardDL has to be translated into a
piece of program in ODL, which has the same effect. Thus, the translation
has to preserve the semantics, and – in order to avoid unnecessary encoding
– also preserve structure as much as possible. During the discussion of this
section, it will be investigated why ODL has its specific structure, what are
intrinsic qualities and what contingent choices.

3.2 Object-Oriented Features

Object-oriented programming languages provide a rich set of features or qual-
ities. This section briefly examines which features are non-essential to object-
orientation from a logical perspective. The next sections will then deal with
those features that demand more attention in their translation in more detail.

Amongst the most promoted features of object-oriented programming,
we find aspects of pure software-engineering effect. As such, the coupling
of state and behaviour, encapsulation and information hiding are very im-
portant on the one hand. But on the other hand, they are only very soft
characteristics of mere architectural importance, and their presence imposes
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no semantical effect. Except perhaps for a minor subtlety with information
hiding, which is strongly related to visibility constraints: accessibility mod-
ifiers affect the scope of symbols, and thereby the denotational meaning of
symbols in some context. Modifiers like public/protected account to static
information during the compilation, only. Therefore they can safely be ig-
nored after a successful compiler run, in which the semantical name analysis
phase can impose unique naming conventions on all variables, such that vari-
ables for physically distinct entities do not share the same name anymore.
Then scoping and visibility concerns have already been resolved and do not
require any further consideration during the semantics and inference of the
logic. Thus, their removal is a mere simplification of which the validity can
be assured by simple compiler technology, but not a crucial one. For these
reasons, ODL can ignore the three software-engineering qualities: coupling
of state and behaviour, encapsulation and information hiding.

Next, there are more contingent features of object-oriented programming
languages. Inner classes are a non-essential recent addition to programming
languages like Java and C#. They are not yet supported by C++ or Sim-

ula. As can be anticipated from the recency of this change, inner classes do
not account for an essential characteristic of object-orientation. Rather they
provide implementational and scoping simplifications. Further there is a very
straightforward translation flattening the class containment hierarchy such
that inner classes are reduced to ordinary outer classes with explicit asso-
ciations. Likewise, field overriding or hiding and shadowing is non-essential,
and several coding conventions even discourage the use of field overwriting
in favour of adequate accessor methods.

The UML standard (Rumbaugh et al., 1998; Rumbaugh et al., 1999) pro-
motes associations as a central modelling concept of object-orientation. Yet,
even most contemporary object-oriented programming languages do not have
dedicated language constructs for associations but rely on a representation
with ordinary attributes within the implementation (Balzert, 2001). Thus,
ODL can employ the same representation and does not need to take special
care about associations. Although a few languages like C# have built-in lan-
guage constructs for events, most programming languages like Java do not,
from which can be concluded that they do not constitute a central aspect
of object-orientation. Indeed, rather simple syntactic transformations reduce
dedicated events to standard programming language constructs. Most fea-
tures thus have been unveiled as mere syntactic sugar covering a simple code
translation.

Side-effects would impose strict evaluation order constraints and several
other complications on the calculus, which is why we want to avoid side-
effects within ODL for the sake of simplicity. Translating an expression
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evaluation involving side-effects to a sequence of statements that are free
of side-effects is possible and straightforward anyway, as the KeY inference
rules demonstrate.

Exceptions and other reasons for abrupt completion, like loop break, con-
tinue or intermediate return statements, complicate almost all inference rules
dealing with program blocks or expression evaluation. Therefore, in the spirit
of simplicity ODL prefers to abstain from built-in exception handling. Even
more so as the presence of exceptions would further necessitate a treatment
of partiality, i.e. some expression evaluations could fail1 and still have to be
completed regularly in some meaningful but exceptional way. Such aspects of
partial logic usually lead to more special cases, checks and case distinctions
within the semantics and calculus.

As will be seen in the next sections, there are some more essential fea-
tures of object-orientation, which can nevertheless be emulated very natu-
rally within the logic ODL without adding additional syntactic features to
the language. Object creation and ad-hoc polymorphism in the form of dy-
namic dispatch will turn out to belong to this class. Further, in contrast
to the type inheritance that spans the subtype hierarchy, implementation
inheritance is a mere coding productivity device and can be emulated by
delegation or by source code replication in a rather simple way. At the ex-
pense of additional invocation indirections, delegation is simpler than source
code copying because it avoids renaming and scoping subtleties. Copying is
also less convenient because it leads to a tremendous amount of source code
duplication during the preprocessing transformation. Thus, all those features
have been unveiled – at least from a logical perspective – to reduce to bare
syntactic sugar.

Amongst those features that ODL has to keep in order to maintain a
proper object-oriented feeling, field access and subtyping will be found. Al-
though the virtues of field access are hidden in ordinary function symbols,
they constitute a tremendously important aspect to (imperative) object-
orientation: function symbols of a modifiable interpretation in order to per-
mit write access to the state of an object. In conjunction with dynamic type
information, subtyping is essential to retain the flavour of “object = state
+ behaviour”, since dynamic typing permits to emulate ad-hoc polymor-
phism. In much the same respect in which field access provides objects with
a unique state, dynamic typing provides a unique behaviour for each object.
Furthermore, the fact that objects can be distinguished even in case they
contingently happen to share the same values for all their fields ensures that

1For example due to a NullPointerException raised because of an intermediate evalu-
ation of t.a in a context where t happens to be null.
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objects have a unique identity.

3.3 Type Transformation

The relevant type information that is subject to translation essentially con-
sists of the class hierarchy. For this purpose, all that classes reduce to is their
subtype relation, and the type signatures of all their methods and fields in-
cluding information about overwriting. Furthermore, for reasons of a simpler
presentation assume field overwriting has been resolved via method overwrit-
ing of corresponding accessor methods. Field hiding is assumed to be resolved
by renaming as well. This is not a strict requirement, but as practical ap-
plications barely use field overwriting without accessor methods anyway, the
technical details of a finer treatment do not legitimate the effort.

The type translation from a source language like JavaCardDL to ODL

is immediate. The class hierarchy in JavaCardDL directly carries over to
the subtype relation of ODL with the lattice completion of Ex. 2.2.1. A
member field f : σ1 × . . .× σn → τ of class ζ is represented as a non-rigid
function f : ζ × σ1 × . . .× σn → τ , which stores at position (o, a1, . . . , an)
the value that the field f of object o has at position (a1, . . . , an). There-
fore, instead of the familiar object access operator in a JavaCardDL term
like t.a, the notational variant a(t) is used. Likewise instead of an array
access t.a[i], the term a(t, i) is used , resp. b(s, i, j) instead of s.b[i][j]. A
method m : σ1 × . . .× σn → τ of class ζ is represented as a procedure
m : ζ × σ1 × . . .× σn → τ , which will be called in ODL with arguments
(o, a1, . . . , an) in case of an invocation of m on object o with arguments
(a1, . . . , an) in JavaCardDL like o.m(a1, . . . , an).

Although the most apparent change of object-oriented programming in
comparison to classical imperative programming – the object access oper-
ator “dot”, particularly in conjunction with method calls – disappears in
ODL, this circumstance just has to be considered as a notational varia-
tion favoured in the spirit of a maximum simplicity of concepts. Admittedly,
keeping the standard dot access operator would maintain a more immediate
object-oriented flavour from a näıve position. But with this syntactic device
only disguising its root in ordinary function application, the classical function
notation is preferred for simplicity. Within practical examples comparable to
Java, the more convenient notation o.x is often used instead of the more
uncommon x(o), though.

What still needs to be resolved in case of the method call is the virtual
dispatch according to the run-time type information2, which will be dealt

2Usually this involves only run-time type information about the invocation object o,
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with in §3.4.4 about code transformation.

3.4 Code Transformation

This section takes care of the translation of statements and pieces of Java-

CardDL program code.
Apart from resolution of side-effects during expression evaluation, which

has to be performed throughout the translation, while-loops and if-statements
remain unchanged3. Assignments will be translated directly into singleton
updates.

The features to be taken care of include side-effects during expression
evaluation, order of operand evaluation, object creation, dynamic dispatch
of method calls, built-in operators, abrupt completion due to jumps or ex-
ceptions, exception handling and raising.

Despite their practical relevance, aspects of multi-threading and con-
currency (Apt & Olderog, 1997) or machine-size floating-point arithmetic,
pointer-arithmetic, as well as meta-programming like reflection or dynamic
class loading will not be considered in this thesis.

3.4.1 Side-Effects & Evaluation Order

Example 3.4.1 The order of operand evaluation can be significant in the
presence of side-effects during expression evaluation. For this purpose con-
sider the following program.

public class Weird {
private int x = 7 ;
private int incx ( ) {

x = x+1;
return x ;

}

private int decx ( ) {
x = x−1;
return x ;

}

but some programming languages provide multi-dimensional virtual dispatch.
3with the exception of standard normalisation techniques for getting rid of tail check

loops pdo S while(a)qand iteration loops pfor ( i=1; i<10; i++)q. They can be found in
any standard textbook about compiler construction.
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public int r e s u l t ( ) {
// e qu i v a l e n t to r = (++x) ∗ (−\ ,− x ) ;
int r = incx ( ) ∗ decx ( ) ;
return r ;

}
}

After executing pnew Weird().result()q, the resulting value depends on the
order of operand evaluation, not just the operator evaluation order. In case of
left-to-right evaluation r will evaluate to 56, in case of right-to-left evaluation
r is 42. �

Although the semantics of side-effects during expression evaluation ought
not have much practical impact due to the massive readability limitations
of substantially side-effecting programs, the transformation has to present a
solution for programs that rely on side-effects, nevertheless.

Side-effects would constitute a serious inconvenience for the calculus4, for
during application of the inference rules, all expression and statement eval-
uations have to be performed in the fixed sequential order imposed by the
evaluation order semantics. As the example above shows, the calculus could
contradict language semantics otherwise. Especially troublesome is this situ-
ation for the programming language C++, which leaves order of evaluation
mainly undefined. Verification therefore has to consider all possible orders of
evaluation for correctness proofs.5

Whatever choice ODL takes for the order of operand evaluation, any
source language conventions of operand evaluation order can be realised.
Therefore, ODL could safely fix strict left-to-right operand evaluation order.

Example 3.4.2 Assume JavaCardDL uses right-to-left operand evalua-
tion order, but ODL left-to-right. Then translate a JavaCardDL program
like

r = m(x ) ∗ g (x ) ;

into the following ODL program

int t2 = g (x ) ;
int t1 = m(x ) ;
r = t1 ∗ t2 ;

4Side-effects are further inconvenient for language semantics.
5Although this tremendous amount can be reduced by structural composition of “bi-

valent” proofs about the insensitivity of evaluation-orders, which means that whenever
it can be proven about the immediate operands of each operator that the result is irre-
spective of the left-to-right or right-to-left evaluation-order, the value of the whole term
is independent from evaluation-order.
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Because of the sequential composition operator having a left-to-right eval-
uation order in ODL, the above program possesses the intended order of
side-effect.6 Obviously, such a translation is necessary in the presence of side-
effects. �

What the JavaCardDL to ODL translation has to achieve, is to dispose
of all side-effects in an order respecting the evaluation order constraints of
the source language. As the discussion above indicates, this is possible. In
particular, the translation from Ex. 3.4.2 already achieves this effect as a
byproduct. Thereafter, the particular choice of evaluation order for ODL

does not matter anymore.

3.4.2 Object Creation

Object creation has to ensure three things. First, dynamic type checks have
to be possible on the newly created objects, which implies that the dynamic7

typing information has to be stored somehow and in a fashion compatible
with the dynamic type-check instanceof rules. Second, object identity has
to be established, i.e. two objects created by two distinct invocations of new
have to be understood as different objects. And third, object creation should
maintain the current extension of a class. This means maintenance of an
(implicit) set of the objects created so far by program statement execution,
in order to support varying domain semantics by relativising quantification
in the ODL constant domain setting. For these purposes, new objects are
represented as terms of the form objC(n). Keeping the dynamic type informa-
tion C in this term solves the first problem. The second problem is solved by
increasing the object identifier n for each8 invocation of new. The sequential
linear order of N solves the third problem.

Object creation can be treated, for example, using the following transla-
tion scheme. An occurrence of 〈cCnew C()〉 in JavaCardDL is translated to

6Notice the difference between operator evaluation order (which is rather crucial) and
operand evaluation order (which can be arranged arbitrarily with the above construction).

7Despite the static typing of ODL, dynamic type information is necessary because the
actual dynamic type of a constant symbol c declared of type C can be any subtype D ≤ C

as well. Furthermore, this dynamic type can depend on the previous program statements
in an undecidable way.

8This would constitute a reason for a global next counter. A global counter would
ensure object identity throughout all classes without having to deal with questions of class
equality in the calculus. However, global counters unnecessarily complicate the mainte-
nance of the current extension of a particular class C. Because of which we prefer a whole
variety of counters that are local to their class C.
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the ODL update
cCobjC(nextC),
nextCCnextC + 1

With this translation, a dynamic type check in a term like t instanceof C
is possible according to the dynamic type information C stored in all newly
created objects objC(n).9

The linear increment of nextC provides the proper existence informa-
tion for relativising quantification to varying domain semantics in the ODL

constant domain setting. A quantification like ∀x :C φ in varying domain se-
mantics10 corresponds to the following relativised quantification in the ODL

constant domain semantics.

∀n (n < nextC → φobjC(n)
x ) (3.1)

The most important property to establish is that newly created objects
are never equal to other objects. This object identity will be maintained by
incrementing the nextC counter. Since the object enumerator objC is injective
and guaranteed to produce results from disjoint sets of objects (Def. 2.3.1),
this counter increase is sufficient to produce distinct objects at each creation.

Hidden in this treatment of object identity lies one subtlety, though.
Modalities in different formulas of the same sequent will come up with the
same object identifiers for different incarnations of new C(). Therefore, one
is likely to suspect conflicts resulting from naming different entities from
different origins identically. In the following example, the same objC(1) term
results from two different invocations of new C(), about which one has to make
sure that object identity is not endangered. The sequent calculus notation
will be introduced formally in Chapt. 4.

a(objC(1))
.
= 0 ∧ z

.
= objC(1) ` a(objC(1))

.
= 0 ∧ z

.
= objC(1)

〈cCnew C()〉(a(c)
.
= 0 ∧ z

.
= c) ` 〈dCnew C()〉(a(d)

.
= 0 ∧ z

.
= d)

Yet, this actually corresponds to the semantics. Reasoning about two proposi-
tionally connected different formulas like in 〈α〉φ∨〈γ〉ψ amounts to assessing
two a priori independent ways of how program states could evolve from the
current state, either according to the algorithm α or according to the pro-
gram γ. On some particular level of modality, each occurrence of a modality
represents a different trace of how the state could evolve, with all underly-
ing programs started in the same initial state. In the example above, both

9There will be a discussion with some more clarifications on this topic when the calculus
has been introduced in §4.2.4.

10i.e. with quantification restricted to range over the set of objects that really have
already been created with an explicit invocation of new.
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programs should even behave equally and thus also come up with the same
results, for both are equivalent apart from variable renaming. With differ-
ent object identifiers for the two different occurrences of a program in the
sequent, the proof would not succeed as it should.

More technically speaking, two independent11 invocations of two pro-
grams on the same machine state will (usually) use the same locations in
memory for their next allocation.

In comparison to alternative approaches of dealing with object creation,
the objC and nextC representation has some advantages. The formula (3.1)
for relativising possibilist quantification (Fitting & Mendelsohn, 1998) in
constant domain to actualist quantification in varying domain semantics is
mere first-order and does not introduce proper dynamic-logic aspects. For
example, explicit loop traversal in dynamic-logic would be unavoidable to re-
produce the current extension in a list-based representation. By the nature of
the counter approach, it is further provable that at all states of program exe-
cution there will always be only a finite number of currently created objects,
never an infinite amount. Those created objects will also be kept consecu-
tively in memory.

3.4.3 Garbage Collection

In the presence of a garbage-collection mechanism the simple ODL treat-
ment of object creation is no longer a direct model of the real machine
behaviour. The problem with garbage collection is that Java object allo-
cation will no longer return objC(nextC) with nextC increasing linearly. In-
stead by garbage collection and recycling the memory of an old object, say
objC(nextC−17) allocation of a new object may result in the very same mem-
ory location respectively objC(nextC − 17). Then the ODL linear increment
model is not always faithful. However, the defining conditions of sufficiently
wise garbage collection imply that by the time object allocation has revived
objC(nextC−17) for its second use, no other (life) object can have a reference
to the old objC(nextC−17). Thus, traversing the object reference graph from
any life object will never lead to objC(nextC − 17). From this perspective,
as far as the behaviour is concerned that can be observed by execution of
program statements, both objC(nextC) and objC(nextC − 17) are indistin-
guishable by any other properties than equality.12 The fact that objC(nextC)

11Think of this as two programs run on two separate machines, which share the same
identical initial memory state.

12At least when assuming the common normalisation that object allocation is always
followed by a period of clearing all attributes of the newly allocated object to 0 in order
to abstract program behaviour from the old memory contents. Even though we have not
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and objC(nextC−17) cannot be distinguished by execution of ODL program
statements is also due to the prohibition of reference comparison and pointer
arithmetics like in C++.

This meta-reasoning argument shows that – due to the absence of pointer
arithmetics – program behaviour cannot depend on the particular memory
location returned by the memory allocator, because of which any such object
will do. This includes cleared old objects that have been revived by garbage
collection, because they cannot have distinguishing object references from
outside when following any references of life objects. Therefore simply as-
suming that the ordinary objC(nextC) is allocated instead of any garbage
collected old object cannot make a difference. Since the ODL logic does not
incorporate resource constraints like limited memory, the ODL calculus and
semantics can safely stick to allocating objC(nextC) without any effect on
the program or loss of verification power. Regardless of the final object re-
allocation behaviour, implicit destructor invocations have to be dealt with
for a translation from programming languages with both garbage collection
and destructors.

3.4.4 Dynamic Dispatch

In case of finite subtypes13, dynamic dispatch of method calls can be reduced
to ordinary procedure calls. If ODL had function pointers alias formal proce-
dures, dynamic dispatch could also be resolved for arbitrary type hierarchies
with the help of the usual method dispatch tables (Wilhelm & Maurer, 1997).
However, ODL prefers to use type cascades for reasons of conceptual sim-
plicity and presentation.

Example 3.4.3 Dynamic dispatch can be resolved by a simple pattern. In
general, dynamic dispatch occurs in situations like the one sketched in the
following JavaCardDL program.

class B {
public int m( int i ) {

return i + 1 ;
}

}
class C extends B {

officially demanded attribute clearing in ODL this would be an obvious refinement.
13Finite subtypes means that for any type τ there are finitely many subtypes of τ . This

does not necessarily imply a finite number of types, since there could still be an infinite
number of roots in the class hierarchy. However, for reasons of simplicity assuming a finite
type hierarchy is preferable.
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public int m( int i ) {
return i ∗ 2 ;

}
}
class D extends B {

public int m( int i ) {
return i + 4 ;

}
}
class E extends D {

public int m( int i ) {
return i − 1;

}
}
public class Main {

public int main (B b ) {
return b .m( 1 0 ) ;

}
}

In this case, for instance, the methods m that are subject to overriding can be
renamed to classname m. Furthermore, a dedicated dispatch method for indi-
rection is introduced instead of the original method definition. This method
performs dynamic dispatch with an if cascade of dynamic type checks. The
hierarchical order of type checks needs to be bottom-up to establish flat
one-dimensional checks instead of nested if cascades.

class B {
/∗∗
∗ s u b s t i t u t e f o r invoca t i on o f b .m( i )
∗/

public stat ic f ina l int m(B b , int i ) {
i f ( b instanceof E) {

return ( (E)b ) . E m( i ) ;
} else i f ( b instanceof D) {

// i t i s d e c i s i v e , t h a t t h i s check
// occurs a f t e r t h a t f o r E
return ( (D)b ) .D m( i ) ;

} else i f ( b instanceof C) {
return ( (C)b ) .C m( i ) ;

} else i f ( b instanceof B) {
return ( (B)b ) .B m( i ) ;
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} else {
// cannot occur due to
// complete type h i e rarchy

}
}
public f ina l int B m( int i ) {

return i + 1 ;
}

}
class C extends B {

public f ina l int C m( int i ) {
return i ∗ 2 ;

}
}
class D extends B {

public f ina l int D m( int i ) {
return i + 4 ;

}
}
class E extends D {

public f ina l int E m( int i ) {
return i − 1;

}
}
public class Main {

public int main (B b ) {
return B.m(b , 1 0 ) ;

}
}

�

In ODL, the cast operations are assumed unchecked, with this respon-
sibility transferred to explicit dynamic type checks via instanceof . Hence,
cast operations do not produce any visible effect at all, because of which they
are assumed to have not more than mere documentation purpose.

Resolving ad-hoc polymorphism by explicit type-check cascades in the
above way also leads to some drawbacks in conjunction with encapsulation.
As far as the logic itself is concerned, encapsulation does not provide any se-
mantics and type-check cascades do not impose theoretical problems. How-
ever, from a practical theorem prover perspective, encapsulation provides
pragmatical advantages. In particular, the above resolution of ad-hoc poly-
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morphism leads to non-modular and non-local proofs. For example, the addi-
tion of a subclass invalidates the whole proof, thereby necessitating a similar
repetition of all proofs about all programs that possibly invoke methods of
the new class. This is due to the fact that the underlying type-check cascade
has changed as a result of altering the class hierarchy by adding a new class.
From a pragmatic perspective, verification systems would need encapsulation
in the form of proof components that allow the assembly of a global proof
from modular local proofs, which moreover remain rather stable over pro-
gram evolution or specification adjustment. Instead, the presence of a proof
reuse mechanism (Beckert & Klebanov, 2004) in KeY should alleviate the
consequences of this type-check cascade approach to dynamic dispatch. A
proof reuse mechanism can track the changes of a new proof obligation in
comparison to an older proof attempt and replicate elder inferences for the
“equivalent” part. This could cope with the additional type-case statement
resulting from the addition of a new class in a more flexible way.

3.4.5 Abrupt Completion

Reasons for abrupt completion are circumstances in which execution leaves
sequential composition order14. In Java, exception throwing, return state-
ments, breaks and continues constitute reasons for abrupt completion. In
all those cases, the next statement to execute is not generally determined
context-free, but depends on global structural properties of the program. To
some respect, exceptions form the most general case of reasons for abrupt
completion, because all other reasons can be reduced to exceptions by simple
program transformations.

Example 3.4.4 Take a look at the following Java program with an inter-
mediate return statement.

int m( ) {
int c = 0 ;
for ( int i = 0 ; i < 10 ; i ++) {

i f ( i % 2 == 0) {
c = c + (1 << i ) ;

} else i f ( i % 2 == 1) {
c = c − (1 << i ) ;

}

14More precisely, wherever execution continuation cannot be expressed by a context-free
Chomsky-2 grammar (in an adequately simple non-transitive way without dependency on
dynamic properties of the program).
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i f ( c > 10) {
return 1 0 ;

}
}
return c ;

}

Intermediate return statements as occurring in the above program, can be
reduced to exception throwing as follows.

public class Return extends Exception {
public f ina l int returnValue ;
public Return ( int value ) {

this . returnValue = value ;
}

}

int m( ) {
int c = 0 ;
try {

for ( int i = 0 ; i < 10 ; i ++) {
i f ( i % 2 == 0) {

c = c + (1 << i ) ;
} else i f ( i % 2 == 1) {

c = c − (1 << i ) ;
}
i f ( c > 10) {

throw new Return ( 1 0 ) ;
}

}
throw new Return ( c ) ;

}
catch ( Return r ) {

return r . returnValue ;
}

}

The final return statement is left as the last statement of the method for
clarity. If this last return statement should be avoided as well, the catch

statement for the Return would have to be moved further up the invocation
trace to the caller. �
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Example 3.4.5 Intermediate break statements experience almost the same
treatment as intermediate return statements.

int m( ) {
int c = 0 ;
loop1 : for ( int i = 0 ; i < 10 ; i ++) {

int power = 1 ;
for ( int j = 0 ; j < i ; j ++) {

power = 2 ∗ power ;
i f ( power > 20) {

break loop1 ;
}

}
c = c + power ;

}
return c ;

}

Loop breaking statements as in the above program can be reduced to the
raising of exceptions as follows.

public class Loop1Break extends Exception {
public Loop1Break ( ) {}

}
int m( ) {

int c = 0 ;
try {

for ( int i = 0 ; i < 10 ; i ++) {
int power = 1 ;
for ( int j = 0 ; j < i ; j ++) {

power = 2 ∗ power ;
i f ( power > 20) {

throw new Loop1Break ( ) ;
}

}
c = c + power ;

}
}
catch ( Loop1Break b ) {}
return c ;

}

�
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Example 3.4.6 Consider a program with intermediate continuation state-
ments.

int m( ) {
int c = 0 ;
loop1 : for ( int i = 0 ; i < 10 ; i ++) {

int power = 1 ;
for ( int j = 0 ; j < i ; j ++) {

power = 2 ∗ power ;
i f ( power == 15) {

continue loop1 ;
}

}
c = c + power ;

}
return c ;

}

Loop continuation statements as in the above program can be reduced to the
raising of exceptions as follows.

public class Loop1Continue extends Exception {
public Loop1Continue ( ) {}

}
int m( ) {

int c = 0 ;
for ( int i = 0 ; i < 10 ; i ++) {

try {
int power = 1 ;
for ( int j = 0 ; j < i ; j ++) {

power = 2 ∗ power ;
i f ( power == 15) {

throw new Loop1Continue ( ) ;
}

}
c = c + power ;

}
catch ( Loop1Continue cont ) {}

}
return c ;

}

�
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3.4.6 Exception Handling

Exceptions are not part of ODL, but have to be emulated for an adequate
treatment of JavaCardDL exceptions and – by the transformation in §3.4.5
– other reasons for abrupt completion. On the level of ODL, exceptions can
either be treated intrinsically within the logic or by preprocessing program
transformation. The intrinsic treatment involves appropriate inference rules
that pass exceptions up the call stack to the first matching catch clause (refer
to (Beckert & Sasse, 2001) for a treatise on exception handling). In the case of
immediate program transformation, instead, exception handling will appear
explicitly within the program in the form of flags.

Example 3.4.7 Consider the following integer division program.

try {
// perform in t e g e r d i v i s i o n z = x / y
z = 0 ;
while ( x >= y ) {

int o ld x = x ;
x = x − y ;
i f ( x == old x ) {

throw new DivisionByZeroEx (x , y ) ;
}
z = z + 1 ;

}
// use r e s u l t z f o r f u r t h e r computation

}
catch ( DivisionByZeroEx r a i s e d ) {

// handle d i v i s i o n by zero somehow
}
catch ( OutOfMemoryEx r a i s e d ) {

// handle memory ove r f l ow somehow
}

It can be transformed automatically into a program that does not use excep-
tion raising and handling anymore. Still it makes use of the class hierarchy
of exceptions, which is just a question of convenience15.

// perform in t e g e r d i v i s i o n z = x / y
z = 0 ;
Exception r a i s e d = null ;

15Of course, any other class hierarchy duplicating the properties of the user-defined
exceptions would suffice.
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while ( r a i s e d == null && x >= y ) {
int o ld x = x ;
x = x − y ;
i f ( x == old x ) {

r a i s e d = new DivisionByZeroEx (x , y ) ;
}
i f ( r a i s e d == null ) {

z = z + 1 ;
}

}
i f ( r a i s e d == null ) {

// use r e s u l t z f o r f u r t h e r computation
} else {

// ca t ch ing e x c ep t i on s
i f ( r a i s e d instanceof DivisionByZeroEx ) {

// handle d i v i s i o n by zero somehow
} else i f ( r a i s e d instanceof OutOfMemoryEx ) {

// handle memory ove r f l ow somehow
} else {

// cont inue f u r t h e r up the execu t i on
// t race by re tu rn ing ra i s ed

}
}

Notice that, contrary to several other transformations, the exception handling
program transformation affects most surrounding statements as well. �

Of course, the program transformation approach of exception handling
leads to rather unreadable programs, which is why most modern program-
ming languages do incorporate a concept of exceptions. Still this transforma-
tion allows uncovering exceptions as non-essential to object-orientation, and
permits excluding dedicated exception constructs from ODL without loss of
generality. Reintegrating the exception handling of (Beckert & Sasse, 2001)
into ODL is straightforward, at least as long as exceptions are restricted to
be raised from top-level statements rather than during ordinary expression
evaluation.

The main advantage of banning exceptions from ODL is that all expres-
sions have a defined value without the need for a treatment of partiality in
the logic. For example, the truth-value of an expression like null.a

.
= 5 is

neither bound to be true nor false, a priori. Still such an expression needs
to receive a well-defined semantics. This problem gets worse for assignments
like null.aC17, which requires a well-defined manner of execution as well.
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Then the logic ODL would have to promote the exceptional case of values
being null throughout the inductive valuation. Moreover, null would need a
proper exceptional treatment in the inference rules. Banning exceptions from
ODL alleviates all those technical complications at the cost of more explicit
preprocessing transformations.

3.4.7 Built-In Operators

An extension of the ODL logic by built-in operators of the source language
is straightforward, provided that there is a suitable axiomatisation of the op-
erator semantics. The most important case for practical program verification
is modular integer arithmetics. For simplicity ODL assumes the mathemat-
ical notions, instead of the peculiarities of JavaCardDL. See (Beckert &
Schlager, 2004; Schlager, 2002) for more information on this topic. Depend-
ing on the programmer’s intention there are several possibilities for proving
statements about programs involving modular arithmetic.

1. The program is intended to work within a range of integers that is
assumed to keep away from the machine size by presupposition. Under
this assumption, proving properties of programs does not need any
special treatment of modular arithmetic.

2. The effect of the program is constrained in such a way that the limit
on input values prohibits any overflow during program execution. Then
the special treatment of machine integer arithmetic will amount to a
proof that no intermediate value ever exceeds, say, 264, which is possible
within ODL without extension.

3. The program is designed for correct behaviour even in the case of mod-
ular overflow or it specially exploits the overflow effects.

Only the last case requires dedicated modular integer arithmetics treatment.
One way to achieve this would, of course, be to use an explicit embedding
of the, say 8-bit, machine-size integers into the unbounded data type nat of
natural numbers. A modular multiplication c = a · b of two machine-sized
numbers will then use the following translation.

c′Ca · b;
while(c′ ≥ 256) {c′Cc′ − 256};
cCc′
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A better approach, though, is to define a modulus operator mod within
ODL and use it to perform modular arithmetic.16

cCa · b mod 256

Adding the modulus operator does not lead to a proper extension of ODL,
since mod can be characterised by the following defining formula.

r
.
= a mod n ↔ ∃z :nat a

.
= z · n+ r ∧ r < n

With this operator, the definition of a dedicated modular arithmetic addition
operator via a ∗8−bit b := a · b mod 256 is possible. However, keeping the
mod operator explicit could be of advantage in order to simplify proofs by
exploiting homomorphic properties of modulo mappings. In comparison to

a+8−bit b ∗8−bit (c+8−bit d)

which expands to

a+
(
b · (c+ d mod 256) mod 256

)
mod 256

A simplification to this term can be achieved still by using the property
that x 7→ x mod 256 is a homomorphism of rings, thereby saving a lot of
intermediate modular arithmetic inferences.

a+ b · (c+ d) mod 256

In the remainder of this thesis further assume a corresponding built-in
treatment of addition and multiplication of concrete natural number liter-
als like 3 + 4 to 7, for convenience. Converting such built-in rules into the
formalism of ordinary inference rules is straightforward.

3.5 Discussion

After we have seen that it is possible to reduce programs of other object-
oriented programming languages like Java to ODL, let us continue with a
discussion of the particular structure of ODL. As can be seen from the lit-
erature, there are other approaches to minimal object-oriented programming
languages conceivable as well.

16The lax notation a · b mod 256 means (a · b) mod 256, the modulo operator applied to
the two arguments a · b and 256.
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Most features of modern object-oriented programming languages, in fact,
turn out to be orthogonal to the concepts of object-orientation. The question
of side-effects and abrupt completion is independent of object-orientation.
They are an issue in functional and declarative programming languages, too.
Prolog, for example, allows side-effecting evaluation, while Mercury (So-
mogyi et al., 1995; Dowd et al., 2000) prohibits side-effects. Mercury and
ISO Prolog permit exception handling, whereas other Prolog dialects do
not provide such techniques. Haskell is a pure functional language without
side-effects, while Lisp itself is impure, i.e. allows side-effecting expression
evaluation. All those orthogonal aspects of the programming language have
been removed from ODL since we intend to study object-orientation in iso-
lation, albeit on top of the standard control structures of While.

Cast operations are assumed to perform no type checks, because the
instanceof predicate already is responsible for type checking. Thus, casts
do not contribute anything to the flavour of object-orientation. In most cases
the presence of casts only hints at lacking parametric genericity, anyway.

Object creation is in principle very well part of object-orientation and
would thus bring along enough justification to be included into an object-
oriented language. The simplicity of the translation and the fact that the
resulting axiomatisation in §4.2.4 is totally immediate, militate for the ex-
clusion from ODL, though. Further advocacy for this exclusion originates
from the highly successful practical performance achieved with the ODL

approach as will become clear in §4.3.
As far as dynamic dispatch is concerned, it has a straightforward emula-

tion with dynamic type checks according to §3.4.4. Thus, there is no pressing
demand to include native dynamic dispatch into ODL. However, to a cer-
tain extent, this is a matter of taste. The converse emulation of dynamic type
checks with dynamic dispatch is possible as well, although at the expense of
requiring an encoding of class types into objects.17 We opt for the inclusion
of the simpler concept of dynamic typing information and an emulation of
dynamic dispatch, rather than the other way around.

Assignment to complex expressions or change of the interpretation of
function symbols, cannot be removed from ODL without losing the opera-
tional basis of imperative object-oriented programming, which permits the
change of structured data and dynamically typed. Of course, this pertains to
a schematological notion without arbitrary artificial coding.

17cf. “meta”-objects of type java.lang.Class in Java.
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Chapter 4

Proof Theory

4.1 Overview

With this chapter presenting a program verification calculus for ODL, it
constitutes the practical mechanism for verifying whether a formula is true
about a program or false. In order to show that the proof mechanism cannot
produce false answers but always comes to the right conclusions §4.4 estab-
lishes the soundness proof. The complementary statement that a verification
system based on the ODL calculus makes use of the computing capabilities
available to Turing machines on the highest possible degree is contained in
§4.5. This vague statement will also be made formally precise via the classical
notion of relative completeness in §4.5.

4.2 Calculus for ODL

In this section we present a calculus for proving ODL formulas. A calculus is
the foundation of a program verification system and constitutes the central
basis of an implementation as a theorem prover.

Definition 4.2.1 (Sequents) For finite sets Γ,∆ of formulas, a sequent is
defined as

Γ ` ∆ :=
∧

φ∈Γ

φ→
∨

ψ∈∆

ψ

Γ is called the antecedent and ∆ the succedent of the sequent.

The constituents of sequents being considered as sets effectuates that the
multiplicity and order of occurrences of the formulas is irrelevant.

The ODL calculus consists of rules R1 to R47 presented in figures 4.1 to
4.7 on pages 70–74 and 79–80.
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Definition 4.2.2 (Derivation & Inference) Let Φ,Ψ ⊆ Fml(Σ ∪ V ) be
(finite1) sets of formulas. Ψ is derivable from Φ, if there is n ∈ N and
there is Φ=Φ0, Φ1, Φ2, . . . ,Φn=Ψ ⊆ Fml(Σ∪V ) such that for each i < n
for each φ ∈ Φi+1 there is P1, . . . , Pn ∈ Φi with

P1 . . . Pn

φ

is an instance2 of an inference rule in the ODL calculus.
Short notation: Φ ` Ψ. In case of Ψ = {ψ} write Φ ` ψ instead of Φ ` {ψ}.
Further, ` Ψ is an abbreviation for ∅ ` Ψ.

Although soundness itself will be proven in §4.4, the notion of soundness
already plays a role in the remainder of this discourse. Soundness establishes
one connexion between syntactical inference and semantical consequence.
Since there are two notions of consequence there will also be two notions of
soundness.

Definition 4.2.3 (Soundness) An inference rule

C1 . . . Cn

D

is called sound wrt. �l , if C1, . . . , Cn �l D. Similarly, the inference rule is
called sound wrt. �g, if C1, . . . , Cn �g D.

The next result allows to generalise top-level inference rules to modal
situations. This is especially useful for pragmatic reasons in order to shortcut
derivations by applying inference rules prior to unfolding all formulas by the
update application mechanism. The conjecture demonstrates that soundness
is not disturbed by performing inferences inside (some) nested formulas. Any
inference rule can also be applied within an update prefix, with the update
prefix spreading to each formula involved in the original inference rule.

Proposition 4.2.4 (Contextual Lifting) Provided that Γ,∆ are not both
empty,

Γ′ ` ∆′

Γ ` ∆
sound wrt. �l ⇒

[α]Γ′ ` 〈α〉∆′

[α]Γ ` 〈α〉∆
sound wrt. �l

1This set is assumed finite for simplicity. In case of compact or finitary consequence
relations, this imposes no restriction.

2i.e. schematic variables of the inference rule schema experience arbitrary instantiations
in order to match the present case.
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Especially, in case of deterministic terminating programs like updates or
cascades of conditional updates this statement can be refined as follows and
generalised to n ≥ 1 premises.

Γ′ ` ∆′

Γ ` ∆
sound wrt. �l ⇒

〈α〉Γ′ ` 〈α〉∆′

〈α〉Γ ` 〈α〉∆
sound wrt. �l

Proof: For a sequent context ∆ of the form φ1, φ2, . . . , φn the symbolic
notation 〈α〉∆ is an abbreviation for 〈α〉φ1, . . . , 〈α〉φn rather than 〈α〉(φ1 ∨
· · · ∨ φn), here. Similarly, [α]∆ abbreviates [α]φ1, . . . , [α]φn.

1. First, we show the conjecture for the case of empty antecedents Γ =
Γ′ = ∅. Let w be any state of some interpretation `, then assume `, w �
〈α〉∆′. From this we can conclude that for some w′ with wρ`(α)w′ it

is `, w′ � ∆′ sound
⇒ `, w′ � ∆

(!)
⇒ `, w � 〈α〉∆.

2. In case of arbitrary antecedents Γ,Γ′, from the soundness of

Γ′ ` ∆′

Γ ` ∆

the conclusion can be drawn by the R1 duality that the following in-
ference rule is sound, too.

` ¬Γ′,∆′

` ¬Γ,∆

Then case 1 allows to deduce the soundness of

` 〈α〉¬Γ′, 〈α〉∆′

` 〈α〉¬Γ, 〈α〉∆

The R1 duality and the ¬〈α〉¬φ ≡ [α]φ duality allow to conclude the
soundness of

[α]Γ′ ` 〈α〉∆′

[α]Γ ` 〈α〉∆

The second conjecture is a direct consequence of the fact that deterministic
terminating programs satisfy 〈α〉φ ≡ [α]φ. �

The next result allows to apply inference rules in sequent context, i.e.
whenever there is a match of a sound inference rule to a part of a sequent, it
can be applied to the whole sequent as well, leaving the additional context
formulas unchanged by the inference application.
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Proposition 4.2.5 (“Context-free inference”)

Φ1 ` Ψ1 . . . Φn ` Ψn

Φ ` Ψ

is sound wrt. �l then the following inference rule is sound wrt. �l

Γ,Φ1 ` Ψ1,∆ . . . Γ,Φn ` Ψn,∆

Γ,Φ ` Ψ,∆

Proof: Provided that Φ1 ` Ψ1, . . . ,Φn ` Ψn � Φ ` Ψ, we have to show

Γ,Φ1 ` Ψ1,∆, . . . ,Γ,Φn ` Ψn,∆ �l Γ,Φ ` Ψ,∆

Abbreviate the formula Φi ` Ψi by χi and Φ ` Ψ by χ. Likewise, combine
Γ and ∆ into one new set of formulas ¬∆,Γ, which will be called ∆ again
for simplicity. Then on the basis that χ1, . . . , χn �l χ the above conjecture
simplifies notationally to

χ1 ∨ ∆, . . . , χn ∨ ∆ �l χ ∨ ∆

Let w be an arbitrary state of some interpretation ` with `, w � χi ∨
∆ for each i , then there are two possible cases.

(I) `, w � ∆ ⇒ `, w � χ ∨ ∆.

(II) `, w 2 ∆ ⇒ for each i it is `, w � χi, from which the soundness
premise allows to conclude that `, w � χ ⇒ `, w � χ ∨ ∆.

�

The inference rules in Fig. 4.1-4.6 (excluding those in Fig. 4.7) are sound
wrt. �l, because of which Prop. 4.2.5 and Prop. 4.2.4 permit adding sequent
context and update prefix to the inference.

Example 4.2.1 (Inference in Context) Consider, for instance, the R23
inference rule, which deals with if-statements.

e ` 〈α〉A ¬e ` 〈γ〉A

` 〈if(e) {α}else{γ}〉A

Since R23 is sound wrt. �l, Prop. 4.2.4 allows to add to the inference rule an
update prefix 〈U〉 consisting of a sequence of updates (or one simultaneous
update) as follows, without losing soundness.

〈U〉e ` 〈U〉〈α〉A 〈U〉¬e ` 〈U〉〈γ〉A

` 〈U〉〈if(e) {α}else{γ}〉A
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Further, since R23 is sound wrt. �l, Prop. 4.2.5 allows to add a sequent
context without losing soundness. Adding the sequent context Γ,∆ leads to
the following.

Γ, 〈U〉e ` 〈U〉〈α〉A,∆ Γ, 〈U〉¬e ` 〈U〉〈γ〉A,∆

Γ ` 〈U〉〈if(e) {α}else{γ}〉A,∆

Finally, the original inference rule R23 has been amended to fit to a situation
like

x > 7 ` 〈cC5〉〈if(x > c+ 1) {cC1}else{cC2}〉c
.
= 1

Due to the omnipresent need for context addition capabilities, we do not
formally distinguish the original inference rule R23 from the more general
variant obtained from Prop. 4.2.4 and Prop. 4.2.5, but assume an implicit
identification, instead. �

4.2.1 First-Order

For propositional logic standard inference rules of sequent calculus are listed
in Fig. 4.1. Similarly, Fig. 4.2 contains a list of standard inference rules
(Schmitt, 2003) for first-order logic, plus an integer induction scheme. Note
that by definition of substitutions in 2.5.1, R16 and R20 also apply equations
within programs in modalities.

Due to the duality of negative formulas in the antecedent and positive
formulas in the succedent of a sequent3, operators that satisfy a duality
relation like ∃xφ ≡ ¬∀x¬φ or 〈α〉φ ≡ ¬[α]¬φ, allow rule abbreviations
of the following kind. Once inference rules for both dual operators have been
specified for succedent occurrences, duality allows to derive the corresponding
rules for antecedent occurrence.4 Therefore, in case of dual operators, we
usually specify only the rules for succedent occurrence.

The propositional and quantifier rules in Fig. 4.1 and Fig. 4.2 have the
effect of transforming more complex formulas occurring in the sequents to
simpler “modal atoms” of the form 〈α〉φ or [α]φ.

4.2.2 Program-Transformation

Fig. 4.3 contains inference rules that transform programs into logical formulas
or into other programs within the modalities.

3cf. ¬ left (R1), ¬ right (R7).
4Similarly, rules for antecedent and succedent occurrence of one operator allow to derive

corresponding rules for the dual operator.
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(R1) ¬ left
` A

¬A `

(R2) ∧ left
A,B `

A ∧B `

(R3) ∨ left
A ` B `

A ∨B `

(R4) → left
` A B `

A→ B `

(R5) cut
A ` ` A

`

(R6) weakening (left)
`

A `

(R7) ¬ right
A `

` ¬A

(R8) ∧ right
` A ` B

` A ∧B

(R9) ∨ right
` A,B

` A ∨B

(R10) → right
A ` B

` A→ B

(R11) axiom

A ` A

(R12) weakening (right)
`

` A

Figure 4.1: Propositional Inference Rules
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(R13) ∀ left
Atx,∀xA `

∀xA `

(R14) ∃ left
AXx `

∃xA `

(R15) induction
` φ(0) φ(n) ` φ(n+ 1)

` ∀nφ(n)
⇐ n new variable

(R16)
.
= subst

Γts, s
.
= t ` ∆t

s

Γ, s
.
= t ` ∆

(R17) ∀ right
` AXx
` ∀xA

(R18) ∃ right
` Atx,∃xA

` ∃xA

(R19)
.
= reflexive

` t
.
= t

(R20)
.
= subst

Γts, t
.
= s ` ∆t

s

Γ, t
.
= s ` ∆

Figure 4.2: First-Order Inference Rules. t is a term,X is a new logical variable
in the sequent, and all substitutions are admissible.

The inference rules translating program statements to logic directly, re-
late the meaning of programs and formulas and are common to dynamic
logic. Except for updates, the Fig. 4.3 handles all program statements. The
treatment that mere program-transformation rules can offer for loops is very
limited, though. The corresponding unwind rules R25, R26 only allow a finite
treatment of loops. Still, they are of much use in inductions about loops.

In conjunction with the propositional and quantifier rules, the program
transformation rules transform formulas to one the following forms.

• 〈U〉φ

• [U ]φ

• 〈U ; while(e) {α}〉φ or

• [U ; while(e) {α}]φ

4.2.3 Term Rewriting

This section presents the inference rules that match on terms instead of
formulas. Therefor, a rewrite relation will be defined on terms, which states
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(R21) composition
` 〈α〉〈γ〉A

` 〈α; γ〉A

(R22) composition
` [α][γ]A

` [α; γ]A

(R23) branch
e ` 〈α〉A ¬e ` 〈γ〉A

` 〈if(e) {α}else{γ}〉A

(R24) branch
e ` [α]A ¬e ` [γ]A

` [if(e) {α}else{γ}]A

(R25) loop unwind
` 〈if(e) {α; while(e) {α}}〉A

` 〈while(e) {α}〉A

(R26) loop unwind
` [if(e) {α; while(e) {α}}]A

` [while(e) {α}]A

Figure 4.3: Program-Transformation Inference Rules
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(R27) update (match)
〈f(s)Ct〉f(u)  if s

.
= 〈f(s)Ct〉u then t else f

(
〈f(s)Ct〉u

)
fi

(R28) update (promote)
〈f(s)Ct〉Υ(u)  Υ

(
〈f(s)Ct〉u

)

⇐ f 6= Υ ∈ Σ

(R29) update (∀ )
〈U〉∀xφ  ∀x 〈U〉φ

⇐ x not in FV (U)

(R30) update (match)
〈U〉f(u)  if sir

.
= 〈U〉u then tir else . . . if si1

.
=〈U〉u then ti1 else f(〈U〉u)fi fi

⇐ (i1, . . . , ir) = (i : fi = f)

(R31) update (distinct)
〈U〉Υ(u)  Υ

(
〈U〉u

)

⇐ U contains no updates to Υ ∈ Σ

(R32) update merge
〈U〉〈U ′〉φ  〈U , f ′

1(〈U〉s
′
1)C〈U〉t

′
1, . . . , f

′
m(〈U〉s′m)C〈U〉t′m〉

(R33) update determinism
[U ]  〈U〉

(R34) update (on formula)
〈f(s)Ct〉p(u)  p

(
〈f(s)Ct〉u

)

⇐ p ∈ Σ predicate

Figure 4.4: Term Rewrite Rules. Here, 〈U〉 is a short notation for the (si-
multaneous) parallel update 〈f1(s1)Ct1, . . . , fn(sn)Ctn〉, and 〈U ′〉 short for
〈f ′

1(s
′
1)Ct

′
1, . . . , f

′
m(s′m)Ct′m〉. The free variables of an update are defined

as expected FV (〈f1(s1)Ct1 . . . fn(sn)Ctn〉) := FV ({s1, . . . , sn, t1, . . . , tn}).
Further, the notation (i1, . . . , ir) = (i : fi = f) selects all indices of top-level
function symbol f without changing the order.
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(R35) term rewrite (left)
φ(t) `

φ(s) `
⇐ (s  t) holds

(R36) term rewrite (right)
` φ(t)

` φ(s)
⇐ (s  t) holds

(R37) conditional term split (left)
(e→ φ(s)) ∧ (¬e→ φ(t)) `

φ(if e then s else t fi) `

(R38) conditional term split (right)
` (e→ φ(s)) ∧ (¬e→ φ(t))

` φ(if e then s else t fi)

Figure 4.5: Rewrite Application Inference Rules: φ(s) is the formula obtained
from φ by an implicit admissible substitution φ(s) = φsz. Usually, uniform
replacement is assumed but not necessary. By convention, the term rewrite
rules are further subject to the constraint that s really occurs within φ(s),
otherwise no proper inference rule application of any visible effect could hap-
pen anyway.
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what term rewrites are allowed throughout the formulas. The term rewrite
relation  is defined by the rules in Fig. 4.4. Whenever the term rewrite
relation s  t holds, a rewrite is possible within any formula, thereby
replacing s by t, which is what the rules in Fig. 4.5 specify.

Update rules are a peculiarity of ODL. Basically, for applying updates to
terms and formulas, there is rule R27 for the case of a match, i.e. potential
changes to (the interpretation of) the specific term at hand. Rule R28 handles
the case of an unquestionable mismatch. In the latter case of distinct top-
level symbols, the change in the interpretation of f cannot affect Υ , but still
the argument u might experience a change. Thus, the effect of the update
has to be promoted to the arguments. Due to the nature of the schematic
symbol Υ , the rules R27, R28 and R29 completely define the effect that
an update has on an expression. Proper parallel updates experience a very
similar treatment in R30 and R31.

Updates stop in the face of modalities, i.e. except for R32, 〈f(s)Ct〉〈α〉φ
or 〈f(s)Ct〉[α]φ remain unchanged by the rules of Fig. 4.4. A special case of
R28 is a rule for atomic symbols. It leads to updates vanishing when they
obviously have no more effects.

〈f(s)Ct〉Υ  Υ ⇐ Υ ∈ Σ ∪ V

In the spirit of simultaneous parallel updates, an important goal for prac-
tical purposes is the merging of multiple single updates into one simultaneous
update. In particular. when thinking of Java as source language, it is obvi-
ous that when the power of simultaneous updates should be used, they have
to be constructed by merging, since only assignments equivalent to single
updates really occur in the program source. Thus, for simultaneous updates
to take their advantages over single updates, inference rules have to combine
sequences of single updates into parallel updates.

The R33 rule is just a formal trick. By definition of the semantics, updates
are deterministic and guaranteed to terminate. For such programs, 〈〉 and []
express the same statement. Therefore all update handling rules for 〈〉 and
[] are identical. The R33 rule achieves this without duplication of inference
rules and without having to introduce schematic modality matching concepts
that allow to formulate inference rules irrespective of the particular type of
modality.

Essentially, the R38 rule matches if e then s else t fi terms in expression
context and rewrites them with s resp. t in the same context. Additionally
it adds new logical operators on top-level. This rule has enough potential
for smaller performance improvements. If, for example, e already appears on
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top-level of the sequent in Γ or ∆, unnecessary branches resulting from (e→
φ(s))∧ (¬e→ φ(t)) can be avoided at this stage. This shortcut optimisation
pays in the context of update application when e is an equation that already
occurs on top-level due to an earlier case distinction affirming or contradicting
the case e. R51 will improve on this issue.

We formally define the process of evaluation by repeated rewrite as fol-
lows and continue to establish a connexion between a parallel update and
equivalent singleton updates. This connexion is stated as a partial conflu-
ence property, which is just as strong as required for concise soundness and
completeness proofs.

Definition 4.2.6 (Evaluation by Fixed-Point Rewriting) The relation
 ∗ is the fixed-point rewrite version of  . s  ∗ t holds if and only

if there is a finite sequence s= s0, s1, . . . , sn= t ∈ Trm(Σ ∪ V ) such that for
each i si  si+1 holds and there is no sn+1 with sn  sn+1. In this case,
we say that s evaluates to t (by rewrite).

Lemma 4.2.7 (Confluence of Parallelised Updates) “Applying merged
updates equals successively applying singleton updates.” More formally: as-
sume there are (singleton) updates U1, . . . ,Un, which merge by the R32 rule

into the parallel update U . Then if5 〈U1〉
(
〈U2〉

(
. . . (〈Un〉t)

))
evaluates to t∗,

then so does 〈U〉t and vice versa.

Proof: It is sufficient to consider the case n = 2 as the essential case of a
structural induction on t.

〈f(s1)Ct1︸ ︷︷ ︸
U1

〉〈f(s2)Ct2︸ ︷︷ ︸
U2

〉f(u)

 〈U1〉if s2
.
= 〈U2〉u then t2 else f(〈U2〉u) fi

 if 〈U1〉s2
.
= 〈U1〉〈U2〉u then 〈U1〉t2 else 〈U1〉f(〈U2〉u) fi

 if 〈U1〉s2
.
= 〈U〉u then

〈U1〉t2

else

if s1
.
= 〈U1〉〈U2〉u then t1 else f(〈U1〉〈U2〉u) fi

fi

 if 〈U1〉s2
.
= 〈U〉u then

5Here, the notation 〈U1〉
(
〈U2〉

(
. . . (〈Un〉t)

))
suggestively expresses that rewrite first

occurs to 〈Un〉t, completely, i.e. 〈Un〉t  
∗ r and, when no more  relations hold for

the result r, then evaluation continues with 〈Un−1〉r etc. In other words, no update merge

(R32) application is allowed in between.
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〈U1〉t2

else

if s1
.
= 〈U〉u then t1 else f(〈U〉u) fi

fi

On the other hand the application of concatenated (in contrast to merged)
updates U1,U2 would lead to the following.

〈f(s1)Ct1, f(s2)Ct2︸ ︷︷ ︸
U ′

〉f(u)

 if s2
.
= 〈U ′〉u then t2 else if s1

.
= 〈U ′〉u then t1 else f(〈U ′〉u) fi fi

From which one can conclude that the only difference between successive
application 〈U1〉(〈U2〉t) and concatenated application U ′ are the extra updates
of s2, t2. The R32 rule just ensures that this update to s2, t2 happens. Thus,
〈U1〉(〈U2〉t) equals 〈U〉t. �

Lem. 4.2.7 allows to ignore parallel updates in completeness and sound-
ness proofs. This has the advantage of a simpler presentation and formulation
of the relevant calculus part, and – by consequence – of inductive proofs about
the calculus.

As Lem. 4.2.7 shows, merging updates is not necessary from a complete-
ness point of view. Pragmatic aspects suggest merging updates to reconcile,
combine and simplify the effects of a sequence of multiple updates in advance,
prior to spreading the effect over the term structure.

From a practical point of view, the R27 rule still has a disadvantage.
Formally, the update application to u duplicates because 〈f(s)Ct〉u occurs
twice. Thus, a very obstinate application of the inference rules would have
to repeat the same term rewrites for both occurrences. Of course this is, in
fact, unnecessary. Instead, one could first evaluate 〈f(s)Ct〉u  ∗ u′ and
then use the result u′ as in if s

.
= u′ then t else f(u′) fi to save term rewrites.

Formally, this could be expressed in the calculus by λ-abstraction with eager
evaluation treatment rules as:

〈f(s)Ct〉f(u)  
(
λz.if s

.
= z then t else f(z) fi︸ ︷︷ ︸

“〈f(s)Ct〉f ′′

)(
〈f(s)Ct〉u

)

However, mere jungle rewriting techniques, which promote rewrite changes
between syntactically identical subterms immediately, are also sufficient to
avoid this update duplication problem. Therefore, we consider this question
as a matter of implementation, not a matter of calculus.
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Applying updates finally does not lead to an impasse but always retains
a closable proof if it had been closeable beforehand, though applying up-
dates may not be necessary for closing some goals. However, what is more
important is to find an adequate balance between not branching to early via
conditional term split and not branching at all. Even though case distinction
is necessary in the general case, determining when to defer its proof branch-
ing is a very complicated problem. The separation of update proof rules into
update application, conditional terms and conditional term split rules clari-
fies this distinction and is necessary at least to some extent for the definition
of more sophisticated update application heuristics.

In conjunction with the propositional, quantifier and program logic trans-
formation rules, the term transformation rules transform formulas to the form
〈U ; while(e) {α}〉φ or [U ; while(e) {α}]φ. Even though it seems that what
is missing here is a rule for the application of, say, the rigid part of U to a
loop at first sight, such an inference rule does not really improve the theorem
prover. This is the reason for the fact that loop handling finally works by one
of the R45, R25 inference rules, which – in the particular ODL calculus –
experience no advantage of a more detailed structure of the loop. Therefore
update application can just as well wait patiently until the other inference
rules tackle or unfold the loop body.

4.2.4 Dynamics

Fig. 4.6 collects all inference rules that are special or characteristic for the
dynamic logic ODL in addition to the overall update mechanism.

For the instanceof (R39) rule to work, the
.
= subst (R16) inference rule is

required. It allows to replace terms by equal terms until the original object
creation expression has been found. Those objC(n) expressions contain the
dynamic type, which allows to decide the truth of an instanceof formula. If
rewrite by equality does not lead to an objC(n) expression, then the truth-
value of instanceof is unknown because the context simply does not contain
enough information about the dynamic type of the term at hand. Then the
proof must continue closing by other means or wait until enough type infor-
mation has been deduced from the context. Of course, it is straightforward
to add inference rules that can decide t instanceof C occurrences according
to the mere static type of t.

As a notational simplification, consider the following abbreviation.

Definition 4.2.8

x
.
= obj ≤ C(n) :=

∨

σ≤C

x
.
= objσ(n)
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(R39) instanceof

` objA(n) instanceof C
⇐ A ≤ C

(R40) instanceof

objA(n) instanceof C `
⇐ A 6≤ C

(R41) new identity

` ∀i :nat ∀j :nat (objC(i)
.
= objC(j) → i

.
= j)

(R42) new disjoint identity

objC(n)
.
= objD(m) `

⇐ C 6= D

(R43) new generated

` ∀o :C ∃n :nat o
.
= obj ≤ C(n)

(R44) ∃ generalisation
A ` B

∃xA ` ∃xB

Figure 4.6: Dynamic Inference Rules
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(R45) loop induction right
Γ ` 〈U〉p,∆ p, e ` [α]p p,¬e ` A

Γ ` 〈U〉[while(e) {α}]A,∆

(R46) 〈〉 generalisation
A ` B

〈α〉A ` 〈α〉B

(R47) [] generalisation
A ` B

[α]A ` [α]B

Figure 4.7: Global Inference Rules. These inference rules are only sound wrt.
�g, because of which Prop. 4.2.5 and Prop. 4.2.4 do not permit adding context
to these rules.

Where � obj⊥(n)
.
= null for simplicity.

The new generated (R43) rule expresses that all objects can be generated
by new object creation expressions, i.e. every object that exists can be created
at some time.6

4.2.5 Clash Semantics Interaction

In §2.3.6 different semantics for parallel updates in the presence of clashes
have been mentioned. This section presents a discussion of their interaction
with the calculus.

The inference rules R32 and R30 constitute the impact of the choice of
clash semantics. In general, proving statements about the a program requires

6Philosophically speaking, all existent things must have had a time of creation, and no
object exists intrinsically all times. Contrary to the philosophical quarrels that arise from
such a statement, in the context of program execution, it has a plausible justification.
Programs have been started at some time, and each object that has been loaded into
memory is the result of a corresponding object construction statement. Thus, the memory
does not contain “surprises” like spontaneously manifesting objects. Therefore, everything
that can be proven about all objects that can ever be created by the program holds for
all existent objects. Since – unlike this intuitive reasoning – the ODL constant domain
semantics assumes that all objects are initially part of the domain, this ought to be put
in another way: Everything that can be proven about all created objects is true about all
objects existing at some time.
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a case distinction.

f(s)Ct;

f(s′)Ct′

The above program α comprises an inherent case distinction because its effect
on a state depends on whether or not s and s′ evaluate to the same location,
which cannot be determined in general. Somehow, a calculus has to decode
the effect of α to “f changes at s′ to t′ (bearing in mind that t′ gets evaluated
in a state where the change of f at s to t already has been performed). If,
furthermore, s and s′ evaluate to distinct locations, then f also changes at s
to t.”

Therefore, at some time during the application or merging of the two
updates above, this case distinction has to be dealt with. One natural choice
would consist of merging the two updates into a joint parallel update. An
alternative would be to defer this distinction just until the application of the
merged update to terms.

Lock, skip, nondeterministic and arbitrary clash semantics need case dis-
tinctions for update merging. However, last-win semantics performs case dis-
tinctions during update application.

The major disadvantage of case distinctions during the time of merging
is that they lead to early case distinctions (leading to replicate parts of the
proof in multiple goals) and tends to produce unnecessary case distinctions,
whenever the distinction later turns out not to make a difference for the
particular formulas at hand.

Example 4.2.2 Proving whether a formula φ is true after the execution of
program α from above requires a case distinction. When this distinction is
made at the time of merging the two updates into one, the proof splits very
early:7

〈f(s)Ct; f(s′)Ct′〉φ

⇒〈f(s)Ct〉〈f(s′)Ct′〉φ

⇒
(
s
.
= s′ → 〈f(s′)Ct′〉φ

)
∧(

s 6= s′ → 〈f(s)Ct, f(s′)Ct′〉φ
)

This leads to two proof branches containing the same formula φ. If φ it-
self needs many inferences until closing goals is possible, then this compu-
tationally expensive work has to be repeated twice, once on each branch.

7For simplicity of presentation, assume that s′, t′ are immune to changes of f(s), i.e.
f(s) is semantically rigid for the program 〈f(s)Ct〉 (Platzer, 2004).
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Furthermore, after the effect of the two distinct updates has been promoted
into φ, the remains of φ will not be recognised as having the same origin
by most inter-goal proof sharing mechanisms8, and double work is almost
unavoidable.

Even worse wasting occurs, if after some further processing φ turns out to
be non-sensitive to the change of f at s when f changes at s′ to t′ anyway, i.e.
〈f(s′)Ct′〉φ is semantically rigid for the program 〈f(s)Ct〉. Then the whole
case distinction and all subsequent proof steps repeated on the second branch
have been void. Consider, for example a formula φ that can be reduced to
f(s′)

.
= t′ after some processing. �

The disadvantage of case distinctions at the time of update application
is that those case distinctions multiply with the update distribution through
all subexpressions. The simultaneous replacement option in the R38 rule
alleviates the effects of high case distinction multiplication, though, since it
integrates all identical case distinctions into a single branch, regardless of the
number of places in a formula at which a case distinction is made.

Example 4.2.3 The most general case of an update on a nested term with
possible effects at all levels is examined in this example. Since only one func-
tion symbol occurs, all occurrences of f are possibly subject to change their
value under the update, which leads to a maximum amount of case distinc-
tions.

〈f(s)Cr〉f(f(o))

 if s
.
= 〈f(s)Cr〉f(o) then r else f

(
〈f(s)Cr〉f(o)

)
fi

 if s
.
= 〈f(s)Cr〉f(o) then

r

else

f
(
if s

.
= 〈f(s)Cr〉o then r else f(〈f(s)Cr〉o) fi

)

fi

 if s
.
=

(
if s

.
= 〈f(s)Cr〉o then r else f(〈f(s)Cr〉o) fi

)
then

r

else

f
(
if s

.
= 〈f(s)Cr〉o then r else f(〈f(s)Cr〉o) fi

)

fi

8Inferences on identical subterms of different branches can be performed simultaneously
in joint effort, provided that the processing does not contain (non-confluent) incompatible
choices in between. In an appropriate inter-goal directed acyclic graph representation, this
saves term matching and rule application cost.
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 if s
.
=

(
if s

.
= o then r else f(〈f(s)Cr〉o)fi

)
then

r

else

f
(
if s

.
= o then r else f(〈f(s)Cr〉o) fi

)

fi

 if s
.
=

(
if s

.
= o then r else f(o)fi

)
then

r

else

f
(
if s

.
= o then r else f(o) fi

)

fi

“  ”
(
s
.
= o→ if s

.
= r then r else f(r) fi

)
∧(

s 6= o→ if s
.
= f(o) then r else f(f(o)) fi

)

“  ”
(
s
.
= o ∧ s

.
= r → r

)
∧(

s
.
= o ∧ s 6= r → f(r)

)
∧(

s 6= o ∧ s
.
= f(o) → r

)
∧(

s 6= o ∧ s 6= f(o) → f(f(o))
)

The two nested occurrences of f lead to the worst case of 22 final case dis-
tinctions, not considering any knowledge about s, r, o from the context. The
best case of update application is the reduction 〈f(s)Cs〉f(f(s))  s as
presented in a detailed proof in Ex. B.1. �

Example 4.2.4 There is a very similar example in which case distinctions
can be saved nevertheless, because of the known syntactic equality of some
subterms occurring during the rewrite process.

〈f(s)Cr〉f(f(r))

 if s
.
= 〈f(s)Cr〉f(r) then r else f

(
〈f(s)Cr〉f(r)

)
fi

 if s
.
= 〈f(s)Cr〉f(r) then

r

else

f
(
if s

.
= 〈f(s)Cr〉r then r else f(〈f(s)Cr〉r) fi

)

fi

 if s
.
=

(
if s

.
= 〈f(s)Cr〉r then r else f(〈f(s)Cr〉r)fi

)
then

r

else
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f
(
if s

.
= 〈f(s)Cr〉r then r else f(〈f(s)Cr〉r) fi

)

fi

 if s
.
=

(
if s

.
= r then r else f(〈f(s)Cr〉r) fi

)
then

r

else

f
(
if s

.
= r then r else f(〈f(s)Cr〉r) fi

)

fi

 if s
.
=

(
if s

.
= r then r else f(r)fi

)
then

r

else

f
(
if s

.
= r then r else f(r) fi

)

fi

“  ”
(
s
.
= r → if s

.
= r then r else f(r) fi

)
∧(

s 6= r → if s
.
= f(r) then r else f(f(r)) fi

)

“  ”
(
s
.
= r ∧ s

.
= r → r

)
∧(

s
.
= r ∧ s 6= r → f(r)

)
∧(

s 6= r ∧ s
.
= f(r) → r

)
∧(

s 6= r ∧ s 6= f(r) → f(f(r))
)

“  ”
(
s
.
= r → r

)
∧(

s 6= r ∧ s
.
= f(r) → r

)
∧(

s 6= r ∧ s 6= f(r) → f(f(r))
)

As apparent from the effect of this example, the update (match) (R27) and
update (promote) (R28) rules essentially perform bottom-up term rewriting,
i.e. they start to determine the effect that an update has on the innermost
term and proceed to promote the effect of the update to the top-level sym-
bols. This bottom-up rewriting should not trespass intermediate updates,
however. Therefore, we choose to avoid technical difficulties in the formula-
tion of the R27 rule and accept the formal duplication of the subterm 〈U〉u
during application of the term rewrite rules.

The case s
.
= r ∧ s 6= r of the above example can further be prevented in

advance by R51.
Likewise reasoning as in the case of 〈f(s)Cr〉f(f(r)) applies in the case

s
.
= o ` 〈f(s)Cr〉f(f(s)) but for reasons of semantical instead of purely

syntactical equality. �

Since – with some care during conditional term branching – the disadvan-
tages of early branching outbalance the disadvantages of multiplying reasons
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for case distinction by update promotion, ODL uses last-win semantics for
clashes. Last-win semantics may seem odd at first sight, but it allows a very
simple formulation of merging and seems to have the best trade-off as far
as the matters of branching are concerned. Of course this is at the expense
of a very technical update (match) (R30) for simultaneous updates. Unfortu-
nately, like some other clash semantics, last-win complicates update equality
because the order of modifications in an update may be important.

Example 4.2.5 The following formula is untrue in general for last-win se-
mantics.

〈f(s)Ct, f(s′)Ct′〉φ→ 〈f(s′)Ct′, f(s)Ct〉φ

In other words, closing by update equality9 relative to a formula φ often
requires a lot of case distinctions to be made. In the above example, distin-
guishing between the cases s

.
= s′ and s 6= s′ would be necessary. Except

for special cases of φ, closing the above conjecture is only possible in the
two cases s 6= s′ and s

.
= s′ ∧ t

.
= t′. Yet, clash semantics that make case

distinctions at the time of merging have no advantage either, because they
will already have produced precisely those two branches earlier. �

4.2.6 Supplementary

Fig. 4.8 presents optional inference rules that can be emulated by a complete
calculus. Nevertheless practical evidence encourages using them for reasons
of feasible theorem proving.

Proposition 4.2.9 Modus ponens is a derived inference rule.

(R55) modus ponens

φ, φ→ ψ ` ψ

Proof: The derivation can be achieved by R4 and R11 as follows.

φ ` φ, ψ φ, ψ ` ψ

φ, φ→ ψ ` ψ

�

9without the usual update promotion, cuts or induction.
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(R48) update occurrence
〈U〉φ  〈U ′〉φ

⇐ U ′ equals U with locations not occurring admissibly in φ removed,

i.e. remove f(s)Ct iff φf
′

f = φ but never remove updates to nextC.

(R49) update deletion
〈. . . , f(s)Ct, . . . , f(s)Ct′〉  〈. . . , f(s)Ct′〉

(R50) update no-op
〈U , f(s)Cf(s), . . . ,〉  〈U , . . .〉

⇐ f(s′)Ct′ not in U

(R51) conditional term known
e ` φ(s)

e ` φ(if e then s else t fi)

(R52) conditional term known
` e, φ(t)

` e, φ(if e then s else t fi)

(R53) conditional reconcile
ifχ then s elseφ(ifχ then s′ else t fi) fi  

ifχ then s elseφ(t) fi

(R54) new identity

n 6= m ` objC(n) 6= objC(m)

(R55) modus ponens

φ, φ→ ψ ` ψ

Figure 4.8: Optional Inference Rules
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Proposition 4.2.10 The following inference rule is a derived rule

(R54) new identity

n 6= m ` objC(n) 6= objC(m)

Proof: The inference rules derives after inserting the axiom

A := ∀i :nat ∀j :nat (objC(i)
.
= objC(j) → i

.
= j)

from R41 into the antecedent with the help of Prop. A.2.2. The proof can
finally be concluded with R55.

objC(n)
.
= objC(m) → n

.
= m, objC(n)

.
= objC(m) ` n

.
= m

A, objC(n)
.
= objC(m) ` n

.
= m

A, n 6= m ` objC(n) 6= objC(m)

n 6= m ` objC(n) 6= objC(m)

�

Proposition 4.2.11 The following inference rule is a derived rule

` ∀x :C φ ↔ ∀n :nat (x
.
= obj ≤ C(n) → φ)

Proof: The derivation of the equivalence will be split into two implications.
The first implication is immediate and does not even need the axiom.

∀x :C φ, φ
obj ≤ C(N)
x , x

.
= obj ≤ C(N) ` φ

obj ≤ C(N)
x

∀x :C φ, φ
obj ≤ C(N)
x , x

.
= obj ≤ C(N) ` φ

∀x :C φ, x
.
= obj ≤ C(N) ` φ

∀x :C φ ` x
.
= obj ≤ C(N) → φ

∀x :C φ ` ∀n :nat (x
.
= obj ≤ C(n) → φ)

` ∀x :C φ → ∀n :nat (x
.
= obj ≤ C(n) → φ)

In this derivation the last two inferences of universal quantifier resolution and
equality application are not literally possible. This is because we have omitted
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the splitting according to the disjunctive definition of x
.
= obj ≤ C(N). How-

ever, splitting only leads to a finite number of branches containing objD(N)
instead of obj ≤ C(N) and completing like the above derivation.

The derivation of the other implication starts with a R5 to introduce the
axiom A := ∀o :C ∃n :nat o

.
= obj ≤ C(n), which results from R43, into the

antecedent according to Prop. A.2.2.

x
.
= obj ≤ C(N), x

.
= obj ≤ C(N) → φ ` φ

obj ≤ C(N)
x

∃n :nat x
.
= obj ≤ C(n), x

.
= obj ≤ C(N) → φ ` φ

obj ≤ C(N)
x

A,X
.
= obj ≤ C(N), x

.
= obj ≤ C(N) → φ ` φ

obj ≤ C(N)
x

A,X
.
= obj ≤ C(N),∀n :nat (x

.
= obj ≤ C(n) → φ) ` φ

obj ≤ C(N)
x

A,X
.
= obj ≤ C(N),∀n :nat (x

.
= obj ≤ C(n) → φ) ` φXx

A,∃n :nat X
.
= obj ≤ C(n),∀n :nat (x

.
= obj ≤ C(n) → φ) ` φXx

A,∀n :nat (x
.
= obj ≤ C(n) → φ) ` φXx

A,∀n :nat (x
.
= obj ≤ C(n) → φ) ` ∀x :C φ

A ` ∀n :nat (x
.
= obj ≤ C(n) → φ) → ∀x :C φ

` ∀n :nat (x
.
= obj ≤ C(n) → φ) → ∀x :C φ

For notational reasons, quantifier inference rules have been applied with
weakening whenever one instance is sufficient during the proof. The proof
finally closes by a combination of R16 and R55. Still, for the substitution
[x 7→ obj ≤ C(N)] to be well-defined, we need the same branching into cases
where objD(N) occurs instead of obj ≤ C(N). Again, this branching has been
left out for ease of notation. �

Example 4.2.6 For the new generated (R43) rule, there are several alterna-
tives. For example, with the new generated (R43) inference rule, the following
induction scheme for the generated terms derives from the integer induction
scheme.

` x
.
= obj ≤ C(0) → φ x

.
= obj ≤ C(n) → φ ` x

.
= obj ≤ C(n+ 1) → φ

` ∀x :C φ

where n is a new rigid constant. Formal derivations of alternative inference
rules for generated semantics in object creation look as follows, with an ad-
equate generalisation to obj ≤ C(n) instead of objC(n) by branching.

∀n :nat φ(objC(n)) → ∀o :C φ(o) `

∀o :C φ(o) ↔ ∀n :nat φ(objC(n)) ` ` ∀o :C φ(o) ↔ ∀n :nat φ(objC(n))

`

88



�

4.3 Verification Examples

In this section a look is taken at some prototypical verification examples
and the effect that ODL inference rules have on the proof. Each example
highlights a particular aspect of object-oriented programs deserving special
attention in ODL. In order to retain readable proofs the size of the example
programs is kept as compact as possible. Larger examples would require
a linear notation that is less fragile for longer proofs and higher levels of
branching, but also less intuitive.

To overcome space limitations in the formal notation the next remark
introduces a compact notation, which permits to abbreviate program state-
ments occurring within modalities of the examples.

Remark 4.3.1 (Label Abbreviation Context) In verification examples,
program statements will be abbreviated by some unique prefix, i.e. in a pro-
gram where only one statement begins with pbCq only write pbCq instead
of the statement bCnew C(). Further the ellipsis p. . .q abbreviates the right
context of all successor statements.

For example, the subprogram cCnew C(); c.xCb.x + 2 of the program in Ex.
4.3.4 is abbreviated as pcC . . .q where the label pcCq uniquely identifies the
starting statement of the program fragment.

Example 4.3.1 Continuing Ex. 2.4.1, consider the following simple ODL

program α.
if(2 | c) {cCc+ 2}else{cCc+ 1}

It is to be investigated why the following formula is a correct specification
of α.

c0
.
= c → 〈α〉c

.
= 2 · (c0 ÷ 2) + 2

When abbreviating c
.
= 2 · (c0 ÷ 2) + 2 by φ and ¬(x | y) by x - y, the

correctness proof looks as follows.

2 | c0 ` c0 + 2
.
= 2 · (c0 ÷ 2) + 2

2 | c, c0
.
= c ` c+ 2

.
= 2 · (c0 ÷ 2) + 2

2 | c, c0
.
= c ` 〈cCc+ 2〉φ

2 - c0 ` c0 + 1
.
= 2 · (c0 ÷ 2) + 2

2 - c, c0
.
= c ` c+ 1

.
= 2 · (c0 ÷ 2) + 2

2 - c, c0
.
= c ` 〈cCc+ 1〉φ

c0
.
= c ` 〈if(2 | c) . . .〉c

.
= 2 · (c0 ÷ 2) + 2

After application of R16, the equation has been hidden by R6 to improve
readability. Finally the proof closes by elementary arithmetic. The second
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inference involves auxiliary rewrite computations for update application. Ab-
breviating 〈cCc+ 1〉 by 〈U〉, one of those update computations looks – in full
circumstantiality – as follows.

〈U〉(c
.
= 2 · (c0 ÷ 2) + 2)

 (〈U〉c)
.
= (〈U〉(2 · (c0 ÷ 2) + 2))

 c+ 1
.
= 〈U〉(2 · (c0 ÷ 2)) + 〈U〉2

 c+ 1
.
= 〈U〉2 · 〈U〉(c0 ÷ 2) + 2

 c+ 1
.
= 2 · (〈U〉c0 ÷ 〈U〉2) + 2

 c+ 1
.
= 2 · (c0 ÷ 2) + 2

�

Example 4.3.2 (Update Sequence) To examine the effect of updates se-
quences, consider the following conjecture about a program involving a se-
quence of updates.

b 6= c→
〈b.xCb.x+ 1;
b.xCb.x+ 3;
c.xCb.x+ 2;
c.xCb.x+ 5〉c.x

.
= b.x+ 5

In order to isolate other effects like object creation from the update sequence
aspect, this conjecture is subject to a premise that the references involved
denote distinct objects. When abbreviating c.x

.
= b.x + 5 by φ the proof of

the above conjecture looks as follows.

` b.x+ 9
.
= b.x+ 4 + 5

` 〈b.xCb.x+ 4, c.xCb.x+ 9〉φ

` 〈b.xCb.x+ 4, c.xCb.x+ 2〉〈c.xCb.x+ 5 . . .〉φ

` 〈b.xCb.x+ 4〉〈c.xCb.x+ 2 . . .〉φ

` 〈b.xCb.x+ 1〉〈b.xCb.x+ 3 . . .〉φ

` 〈b.xCb.x+ 1 . . .〉c.x
.
= b.x+ 5

This proof has been concluded with an update application rewrite using the
assumed premise that b 6= c, which is important for the proof to succeed.

〈U〉 := 〈b.xCb.x+ 4, c.xCb.x+ 9〉
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〈U〉(b.x)

 if c
.
= 〈U〉b then b.x+ 9 else b.x+ 4 fi

 if false then b.x+ 9 else b.x+ 4 fi

 b.x+ 4

Table 4.1: Measurements for the Update Sequence Ex. 4.3.2, cf. Chapt. C
Calculus Inferences Branches Duration
iODL 20 1 0.1s
iODL +mo 24 1 0s
JavaCardDL nomo 82 1 0.3s
JavaCardDL mo 86 1 0.3s

The measurements in Tab. 4.1 demonstrate that – as expected – the
ODL treatment of updates produces less overhead than JavaCardDL, in
this case by a factor of 4. The zero seconds for iODL +mo10 is presumably an
artefact of the imprecise time measuring technique. By the nature of iODL

and the automatic iODL theorem prover, the iODL measurements usually
report more inferences than the ODL proof. This is also due to the fact that
the automatic theorem prover does not attempt to find the shortest possible
proof but is content to produce some proof as quick as possible. �

Example 4.3.3 (XviD Motion Compensation Sequence) In order to
investigate the scalability of the update approach, consider the conjecture
below about an excerpt of the XviD (XviD, 2004) motion compensation
module. This excerpt, α, has been regarded as a representative XviD func-
tion for the purposes of generating IA32/SSE2 executions in (Hack et al.,
2004). It demonstrates the effects of a long sequence of updates to the prover
performance.

sse = 0;
sse = sse+ (b(0) − c(0)) · (b(0) − c(0));
sse = sse+ (b(1) − c(1)) · (b(1) − c(1));
sse = sse+ (b(2) − c(2)) · (b(2) − c(2));
sse = sse+ (b(3) − c(3)) · (b(3) − c(3));
sse = sse+ (b(4) − c(4)) · (b(4) − c(4));
sse = sse+ (b(5) − c(5)) · (b(5) − c(5));
sse = sse+ (b(6) − c(6)) · (b(6) − c(6));
sse = sse+ (b(7) − c(7)) · (b(7) − c(7))

10Cf. Chapt. C for a description of the merge optimisation variant “mo”.
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b.length > 7 ∧ c.length > 7 → 〈α〉sse
.
=

7∑

i=0

(b(i) − c(i)) · (b(i) − c(i))

Table 4.2: Measurements for excerpt of XviD Motion Compensation Sequence
Ex. 4.3.3, cf. Chapt. C. The column vc specifies whether explicit field access
validation checks have been added.
vc Calculus Inferences Branches Duration
no iODL 80 1 1s
no iODL +mo 80 1 1.1s
no JavaCardDL nomo 1976 33 46s
no JavaCardDL mo 1987 33 46.6s
yes iODL 105 3 1.2s
yes JavaCardDL nomo 2046 35 46.6s

The measurements in Tab. 4.2 reveal a factor of 46 in speed and as much
as 33 in branching for the simplified iODL calculus in comparison to Java-

CardDL. To some extent, this tremendous performance improvement can,
of course, be explained by the finer JavaCardDL treatment of array ac-
cess. When considering the variant if(b.length > 7∧ c.length > 7) {α} with
field access validation checks, the proportion hardly changes, though, which
demonstrates a serious potential for optimisations by combining repeated
field access validation checks. From this example, opting for a separate and
more global treatment of field access validation using standard static analysis
technology from compiler construction whenever possible seems favourable.
Incorporating compiler construction technology into the proving process is
straightforward for the modular iODL approach but could turn out to be
comparably cumbersome for JavaCardDL. �

Example 4.3.4 (Object Creation) For a program involving object cre-
ation, consider the following conjecture.

〈bCnew C();
b.xCb.x+ 1;
cCnew C();
c.xCb.x+ 2〉c.x

.
= b.x+ 2

During the proof it is essential to infer that b and c are distinct non-aliased
objects by nature of their different sources of creation. This is important for
the attribute modification update c.xCb.x+2 in order to discover that it has
no effect on b.x, since otherwise the conjecture c.x

.
= b.x+ 2 would be false.
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For the formal proof, let φ abbreviate c.x
.
= b.x + 2. Let n abbreviate

nextC and o(z) abbreviate objC(z).

` o(n).x+ 3
.
= o(n).x+ 1 + 2

` 〈bCo(n), cCo(n+ 1), o(n).xCo(n).x+ 1, o(n+ 1).xCo(n).x+ 1 + 2〉φ

` 〈nCn+ 2, bCo(n), cCo(n+ 1), o(n).xCo(n).x+ 1〉〈c.xC . . .〉φ

` 〈nCn+ 1, bCo(n), o(n).xCo(n).x+ 1〉〈cC . . .〉φ

` 〈nCn+ 1, bCo(n)〉〈b.xC . . .〉φ

` 〈bC . . .〉c.x
.
= b.x+ 2

The last inference involves two auxiliary rewrite computations for update
application. Abbreviate with 〈U〉 the following update.

〈bCo(n), cCo(n+ 1), o(n).xCo(n).x+ 1, o(n+ 1).xCo(n).x+ 3〉

What is important to determine here is that the update to o(n+1).x cannot
have an effect on the value of b.x because b and o(n+ 1) are no aliases. R41
establishes this information about aliasing because of o(n + 1) 6= o(n) and
conclude that

〈U〉(b.x)

 if o(n+ 1)
.
= 〈U〉b then

o(n).x+ 3

else

if o(n)
.
= 〈U〉b then o(n).x+ 1 else b.x fi

fi

 if o(n+ 1)
.
= o(n) then

o(n).x+ 3

else

if o(n)
.
= o(n) then o(n).x+ 1 else b.x fi

fi

 if false then o(n).x+ 3 else o(n).x+ 1 fi

 o(n).x+ 1

A similar update application shows

〈U〉(c.x)

 if o(n+ 1)
.
= 〈U〉c then o(n).x+ 3 else . . . fi

 if o(n+ 1)
.
= o(n+ 1) then o(n).x+ 3 else . . . fi

 if true then o(n).x+ 3 else . . . fi

 o(n).x+ 3
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Table 4.3: Measurements for the Object Creation Ex. 4.3.4, cf. Chapt. C
Calculus Inferences Branches Duration
iODL 27 2 0.1s
iODL +mo 33 2 0.1s
JavaCardDL nomo 1359 44 4.9s
JavaCardDL mo 1515 63 5.4s

As the measurements in Tab. 4.3 demonstrate impressively, the treatment
of object creation by object enumerators is by far superior to the Java-

CardDL approach. Factors of about 50 in both number of inferences and
runtime clearly illustrate this fact. And factors of 20 to 30 in branching
promise an even higher degree in scalability. Imagine the effect of an exceed-
ingly complex program starting with α. If by the JavaCardDL treatment,
after a partial proof of the above program α 20 branches remain with the
complex program, then the prover is bound to lose much time analysing
the program on several branches. By the ODL object enumerator approach,
though, at most two branches of the proof require a further analysis of the
complex program. �

Example 4.3.5 (Transitive Object Creation)

〈bCnew C();
b.xCb.x+ 1;
cCnew C();
c.xCb.x+ 2;
dCnew C();
d.xCc.x+ 3〉d.x

.
= b.x+ 5

Table 4.4: Measurements for the Transitive Object Creation Ex. 4.3.5, cf.
Chapt. C
Calculus Inferences Branches Duration
iODL 44 3 0.1s
JavaCardDL nomo > 4301 > 151 (3 open) > 17.8s

In comparison to Ex. 4.3.4, when scaling the number of object creations
involved from two to three, the advantage of the ODL object enumerator
representation over list-based representation of object creation is even more
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drastic, as Tab. 4.4 shows. The inability of KeY for finally proving the ex-
ample is due to a known problem with nonadjacent object creation, though.
Yet, there also is a fundamental limitation with the list-based representation.
Comparing two objects for inequality involves traversing the list of created
objects and proving that they occur at different positions. In KeY for Java-

CardDL, this essentially amounts to traversing the creation list from one
object and proving that the one created later will be found after some finite
number of list traversions, which is an inherently dynamic property. Even
intuitively, stating about 13 and 29 that they are different numbers, because
of which bijections map them to distinct objects, is simpler than expressing
a circumstance like

If, after traversing the object generation chain 13 times to reach
object A, the next attribute of the creation list is followed another
16 times, object B will be found, from which their inequality can
be deduced – by the noncircular nature of the object list and the
unicity of its content.

The common concept underlying both the arithmetic ODL approach to
object creation and a list-based representation consists of a device for gener-
ating new objects from the preexisting ones. In the case of object enumerators
those new objects will be generated – indirectly – from the constant 0 and
the successor function on natural numbers, while list-based representations
utilise the head of the chain of generatable objects and the list link for the
same purpose. Even though at this level, there is no difference in essence,
there is one of representation. Contrary to lists, natural numbers permit a
more elaborate representation than just successor cascades, and the standard
prover capabilities are usually far more mature for arithmetics. Moreover,
natural numbers possess the most basic generators of infinite sets. �

Example 4.3.6 (XviD Motion Compensation Function) So to say, as
a “wild type” or real-world example, consider a conjecture about a complete
function from the XviD (XviD, 2004) motion compensation module. The
ODL program α further below is a rough translation of the sse8 16bit c

function in the motion/sad.c source code file and surrounds the program
from Ex. 4.3.3 by a loop with stride, i.e. non-adjacent traversal through mem-
ory, which has dramatic effects on the performance of caching and pipelines.
Depending on very strict hardware parameters, a stride can improve or de-
grade overall performance.

b.length > 63 ∧ c.length > 63 → 〈α〉sse
.
=

63∑

i=0

(b(i) − c(i)) · (b(i) − c(i))
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sse = 0;
int n = 8;
int stride = 8;
int i = 0;
k = 0;
while(k < n) {

sse = sse+ (b[i+ 0] − c[i+ 0]) · (b[i+ 0] − c[i+ 0]);
sse = sse+ (b[i+ 1] − c[i+ 1]) · (b[i+ 1] − c[i+ 1]);
sse = sse+ (b[i+ 2] − c[i+ 2]) · (b[i+ 2] − c[i+ 2]);
sse = sse+ (b[i+ 3] − c[i+ 3]) · (b[i+ 3] − c[i+ 3]);
sse = sse+ (b[i+ 4] − c[i+ 4]) · (b[i+ 4] − c[i+ 4]);
sse = sse+ (b[i+ 5] − c[i+ 5]) · (b[i+ 5] − c[i+ 5]);
sse = sse+ (b[i+ 6] − c[i+ 6]) · (b[i+ 6] − c[i+ 6]);
sse = sse+ (b[i+ 7] − c[i+ 7]) · (b[i+ 7] − c[i+ 7]);
i = i+ stride;
k = k + 1

}

To improve readability of the expanded version of the abbreviation of the
sum, a modality has been used. Furthermore, this supports a generalisation
to arbitrary lengths by induction, which is not difficult. Finally, a modality
with the following program essentially compares the results of a program
with stride to one without stride. Regardless of the performance gains, if the
introduction of a stride altered the result of the computation, its use would
be disastrous.

sum = 0;
k = 0;
while(k < 64) {

sum = sum+ (b[k] − c[k]) · (b[k] − c[k]);
k = k + 1

}

With the above auxiliary specification program γ, the mechanical proof uses
a slightly different specification:

b.length > 63 ∧ c.length > 63 ∧ 〈γ〉v
.
= sum→ 〈α〉sse

.
= sum

Tab. 4.5 contains performance measurements for different values of n and
corresponding adaptations of the other values. A comparison of the perfor-
mance displays factors of about 35 in speed and 20 in number of inferences,
independent of n. �
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Table 4.5: Measurements for a function in XviD Motion Compensation Ex.
4.3.6, cf. Chapt. C
n Calculus Inferences Branches Duration
2 iODL 719 21 15s
2 JavaCardDL nomo 14867 282 543.2s
3 iODL 1188 30 40.2s
3 JavaCardDL nomo 22600 425 1373.2s
8 iODL 4689 75 1569.7s
8 JavaCardDL nomo stack overflow

Example 4.3.7 (Parametric Loop) Consider the following program, α,
with a very simple loop of an effect depending on the particular value of the
natural number variable n.

sC0;
iC0;
while(i < n) {

sCs+ i;
iCi+ 1

}

The following formula is a correct specification of α.

[α]s
.
= n · (n− 1) ÷ 2

When abbreviating s
.
= n · (n− 1)÷ 2 by φ, the conjecture can be proven as

follows, with i ≤ n∧s
.
= i · (i−1)÷2 as invariant p for proving the behaviour

of the loop.

` 0 ≤ 0 ∧ 0
.
= 0 ÷ 2

` 〈sC0, iC0〉p p, i < n ` [sCs+ i . . .]p p,¬(i < n) ` φ

` 〈sC0, iC0〉[while(i < n) {} . . .]φ

` 〈sC0〉[iC . . .]φ

` [sC . . .]φ

The right branch can be concluded by R16 after a cut (R5) of the equation
i
.
= n, as deduced from the formulas i ≤ n and ¬(i < n). The remaining

middle branch can be closed by the following reasoning with the help of R27,
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R16 and simple arithmetics.

p, i < n ` i+ 1 ≤ n ∧ i · (i− 1) ÷ 2 + i
.
= (i+ 1) · i÷ 2

p, i < n ` i+ 1 ≤ n ∧ s+ i
.
= (i+ 1) · i÷ 2

p, i < n ` 〈sCs+ i, iCi+ 1〉p

p, i < n ` 〈sCs+ i〉[iCi+ 1 . . .]p

p, i < n ` [sCs+ i . . .]p

The required arithmetic reasoning involves one mathematical fact.

i · (i− 1) ÷ 2 + i = i · (i− 1) ÷ 2 + i · 2 ÷ 2 = (i+ 1) · i÷ 2

�

Example 4.3.8 (Complicated Loop) Contrary to exception handling ap-
proaches like the one in (Beckert & Sasse, 2001), the ODL emphasis on simple
structure facilitates inclusion of the composition (R22) rule. This rule would
be incorrect in the presence of exception handling environments. Consider
the following more involved program α.

while(c.x < d.x) {
c.xCc.x+ 1;
cCc.next;
d.xCd.x− 1;
dCd.previous

};
c.xC1 + 2 + 3

Proving general statements about α is tremendously complicated, and almost
always needs an induction to treat the loop, which also has an effect that is
slightly difficult to describe. Fully automatic treatment of α is difficult. Yet,
consider the simple conjecture [α]c.x

.
= 6, which has a very simple proof using

composition (R22). Moreover, this proof has been found fully automatically
almost instantly.11

` true
` [while(c.x < d.x) {. . . }]true

` [while(c.x < d.x) {. . . }]6
.
= 6

` [while(c.x < d.x) {. . . }][c.xC1 + 2 + 3]c.x
.
= 6

` [α]c.x
.
= 6

11Using the derived modal tautology [α]true ≡ true
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Of course, proving this conjecture would also be possible within the Java-

CardDL calculus. However, because JavaCardDL has no composition rule
the prover has to treat the loop first. On account of the unbounded nature of
the loop in α, this is only possible by explicit induction. But fully automatic
treatment of inductions by R45 is hindered due to the choice of the right
induction hypothesis. In this case, a choice of true would suffice after which
the proof can still be closed automatically in a straightforward way.

Table 4.6: Measurements for the Complicated Loop Ex. 4.3.8, cf. Chapt. C
Calculus Inferences Branches Duration
iODL 12 1 0s
JavaCardDL nomo ∞ ∞ ∞
JavaCardDL mo ∞ ∞ ∞

Generalisation of this example for more complex loops and successor
statements that need some particular but not all information about the pro-
gram state reached after the loop is possible. Then the composition (R22)
rule helps to direct the attention to the loop information really needed in
the remaining conjecture about the successor statements. In some sense, it
allows to choose a behaviour comparable to the wp-calculus (Dijkstra, 1976)
by isolating loops in order to reconcile the remaining conjectures about them.
Those conjectures can be focused on what is required by the successor state-
ments and postcondition. �

4.4 Soundness

This section will establish the soundness proof for the ODL calculus. Sound-
ness ensures the purely syntactical calculus to respect the actual language
semantics. Soundness guarantees that all statements derivable from valid
premises are really true, thereby relating syntax and truth. Unsound calculi
do not (really) qualify for program verification systems, since we cannot trust
their statements about programs, regardless of how much evidence the proof
system is able to exhibit in support of the statement. Unsound proof systems
would purport that defective programs have been verified as correct, leaving
bugs in “verified” software. To prevent this, consider the following proof that
the ODL calculus is sound.

Theorem 1 (Soundness) The ODL calculus consisting of the inference
rules presented in §4.2 is sound, i.e. for each Γ ⊆ Fml(Σ∪V ) for each φ ∈
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Fml(Σ ∪ V )

Γ ` φ implies Γ �g φ

Proof: The proof constitutes of soundness proofs for each individual infer-
ence rule. For each inference rule we are bound to show that in whatever
state and interpretation the premises of the inference rule holds, the conclu-
sion holds as well. The inference rule

C1 . . . Cn

D

is sound if and only if C1, . . . , Cn �g D, which involves an implicit univer-
sal treatment of free variables. In fact, according to Rem. 2.3.15 it is also
sufficient to prove a stronger statement of local consequence with respect to
variables, which will be preferred whenever possible. The following sections
contain those individual soundness proofs. �

4.4.1 First-Order

The propositional and first-order inference rules are standard. Their sound-
ness thus follows from the classical proofs since ODL does not change the se-
mantics of propositional or first-order connectives. Further, constant domain
semantics ensures that object creation does not interfere with the soundness
proofs for quantifiers.

Proposition 4.4.1 The quantifier inference rules are sound.

Proof:

R18 Assuming for some state w of an interpretation ` that `, w � At
x, we

have to show that `, w � ∃xA holds as well. Using t as a “witness”
for the circumstance that A is holding of something, the proof can be
completed with the following argument. Since σ := [x 7→ t] must
be admissible for the inference rule to be applicable, Lem. 2.5.6 allows
to conclude that true = val`(w,A

t
x) = valσ∗`(w,A), because of which

`, w � ∃xA holds as expected.

R17 This proof relies on the fact that – due to its implicit universal nature
– the new variable X allows for arbitrary interpretations. By definition
of � in 2.3.10-2.3.11, free variables are implicitly treated universally12.

12Equivalently, they experience an explicit universal closure.
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Finally, thus, R17 just extends the range of the universal quantifier
binding x to the (implicit) top-level and ensures by variable renaming
that this does not cause conflicts with other parts of the sequent.

�

Likewise, with the ODL program execution structure following the ex-
ecution order of While, the standard inference rules for dynamic logic in
§4.2.2 are sound as the classical proofs reveal. Neither reasons for abrupt
completion nor labelled loops necessitate non-standard inference rules.13

Proposition 4.4.2 The following inference rule is sound

(R16)
.
= subst

Γts, s
.
= t ` ∆t

s

Γ, s
.
= t ` ∆

Proof: This conjecture is a generalised consequence of Prop. 2.5.7. For a
proof note that (2.2) holds since by premise val`(w, s) = val`(w, t). �

Example 4.4.1 (Non-wary substitutive) Let us investigate what hap-
pens not paying attention to the wariness constraint in the

.
= subst (R16)

rule. Consider a formula ∆ for which the substitution [z 7→ x] would be non-
admissible because of the trespassing of x beyond the update to x. x is a
(non-rigid) program variable, and z a (rigid) logical variable. Application of
the

.
= subst (R16) inference rule under disregard of wariness would lead to:

x
.
= 1, z

.
= x ` x > 0 ∧ 〈xCx+ 1〉x > 1

z
.
= 1, z

.
= x ` z > 0 ∧ 〈xCx+ 1〉z > 1

In case of val`(w, z) = val`(w, x) = 1, the premise is true while the conse-
quence is false. Put this in contrast to an inference respecting wariness, which
would lead to the following sound consequence.

x
.
= 1, z

.
= x ` x > 0 ∧ 〈xCx+ 1〉z > 1

z
.
= 1, z

.
= x ` z > 0 ∧ 〈xCx+ 1〉z > 1

This shows that without wariness the
.
= subst (R16) inference rule would be

unsound.

13Refer to (Beckert & Sasse, 2001) for the more complicated inference rules in the
presence of exception handling in JavaCardDL.
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When ignoring wariness constraints for the replacement term t, inference
becomes unsound in a similar way. x is a program variable, and t a term.
Without wariness the following unsound inference would become possible.

t
.
= 1, x

.
= t ` t > 0 ∧ 〈xCt− 1〉t > 0

x
.
= 1, x

.
= t ` x > 0 ∧ 〈xCx− 1〉x > 0

When wariness is taken into account the following sound inference is taken
instead.

t
.
= 1, x

.
= t ` t > 0 ∧ 〈xCt− 1〉x > 0

x
.
= 1, x

.
= t ` x > 0 ∧ 〈xCx− 1〉x > 0

�

Proposition 4.4.3 The following inference rule is sound

(R15) induction
` φ(0) φ(n) ` φ(n+ 1)

` ∀nφ(n)
⇐ n new variable

Proof: The soundness of this inference rule essentially amounts to the in-
duction principle of natural numbers:

φ(0) ∧ ∀n (φ(n) → φ(n+ 1)) → ∀nφ(n)

The introduction of a new free variable n is just another way of expressing
universal quantification on sequent level instead of on formula level. �

4.4.2 Term Rewriting

Proposition 4.4.4 The following inference rules are sound

(R37) conditional term split (left)
(e→ φ(s)) ∧ (¬e→ φ(t)) `

φ(if e then s else t fi) `

(R38) conditional term split (right)
` (e→ φ(s)) ∧ (¬e→ φ(t))

` φ(if e then s else t fi)
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Proof: Let s be any state in any interpretation `. We have to show that
whenever `, s � (e→ φ(r)) ∧ (¬e→ φ(t)) holds, so does

`, s � φ(if e then r else t fi)

As a stronger statement this proof even shows local equivalence, which es-
tablishes the soundness of both inference rules.

(e→ φ(r)) ∧ (¬e→ φ(t)) ≡ φ(if e then r else t fi)

The proof follows an induction on the structure of φ(u).

(I) φ(u) = f(u) with a predicate symbol f ∈ Σ is the essential case14

val`(w, φ(if e then r else t fi))

= val`(w, f)
(
val`(w, if e then r else t fi)

)

= val`(w, f)

({
val`(w, r) ⇐ val`(w, e) = true
val`(w, t) ⇐ val`(w, e) = false

})

=

{
val`(w, f)

(
val`(w, r)

)
⇐ val`(w, e) = true

val`(w, f)
(
val`(w, t)

)
⇐ val`(w, e) = false

}

= val`(w, (e→ f(r)) ∧ (¬e→ f(t)))

= val`(w, (e→ φ(r)) ∧ (¬e→ φ(t)))

Likewise reasoning concludes the cases for propositional connectives.

(II) φ(u) = ∀xψ(u). By premise, the substitution [u 7→ if e then r else t fi]
is first-order admissible for φ(u), implying that x /∈ FV (e). Then

φ(if e then r else t fi) = ∀xψ(if e then r else t fi)
IH
≡ ∀x

(
(e→ ψ(r)) ∧ (¬e→ ψ(t))

)

≡ ∀x (e→ ψ(r)) ∧ ∀x (¬e→ ψ(t))
x/∈FV (e)

≡ (e→ ∀xψ(r) ∧ (¬e→ ∀xψ(t))

(III) φ(u) = [α]ψ(u). By premise, the substitution [u 7→ if e then r else t fi] is

14Cases like φ(u) = f(u, t′) or with function symbols f instead of predicate symbols
follow the same argument.
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denotation-preserving for φ(u) ⇒ e is rigid for α. Then

φ(if e then r else t fi)

= [α]ψ(if e then r else t fi)
IH
≡ [α]

(
(e→ ψ(r)) ∧ (¬e→ ψ(t))

)

≡ [α](e→ ψ(r)) ∧ [α](¬e→ ψ(t))
cut
≡

(
e → [α](e→ ψ(r)) ∧ [α](¬e→ ψ(t))

)

∧
(
¬e → [α](e→ ψ(r)) ∧ [α](¬e→ ψ(t))

)

e rigid for α
≡

(
e → [α](true → ψ(r)) ∧ [α](false → ψ(t))

)

∧
(
¬e → [α](false → ψ(r)) ∧ [α](true → ψ(t))

)

≡
(
e → [α]ψ(r) ∧ [α]true

)

∧
(
¬e → [α]true ∧ [α]ψ(t)

)

≡ (e→ [α]ψ(r)) ∧ (¬e→ [α]ψ(t))

The remaining cases are similar. �

Without wariness, the conditional term split (right) (R38) rule would be
unsound as the following example demonstrates.

Example 4.4.2 (Non-wary conditional term split) Consider a formula
φ(u), for which the implicit15 substitution [u 7→ if x > 0 then a else b fi] would
be non-admissible due to the trespassing of x beyond the update to x.

φ(u) := p(〈xC0〉u)

Without wariness the following inference is unsound, with a, b being constant
symbols and x a program variable.

x
.
= 1 ` (x > 0 → φ(a)) ∧ (x ≤ 0 → φ(b))

x
.
= 1 ` φ(if x > 0 then a else b fi)

At this stage we need to look for a model `, s of the premise that is no
model of the consequence . More precisely, we construct a model `, s of the
premise (x > 0 → p(〈xC0〉a)) ∧ (x ≤ 0 → p(〈xC0〉b)) that is no model of
the consequence p(〈xC0〉if x > 0 then a else b fi) and satisfies the antecedent
formula x

.
= 1. Let ` � p(a) , ` 2 p(b) , `, s � x

.
= 1. On the one hand,

`, s � x > 0∧p(〈xC0〉a) and `, s � ¬x ≤ 0 hold. But on the other hand, `, s 2
p(〈xC0〉if x > 0 then a else b fi), because of `, s[x 7→ 0] � ¬(x > 0) ∧ ¬p(b). �

For proving the soundness of the term rewrite (right) (R36) rule we show
that term rewrite does not change the semantics.

15This substitution is implicit in the notation φ(if x > 0 then a else bfi).
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Definition 4.4.5 A term rewrite rule s  t is valuation-preserving, if all
instances s  t of the rule satisfy for each interpretation ` and each state
w thereof that val`(w, s) = val`(w, t).

The soundness proof of the term rewrite rule splits into a proof of valuation-
preservation for the term rewrite system, and into a soundness proof of the
term rewrite application inference rule based on the fact that the term rewrite
rules are valuation-preserving.

Proposition 4.4.6

(R35) term rewrite (left)
φ(t) `

φ(s) `
⇐ (s  t) holds

(R36) term rewrite (right)
` φ(t)

` φ(s)
⇐ (s  t) holds

are sound, provided that all rewrite rules are valuation-preserving.

Proof: The proof is an immediate inductive extension of the concept of
“valuation-preserving”. �

Proposition 4.4.7 The following term rewrite rules are valuation-preserving

(R27) update (match)
〈f(s)Ct〉f(u)  if s

.
= 〈f(s)Ct〉u then t else f

(
〈f(s)Ct〉u

)
fi

(R28) update (promote)
〈f(s)Ct〉Υ(u)  Υ

(
〈f(s)Ct〉u

)

⇐ f 6= Υ ∈ Σ

(R29) update (∀ )
〈U〉∀xφ  ∀x 〈U〉φ

⇐ x not in FV (U)
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Proof:

val`(w, 〈f(s)Ct〉f(u))

= val`(w
′, f(u))

=

{
val`(w, t) ⇐ val`(w

′, u) = val`(w, s)

val`(w
′, f(u)) ⇐ val`(w

′, u) 6= val`(w, s)

=

{
val`(w, t) ⇐ val`(w

′, u) = val`(w, s)

val`(w, f)
(
val`(w

′, u)
)

⇐ val`(w
′, u) 6= val`(w, s)

2.3.8
=

{
val`(w, t) ⇐ val`(w, 〈U〉u) = val`(w, s)

val`(w, f)
(
val`(w, 〈f(s)Ct〉u)

)
⇐ val`(w, 〈U〉u) 6= val`(w, s)

=

{
val`(w, t) ⇐ val`(w, 〈f(s)Ct〉u) = val`(w, s)

val`(w, f(〈f(s)Ct〉u)) ⇐ val`(w, 〈f(s)Ct〉u) 6= val`(w, s)

= val`(w, if s
.
= 〈f(s)Ct〉u then t else f

(
〈f(s)Ct〉u

)
fi)

where w′ := w[f(val`(w, s)) 7→ val`(w, t)] is the state reached from w by
execution of f(s)Ct, and 〈U〉 abbreviates 〈f(s)Ct〉. �

106



4.4.3 Dynamics

Proposition 4.4.8 The following inference rules are sound

(R39) instanceof

` objA(n) instanceof C
⇐ A ≤ C

(R40) instanceof

objA(n) instanceof C `
⇐ A 6≤ C

(R41) new identity

` ∀i :nat ∀j :nat (objC(i)
.
= objC(j) → i

.
= j)

(R42) new disjoint identity

objC(n)
.
= objD(m) `

⇐ C 6= D

(R43) new generated

` ∀o :C ∃n :nat o
.
= obj ≤ C(n)

Proof:

R39- Assuming for some state w of an According to Rem. 2.3.2 objA(n) ∈
`(A) ⊆ `(C) for a subclass A of C. For A 6≤ C, instead, there are two
possibilities. Either C ≤ A, in which case objA(n) ∈ OA ⊆ `(A) \ `(C).
Or A and C are incomparable according to the type hierarchy. Then
it is objA(n) ∈ OA while OA ∩ `(C) = ∅ by construction in Def. 2.3.1.
Thus, in either case, objA(n) instanceof C is true if and only if A is a
subclass of C, thereby justifying R39 and R40.16

R41- Likewise, the semantics of objC(n) demands injectivity and disjointness,
which justifies the R41, R42 rules. This is because n 6= m→ objC(n) 6=
objC(m) is an ODL tautology, and for C 6= D, objC(n)

.
= objD(m) is

always false by Def. 2.3.1.

16This also fits to the effects of object creation in §3.4.2, where objA(n) is an object of
dynamic type A created via new A().
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R43 The soundness of the R43 rule is a direct consequence of the fact that
the semantics of objC(n) demands surjectivity.

�

Proposition 4.4.9 The following inference rule is sound wrt. �g

(R45) loop induction right
Γ ` 〈U〉p,∆ p, e ` [α]p p,¬e ` A

Γ ` 〈U〉[while(e) {α}]A,∆

Proof: Proving the conjecture requires to show that

` � Γ ` 〈U〉[while(e) {α}]A,∆

holds in any interpretation ` on the basis of the following premises.

(a) ` � Γ ` 〈U〉p,∆.

(b) ` � p, e ` [α]p

(c) ` � p,¬e ` A

Assume that the program while(e) {α} takes precisely n iterations to com-
plete its run when started in some state s of `. If n = ∞ the conjecture is
trivial by the notion of box modalities. The proof follows an induction over
the number n of iterations.

IH If the program while(e) {α} is started in a state s, in which p holds
and from which while(e) {α} performs ≤ n iterations to complete its
run, then `, s � [while(e) {α}]A.

IA n = 0 ⇒ `, s � ¬e, otherwise the loop would perform at least one
iteration. By assumption `, s � p holds in the state s, which further
implies with (c) that `, s � A ⇒ `, s � [while(e) {α}]A.

IS n > 0 ⇒ `, s � e, since the loop body is entered. The assumption
yields `, s � p. Let s′ be some successor state with sρ`(α)s′, from
which while(e) {α} will thus only perform less than n iterations. Fur-
thermore, (b) ensures that `, s′ � p still holds. By IH this implies
`, s′ � [while(e) {α}]A. Since s′ has been arbitrary one can conclude
that `, s � [α][while(e) {α}]A, respectively `, s � [while(e) {α}]A,
since `, s � e holds.
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In an arbitrary state w of ` there are two possible cases. Either `, w �
Γ ` ∆ already holds, then there is nothing to show because

`, w � Γ ` 〈U〉[while(e) {α}]A,∆

holds more than ever. Or Γ ` ∆ does not hold, i.e. Γ is true but ∆ false,
then (a) locally implies `, w � 〈U〉p. This allows to conclude that there is
a state s with wρ`(U)s and `, s � p from which the induction enforces that
`, s � [while(e) {α}]A. Then in the original state, `, w � 〈U〉[while(e) {α}]A
holds as well. �

Example 4.4.3 R45 is not sound wrt. �l as the following example shows.
Consider the program while(x < 10) {xCx+1} with the (wrong) postcondi-
tion x < 3, which also serves as a (false) invariant. Then the premises of R45
are satisfied locally in a state with val`(w, x) = 0, but the consequence is still
wrong, because the postcondition is finally untrue in the state w[x 7→ 10].
Moreover, the invariant x < 3 will already be hurt after 3 iterations. �

4.5 Completeness

This section presents the proof of the central statement of this thesis: the
ODL calculus is complete relative to arithmetic.

A colossal property for a program verification system based on the ODL

calculus to possess would be the ability to prove all true statements about
all programs. This is – of course – impossible, since ODL contains17 first-
order arithmetic, which is itself already inherently incomplete by the Un-
vollständigkeitssatz of (Gödel, 1931). Therefore, a proof system embracing
first-order arithmetic like ODL does cannot ever have a calculus that is both
sound and complete. Still the question remains how to compare different
calculi for ODL or other (dynamic) logics. From intuitive deliberations, the
existence of increasingly incomplete calculi obtained by removing integral
inference rules from an intact calculus is apparent. For example, an attempt
to remove all inference rules for sequential composition from ODL would
certainly lead to a decisively less complete calculus. This is due to the fact
that even very simple conjectures would possess no proof in this situation,
although this circumstance is completely detached from concerns about the
inherent complexity of first-order arithmetic or equivalent means.

Finally, the issue remains to what extent the ODL calculus is complete,
bearing in mind that the underlying arithmetic is not. Vaguely speaking, we

17The logic ODL permits to formulate statements about its domain of interpretation
without involving any dynamic logic modalities at all.
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put aside the completeness problems of the domain of interpretation and in-
vestigate completeness apart from that. In more elaborate words this amounts
to factorising the complexities of first-order arithmetic from the completeness
question. The standard notion from literature (Cook, 1978) for completeness
modulo an underlying logic is that of relative completeness, which in this
case means completeness relative to the domain of computation: first-order
arithmetic. Thereby, relative completeness examines the imaginary situation
of what would happen to completeness if only arithmetic itself had been
complete.

Theorem 2 (Relative Completeness) The ODL calculus consisting of
the inference rules presented in §4.2 is relatively complete for arithmetical
structures18, i.e. in conjunction with the following oracle inference rule

(R56) First-Order Oracle

` F
⇐ F ∈ FmlFOL(Σ ∪ V ) is a first-order arithmetic tautology

the following completeness statement is true for each φ ∈ Fml(Σ ∪ V )

if ` � φ for each arithmetical structure ` then ` φ

This central theorem will be proven in the remainder of this section with
the proof split into several separate smaller conjectures for structural reasons.
Once those simpler conjectures have been proven, the proof of Th. 2 will be
built in §4.5.5 from the results 4.5.1-4.5.15.

In principle, the proof inductively reduces the conjecture equivalently to
first-order logic by Lem. 4.5.4, first. The mere first-order conjecture φ′ can
be proven by R56. Then the proof shows that the dynamic parts can be
inferred again inductively from the first-order equivalents, cf. Prop. 4.5.13
and Th. 2. For this purpose, Prop. 4.5.1 and Prop. 4.5.3 facilitate an isolated
examination of the single modalities in φ and its byproducts.

In the context of completeness investigations simply treat 〈α〉φ as an
abbreviation of ¬[α]¬φ, and ∀xφ as an abbreviation of ¬∃x¬φ.

18Arithmetical structures are those interpretations of a domain having N as domain for
nat with the usual interpretations for 0,+, ·, <,

.
= on integers. More generally speaking,

arithmetical structures contain a first-order definable isomorphic copy of N, and first-
order definable functions for coding finite sequences of elements of the domains into single
elements.
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4.5.1 First-Order

The next two results isolate the completeness statements about ODL with
respect to smaller fragments of logic: the propositional and the first-order
fragment of ODL.

Proposition 4.5.1 The ODL calculus is propositionally complete, i.e. all
instances of propositional tautologies are derivable and modus ponens is an
inference rule.

Proof: Propositional completeness is immediate for ODL because the ODL

calculus has been built on top of the sound and complete standard inference
rules for first-order logic, which is also complete when restricted to proposi-
tional logic reasoning. Moreover, modus ponens (R55) is a derived inference
rule according to Prop. 4.2.9. �

Proposition 4.5.2 The ODL calculus is complete for first-order formulas,
i.e. for each F ∈ FmlFOL(Σ ∪ V ) of first-order logic � F ⇒ ` F .

Proof: Once more, first-order completeness is immediate for ODL because
the ODL calculus is built on top of the sound and complete standard infer-
ence rules for first-order logic. �

The next result will be used during the completeness proof to export any
arguments that have been performed on top-level into modality or quantifier
context.

Proposition 4.5.3 For each x ∈ V, φ, ψ ∈ Fml(Σ ∪ V ) and each α ∈
Prg(Σ ∪ V ) the generalisation rules hold, i.e.

1. ` φ→ ψ ⇒ ` 〈α〉φ→ 〈α〉ψ

2. ` φ→ ψ ⇒ ` [α]φ→ [α]ψ

3. ` φ→ ψ ⇒ ` ∃xφ→ ∃xψ

Rule (2) is called rule of regularity in (Fitting & Mendelsohn, 1998).

Proof: In order to validate those derivations, ODL immediately contains
the generalisation inference rules R44, R46, R47 for ∃ , 〈〉 and []. �

4.5.2 Expressibility

The next lemma provides an integral component of the completeness proof.
It shows the meaning of any ODL dynamic logic formula to be equivalently
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expressible in first-order logic, when using the coding capabilities of proper
arithmetic. Despite all its structural multi-modal extension, the dynamic
logic ODL only talks about aspects that might have been expressed in first-
order arithmetic as well. Even though dynamic logics massively increase both
notational intuition and practical proving power, it is always possible to
produce a (rather complicated) first-order formula that utilises the encoding
capabilities of natural numbers to express the very same statement. In other
words, the expressive power of ODL and first-order arithmetic are on the
same level.

For the proof to succeed, the effect of the programs occurring in modalities
of a formula have to be represented in first-order logic. The key insight for
this expressibility is that the equation c′

.
= t relates the values of the symbols

c and c′ just like the diamond 〈cCt〉 relates the prestate value of c to the
poststate value of c (in 〈cCt〉φ(c)). Formalising the precise correspondence
of c′ and the poststate value of c adequately is one challenge of the proof.
Representing finite sequences19 of intermediate states passed by during the
execution of a loop statement is the other challenge.

An effective expressibility20 lemma immediately implies the existence of
a relatively complete calculus for trivial reasons: A calculus that pursues the
transformation of the constructive proof will transform ODL to first-order
logic from where completeness relative to first-order arithmetic is evident.
Though at the heart of the completeness argument, Lem. 4.5.4 alone does
not establish that the particular calculus that we chose is relatively complete.

Lemma 4.5.4 (Expressibility) ODL is expressible in first-order logic, i.e.
for each φ ∈ Fml(Σ ∪ V ) there is φ′ ∈ FmlFOL(Σ ∪ V ) of first-order logic
such that in every arithmetical structure ` we have the local equivalence
` � φ ↔ φ′. As symbolic notation for this circumstance you often find
ODL ≤N FOL or, since the reverse expressibility reduction FOL ≤N ODL

holds for trivial reasons, ODL ≡N FOL.

Proof: The proof follows an induction on the structure of the formula φ for
which it is imperative to find a first-order equivalent φ′ over arithmetical
structures.

IA If φ is an atomic first-order formula then φ′ := φ already is first-order
such that nothing has to be proven.21

19Sequences of arbitrary length.
20A logic is effectively expressive (or effectively expressible in first-order logic), if the

expressibility lemma further guarantees the computability of the process of constructing
a first-order translation. The proof of Lem. 4.5.4 is, in fact, constructive and effective.

21Updates on terms constitute only intermediate auxiliary stages in the ODL calculus,
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1. φ = t instanceof C as a first-order typing relationship can be repre-
sented in many-sorted first-order logic with some notation. Also see
Rem. 4.5.5.

2. φ = ψ(if e then s else t fi) is equivalent to χ := (e → ψ(s)) ∧ (¬e →
ψ(t)) according to Prop. 4.4.4. Therefore, the formula expressing the
simpler χ in first-order logic also expresses φ.22.

3. φ = F ∨G then by induction hypothesis there are formulas F ′, G′ such
that � F ↔ F ′,� G↔ G′, from which can be concluded by congruence
of ↔ that

� F ∨G︸ ︷︷ ︸
φ

↔ F ′ ∨G′
︸ ︷︷ ︸

φ′

Likewise reasoning concludes the other propositional connectives or
quantifiers.

4. For φ = 〈α〉ψ, the proof will be first presented as a sketch, about which
the more subtle details will be filled in later on. Let z denote the finite
vector of program variable or function symbols occurring in α. It is fi-
nite because a program α of finite length can only mention finitely many
distinct symbols.23 Denote by z′ a vector of the same length and types
as z but with fresh symbols, which are new to φ. Following, a substi-
tution [z 7→ z′] is a short notation for the simultaneous substitution of
the elements x of z by the corresponding elements x′ of z′. Likewise an
equality statement like z

.
= z′ is to be understood component-wise. A

similar component-wise understanding holds for meta-language equal-
ity in w(z) = z′. With this being stated a selection of ∃z ′ (τα(z, z

′)∧ψ′z
′

z )
as φ′ immediately raises a problem. The quantifier is higher-order since
z′ still contains function symbols f ′ for function symbols f occurring
in α. Let us – for the time being – pretend that there was not sign of
higher-order involved and resolve those matters in retrospect later on.
It remains to show that

� 〈α〉ψ ↔ ∃z′ (τα(z, z
′) ∧ ψ′z

′

z )

which is the reason for their minor importance for expressibility and completeness. Further,
they can be treated rather similar to updates on formulas.

22For instance, φ′ := (e→ ψ′(s)) ∧ (¬e→ ψ′(t))
23Contrary to While in the case of ODL α could read and modify an unbounded

number of memory locations by loops over function access like f(i). Still there only occurs
one function symbol f and one program variable i within α then, regardless of their broad
extent of accessible memory locations. This finite denotator property would no longer hold
for programming languages which allow the following program while(i < n) {ciCci + 1}.
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For which it remains to construct the first-order formula τα(z, z
′) char-

acterising the possible program state transitions from the state char-
acterised by the values z to the state characterised by z ′ such that
for each state w

`,w � τα(z, z
′) ⇐⇒ there is w′ with wρ`(α)w′ w′(z) = z′

Alternatively, taking into account that α does not modify z ′ because it
does not even occur in α, τα(z, z

′) should satisfy

� τα(z, z
′) ↔ 〈α〉z

.
= z′

In principle, it would be sufficient to show that the state transition
relation of programs is computable and conclude that it has a defining
first-order arithmetic formula. There are some subtleties with the effect
of updates and subtleties with the encoding in loop characterisations,
though. Moreover since (Harel, 1979) and (Schlager, 2000) contained
invalid completeness proofs even for the basic case without updates,
this proof explicitly constructs a characteristic formula τα(z, z

′) by an
effective translation. See Rem. 4.5.6 for an analysis of the reasons and
importance of the discrepancy.

(a) τxCt(z, z
′) := (x′

.
= t) ∧

∧
x6=y∈z y

′ .= y, where x in the vector z
corresponds to x′ in z′.

(b) τf(s)Ct(z, z
′) := ∀x (x 6= s → f ′(x)

.
= f(x)) ∧ f ′(s)

.
= t ∧∧

x6=y∈z y
′ .= y.

(c) τif(χ) {γ}else{δ}(z, z
′) := (χ′ → τγ(z, z

′)) ∧ (¬χ′ → τδ(z, z
′)).

(d) τγ;δ(z, z
′) := ∃z′′ (τγ(z, z

′′) ∧ τδ(z
′′, z′)).

(e) The characterisation of loops is subject to additional function sym-
bols assumed to enrich Σ, which receive their intended behaviour
according to the axiomatisation in the formula Enc. The inductive
construction introduces multiple repeated axiomatisations Enc,
which is unnecessary on the one hand but harmless on the other.

τwhile(χ) {γ}(z, z
′) := Enc→ ∃S :nat

(

nth(S, 0)
.
= z ∧ nth(S, length(S))

.
= z′

∧ ∀i :nat (i < length(S) →

τα(nth(S, i), nth(S, i+ 1))

∧ χ′nth(S,i)
z )

∧ ¬χ′z
′

z

)
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For formulas like nth(S, 0)
.
= z and arguments to τα use the fixed

computable bijection N ∼= Nlength(z) to encode finite vectors of
variables in one value.

Enc is a formula that characterises encodings of finite sequences into
a single natural number.24 Provided that there is some Gödel encoding
of the elements in `(τ) of the base type τ , this is possible by the com-
putable bijection N ∼= Nn. Thus, choose Enc in such a way that the
following holds for each state w .

`, w � Enc→ nth(S, i)
.
= y ⇐⇒ there is a1, . . . , an ∈ `(τ)

val`(w, S) = gödel((a1, . . . , an)) ,

val`(w, i) ≤ n ,

val`(w, y) = aval`(w,i)

where gödel is an injection of the finite sequences over `(τ) into N.
Further, nth : nat× nat → τ is a function symbol for representing
sequence encoding. Similarly, length : nat → nat is used as a function
symbol to speak about the length of such an encoded sequence. Enc
ensures that it satisfies for each state w

`,w � Enc→ length(S)
.
= n ⇐⇒ there is a1, . . . , an ∈ `(τ)

val`(w, S) = gödel((a1, . . . , an))

as could be characterised by the defining formula

length(S)
.
= n ↔ ∃sn :τ nth(S, n)

.
= sn ∧ ¬∃s′ :τ nth(S, n+ 1)

.
= s′

This concludes the proof apart from our fraud with higher-order, which
still needs to be dissolved. For this purpose second-order quantifiers

24 The encoding can be achieved with the following axiomatic characterisation of expo-
nentiation, pairing and iterative sequence processing, assuming implicit universal quantifi-
cation for readability.

b0
.
= 1 ∧ bn+1 .

= b · bn

pair(S, x, y) ↔ S
.
= 2gödel(x) · 3gödel(y)

nth(S, i)
.
= y ↔ ∃d :nat ∃S′ :nat (pair(S, d, S′) ∧ i ≤ d

∧∃S′′ :nat iseqnth(S′, S′′, i, y))

iseqnth(S, S′, 0, y) ↔ pair(S, gödel(y), S′)

iseqnth(S, S′, i+ 1, y) ↔ ∃S̃ :nat ∃ỹ :τ
(
iseqnth(S, S̃, i, ỹ) ∧ pair(S̃, gödel(y), S′)

)
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have to be reduced to first-order quantifiers although this is, of course,
impossible in general. A countability argument also suggests that there
is no serious hope to reduce general quantification over the uncountable
domain of functions to quantification over the countable domain of, say,
natural numbers properly.

Enc is assumed to characterise symbols for access to modifiable non-
rigid functions. The term apply(Ff , x) is intended to produce the value
of the function f at the position x, thereby considering the accumulated
modifications according to the number Ff . The term change(Ff , x, y)
should modify the interpretation of f at x to y with regard to the
already accumulated modifications according to Ff . Enc could achieve
this characterisation with the following defining formulas25

y
.
= apply(Ff , x)

↔

∃i :nat (i ≤ length(Ff ) ∧ nth(Ff , i)
.
= (x, y))

∨ ¬∃i :nat ∃y :τ (i ≤ length(Ff ) ∧ nth(Ff , i)
.
= (x, y))

∧ y
.
= f(x)

and

F ′
f
.
= change(Ff , x, y)

↔

∃i :nat ∃y0 :τ
(
i ≤ length(Ff ) ∧ nth(Ff , i)

.
= (x, y0)

∧ length(F ′
f )

.
= length(Ff )

∧ nth(F ′
f , i)

.
= (x, y)

∧ ∀j (j ≤ length(Ff ) ∧ j 6= i→ nth(F ′
f , j)

.
= nth(Ff , j)))

∨¬∃i :nat ∃y0 :τ
(
i ≤ length(Ff ) ∧ nth(Ff , i)

.
= (x, y0)

)

∧ length(F ′
f )

.
= length(Ff ) + 1

∧ nth(F ′
f , length(Ff ) + 1)

.
= (x, y)

∧ ∀j (j ≤ length(Ff ) → nth(F ′
f , j)

.
= nth(Ff , j))

Since (initial) states are allowed arbitrary interpretations of f one can-
not possibly hope to encode arbitrary functions of infinite support into
the natural number Ff . Even if computable functions possess a finite
computing program, of which the gödelisation could be used for fallback

25In this context, Z
.
= (x, y) is short list notation for nth(Z, 0)

.
= x ∧ nth(Z, 1)

.
=

y ∧ length(Z)
.
= 2.
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purpose, initial states could just as well start with an uncomputable
interpretation for f . Encoding arbitrary members of the uncountable
set of uncomputable functions in a natural number Ff is impossible by
a countability argument. Representing a complete state in first-order
logic is thus, of course, impossible in the general case of states with
uncomputable functions. The idea is that irrespective of the (possibly
uncomputable) interpretation of the function symbol f the accumulated
change to its interpretation as resulting from the execution of program
statements can be represented in first-order logic. The y

.
= f(x) for-

mula in the definition of apply assures that whenever the accumulated
changes to Ff did not modify the interpretation of f at x the original
interpretation of f in the current state applies.

The notation F ′
f in F ′

f
.
= change(Ff , x, y) suggests that after an emu-

lated change to the interpretation of Ff the resulting encoded function
F ′
f will still fallback to f during an apply(F ′

f , z) outside of the (finite)
set of locations where the interpretation of F ′

f has been modified by
change invocations.

To put it in a nutshell, we apply the principle of updates on the meta-
level again: even though the whole state is generally non-representable
in first-order logic, the finite description of the change caused by the
execution of program statements is expressible in first-order logic.

Instead of the above “premature” treatment of assignment, in the light
of the higher-order quantification problem use the following character-
isation of the transition relation for updates.

(b) τf(s)Ct := F ′
f
.
= change(Ff , s, t) ∧

∧

Ff 6=x∈z

x′
.
= x

This formula presupposes that all occurrences of non-rigid f(x)
have been replaced by appropriate apply(F, x) after flattening to
first-order logic. This means except for the occurrences within
the defining conditions of apply and change in Enc, where the
subformula y

.
= f(x) remains unchanged.

�

Remark 4.5.5 As for all other aspects, there is no strict requirement for
the first-order logic to employ the ODL notation for expressing a typing
relationship. Still this is assumed during this thesis for simplicity.

Example 4.5.1 First-order logic with statically typed quantification that
does not have a concept of subtyping is sufficient for expressing ODL by the
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following additional translation.

t instanceof C ↔
∨

τ≤C

∃x :τ x
.
= t

�

The astonishing fact about Lem. 4.5.4 is that it does not impose any
restrictions on the states or interpretations involved other than there being
properly working natural numbers. This circumstance is especially remark-
able in the light of the arbitrary nature of functions. Some states could take
the liberty of employing even uncomputable functions as an interpretation for
function symbols. Although startling at first sight, this is perfectly possible
for states from a logical perspective, since there is no need to restrict the set of
models to those with properly computable functions, only. And that uncom-
putable aspects still play an important role is visible, at the latest, from the
preoccupation with program verification, which is an uncomputable problem
from the bottom.26

Another interesting point to be mentioned is that our first proof of Lem.
4.5.4 went by encoding the whole function for a symbol f into a natural
number. Since the apply and change formulas need to be able to decode
this information in a computable manner, this directly implies – by Church-
Turing Thesis – that it is impossible to express other functions than ordinary
computable ones. Thus, the first proof had to limit Lem. 4.5.4 to the case of
states with computable functions, only. A global restriction of the concept of
models to those interpretations with computable functions, leads to a very
unconventional proof theory, some of which is discussed in (Crossley, 1981).

Fortunately, the subtle technique to encode only the change to the func-
tion in a natural number rather than the whole function, made it possible to
present an unrestricted Lem. 4.5.4. This approach innocently leaves the rest
of the evaluation to the state semantics. Within the part of the domain where
the interpretation of the function has been changed by the execution of pro-
gram statements, the natural number encoding is used. Beyond that domain,
mentioning the term f(x) just amounts to a denotation of the original value
of the function associated to f at the value of x.

Let us – briefly – investigate what the consequences of a weakened Lem.
4.5.4 would be for the whole completeness proof. Tracing the uses during the
proof reveals that the whole theory would have to be rewritten to talk about
computable states, only. Especially, one would have to find a stronger version

26It is not that easy, though, to imagine a situation with an uncomputable function for,
say, the link structure of the pnextq attribute symbol used for chaining nodes in a linked
list implementation.
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of both Prop. 4.5.2 and R56, which already guarantee derivability for those
formulas that only happen to be true in computable states, even if they are
not tautological in uncomputable states.

Remark 4.5.6 The proof of Lem. 4.5.4 resolves a flaw in the completeness
proofs that have been published in (Harel, 1979) and (Schlager, 2000).

(Harel, 1979) and (Schlager, 2000) contain invalid relative completeness proofs
for a subtle reason. Their characterisation for the expressiveness proof of the
primitive assignment statement xCt of the classical While programming
language is wrong. This remainder of this section closely analyses the rami-
fications, using the notation from Lem. 4.5.4.

The essential case of modalities in Lem. 4.5.4 is proven by constructing
a characteristic first-order formula τα ∈ FmlFOL(Σ ∪ V ) that characterises
all state transitions on behalf of the execution of α. τα needs to specify the
program state transitions under α from the state characterised by z to the
state characterised by z′.

For the simple assignment xCt the proofs of Th. 3.2 p.30 in (Harel, 1979)
and Th. 47 p.56 in (Schlager, 2000) chose the following manifest but wrong
attempt for a characteristic formula in the expressiveness proof.

τxCt := (x′
.
= t) (4.1)

Unfortunately, this choice is substantially flawed as will be illustrated in the
following example.

Example 4.5.2 Assuming there is a program α that contains two program
variables27 x, y and thus has a vector z of length 2. For example, consider
the program α.

xC7;
yCy + 5

Then the overall characterising formula τα is built from the characterising
formulas τxC7 resp. τyCy+5 of the two assignments as follows.

τα := ∃z′′ (τxC7
z′′

z′ ∧ τyCy+5
z′′

z )

More precisely when expanding the vectorial notation z ′′ and using the ex-
plicit notation for substitutions for clarity this equals

∃x′′ ∃y′′ (τxC7[x
′ 7→ x′′][y′ 7→ y′′] ∧ τyCy+5[x 7→ x′′][y 7→ y′′])

27i.e. ODL constant symbols.
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When inserting the particular instances for τxC7 and τyCy+5 and performing
the substitution this leads to

ψ := ∃x′′ ∃y′′ (x′′
.
= 7 ∧ y′

.
= y′′ + 5)

However, ψ does not characterise the transition performed by α. The first-
order formula ψ ought to specify the program state transitions from the state
characterised by x and y to the state characterised by x′ and y′. But both,
the new value of x′ and of y′ are characterised incorrectly. The change of
x to x′ of the value 7 slips away unnoticed. The internal quantification of
x′′ restricted to x′′

.
= 7 is futile for this purpose, because it does not tell

anything about the new value of x′. The formula ∃y′′ y′
.
= y′′ +5 on the other

hand only says that y′ is the fifth successor of some value, not of the value of
y in the prestate. ψ thus completely fails to characterise the transition of x
as well as y, but almost boils down to the universal state transition relation
dom(`) × dom(`). �

Therefore, the characterisation (4.1) for the assignment statement xCt is
incorrect and invalidates the expressiveness and completeness proof in (Harel,
1979) and (Schlager, 2000).

What (4.1) expresses correctly, is the effect that xCt has on the atomic
program variable x. However, what it does not even talk about at all is
how the assignment xCt relates the values of any other variables y from the
prestate to the poststate of the assignment execution. (4.1) acts as if there
was no connexion between y and y′ at all after an assignment to x has been
made, which is wrong.

A solution to the problem is to change the characterising formula for as-
signments as has been performed in the Lem. 4.5.4 proof presented in this
thesis. Consider a program variable vector z of length n as determined by
the complete program under investigation. Then even if the current program
to characterise, xCt, involves less variables (say x, u) we still use the com-
plete vector z of length n. Then the characterising formula can be defined to
mention what changes and what remains during the state transition at once.

τxCt := x′
.
= t ∧

∧

x6=y∈z

y′
.
= y

Example 4.5.3 Continuing Ex. 4.5.2, the overall characterising formula of
α is

∃x′′ ∃y′′ (x′′
.
= 7 ∧ y′′

.
= y ∧ y′

.
= 5 ∧ x′

.
= x′′)

which could be simplified by standard quantifier reasoning to

x′
.
= 7 ∧ y′

.
= 5

�
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4.5.3 Rewrite Completion

This section proves a rewrite termination result. This result says that the
term rewrite process caused by update application always comes to comple-
tion, which is essential for the completeness proof of assignment treatment.

To emphasise: it is not the case that nonterminating rule application
would spoil all completeness ambitions. On the contrary, by the intrinsically
undecidable nature of the verification problem, (relatively) complete calculi
must have rules that – in the general case – can be applied indefinitely.
Rather, it is immediately important to provide a finite treatment of updates
in order to guarantee that each valid assertion about a complex function
assignment can be proven with a finite derivation. An infinite descent of
rewrite rule applications would never constitute a proof.

On an intuitive level, a system that bloats formulas during update pro-
motion arbitrarily would not be able to complete many proofs anyway. The
formal nature of update promotion, though, spreads the effect of updates
exponentially28 to the subterms and possibly introduces larger terms by case
distinctions with conditional terms. It is not at all obvious that this growth
will ever come to an end. Therefore, it has to be shown that term rewrite
cannot happen indefinitely but that there is always an end to the update
application process in the next result.

Lemma 4.5.7 (Noetherian Term Rewritings) The term rewrite relation
 is Noetherian, i.e. repeated term rewrite always terminates.

Termination is generally a very challenging property to prove. Verifying from
scratch that the relation  is Noetherian would be a tremendous amount
of work. This is due to the update (match) (R27) inference rule having two
interdependent complexity aspects: number and depth of terms under up-
dates. Even worse, those two aspects behave in an “Ackermanian”29 way,
which means that once the one aspect has been improved by the inference
rule, the other aspect is bound to have been impaired. By shifting an update
〈U〉 in front of f(u1, . . . , un) to all its subterms, R27 decreases the depth
of the term after 〈U〉 but introduces more terms 〈U〉ui in front of which
〈U〉 resides. Moreover, the introduction of the conditional term by R27 fur-
ther increases the depth of the terms behind any additional update around
〈U〉f(u1, . . . , un), which again leads to more terms that require update ap-
plication. What is even worse is that the overall depth of newly introduced
update terms does not strictly decrease because the same terms si and t of

28In the worst case without optimisations.
29This notion derives from the Ackermann function that Wilhelm Ackermann (1896 -

1962) has proven to be not primitive recursive, see p.451 in (Cormen et al., 1990).
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a positive depth will be unpacked by the update application rule. Deciding
whether all those competing aspect changes unite to an overall trend down-
wards30 or lead to a circular divergence would be exceedingly nontrivial.

For those reasons, the proof of Lem. 4.5.7 follows a different approach
with more involved standard notions on term rewriting. The key idea for
proving this lemma is to find a relation � that bounds the rewrite relation
 and is comparably simple to verify as Noetherian. If � contains31  , any
application of a rewrite must decrease the terms with respect to �. When �
is Noetherian, this reduction cannot happen infinitely often. To render this
idea more precise and find an appropriate Noetherian relation , we have to
introduce some technical utilities from (Dershowitz & Plaisted, 2001; Baader
& Nipkow, 1998; Dershowitz & Jouannaud, 1990), though.

Definition 4.5.8 A rewrite ordering is an irreflexive and transitive32 rela-
tion � ⊆ Trm(Σ∪V )×Trm(Σ∪V ) that satisfies for each s, t ∈ Trm(Σ∪V )

(σ) s � t ⇒ σs � σt for each substit. σ “stable substitution”
(mon) s � t ⇒ φ(s) � φ(t) for each term φ(x) “stable instantiation”

Remark 4.5.9 Condition (mon) is equivalent to

s � t ⇒ for each f ∈ Σ f(. . . , s, . . .) � f(. . . , t, . . .) “monotone”

Rewrite orderings characterise what a term ordering has to fulfil in order for
the compatibility with the ordering to inherit from rewrite rules to applica-
tions of the rewrite rules. If all rules of a term rewrite relation are compatible
with �, i.e. � contains  , then if � is a rewrite ordering, this also holds
for all applications of those rules. Applications of rewrite rules happen as
instances of the rewrite rule and occur in some context. Instantiation inheri-
tance is handled by (σ), while context inheritance is dealt with by the (mon)
condition.

Definition 4.5.10 A rewrite ordering �⊆ Trm(Σ ∪ V ) × Trm(Σ ∪ V ) is a
(strict) simplification ordering if it satisfies for each s ∈ Trm(Σ ∪ V )

(sub) f(. . . , s, . . .) � s “subterm property”

Theorem 3 (Simplification Ordering) Every simplification ordering over
terms of a finite vocabulary is Noetherian.

30With a sufficiently complex notion of which term is “larger”, irrespective of its linear
size and depth.

31in the sense that �⊇  , i.e. for each s, t if s  t ⇒ s � t.
32i.e. it satisfies for each t that t � t does not hold, and for each s, t, u s � t and t, u �

then s � u.
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This theorem has a complex proof in (Dershowitz, 1982) based on the deep
result of Kruskal’s Tree Theorem (Kruskal, 1960; Nash-Williams, 1963). Com-
bining this theorem with another result from the literature (Baader & Nip-
kow, 1998) allows to find a Noetherian order restraining the term rewrite
relation. The vocabulary occurring in a term that experiences rewriting is
always finite, regardless of the finitude of the overall signature.

Proposition 4.5.11 Let > be an ordering on Σ. The recursive path ordering
(RPO33) � defined as follows is a simplification ordering.

(a) f(s1, . . . , sn) � t if there is i with si � t or si = t.

(b) f(s1, . . . , sn) � g(t1, . . . , tm) if f > g and for each i f(s1, . . . , sn) � ti.

(c) f(s1, . . . , sn) � f(t1, . . . , tn) if {{s1, . . . , sn}} � {{t1, . . . , tn}}.

Where the rewrite ordering � is extended to multisets M , N according to
(Menzel & Schmitt, 2000) as follows.

M � N :⇐⇒ there is M+ ⊆M, N+ ⊆ N with (M \M+) ∪N+ = N

and for each b ∈ N+ there is a ∈M+ a � b

With the above terminology one can attempt to find a recursive path
ordering for the proof of Lem. 4.5.7. For the proof to succeed all rewrite rules
have to be compatible with the very same ordering. The next result will only
demonstrate this compatibility for the most complicated rewrite rule.

Proposition 4.5.12 The R27 inference rule is compatible with a recursive
path ordering.

Proof: Consider the update (match) (R27) rewrite rule in the version
relevant for this proof. U is a short notation for the update f(s1, . . . , sn)Ct.

〈U〉f(u1, . . . , un)  

if s1
.
= 〈U〉u1 ∧ · · · ∧ sn

.
= 〈U〉un then t else f(〈U〉u1, . . . , 〈U〉un) fi

Let l abbreviate the left hand side 〈U〉f(u1, . . . , un), and r abbreviate the
right hand side

if s1
.
= 〈U〉u1 ∧ · · · ∧ sn

.
= 〈U〉un then t else f(〈U〉u1, . . . , 〈U〉un) fi

33Also referred to as bag ordering.
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It remains to show that l � r. For the purpose of this proof assume that
updates formulas like in l have the following abstract syntactic structure34

in prefix notation.

l = U
(
f(s1, . . . , sn), t, f(u1, . . . , un)

)

We pick the following (partial) ordering on the vocabulary as a basis of the
� recursive path ordering:35

U > if then else fi, U >
.
=, U > ∧, U > f

l � r holds according to (b) of Def. 4.5.11 because U > if then else fi and

⇐ l � s1
.
= U

(
f(s1, . . . , sn), t, u1

)
∧ · · · ∧ sn

.
= U

(
f(s1, . . . , sn), t, un

)
,

which by (b) holds because of U > ∧ and

⇐ l � si
.
= U

(
f(s1, . . . , sn), t, ui

)
, which by (b) holds because of

U >
.
= and

⇐ l � si, which by (a) holds because of

⇐ f(s1, . . . , sn) � si is true by (a).

⇐ l � U
(
f(s1, . . . , sn), t, ui

)
. So by (c) it only remains to show

that {{f(s1, . . . , sn), t, f(u1, . . . , un)}} � {{f(s1, . . . , sn), t, ui}}.
This in turn holds because of

⇐ f(u1, . . . , un) � ui is true by (a).

⇐ l � t which is true by (a).

⇐ l � f
(
U
(
f(s1, . . . , sn), t, u1

)
, . . . ,U

(
f(s1, . . . , sn), t, un

))
which – by

(b) holds – because of U > f and

⇐ l � U
(
f(s1, . . . , sn), t, ui

)
Thus, by (c) it remains to show that

{{f(s1, . . . , sn), t, f(u1, . . . , un)}} � {{f(s1, . . . , sn), t, ui}}. This in
turn holds because of

⇐ f(u1, . . . , un) � ui is true by (a).

�

Along with very similar reasoning for the other rewrite rules, this completes
the proof of Lem. 4.5.7. Additionally, for later use note that for a first-order
formula F ∈ FmlFOL(Σ ∪ V ) the fixed-point rewrite 〈U〉F  ∗ F ′ finally

34This precise structure is – to some extent – critical for the success of the proof. For
example, ignoring the si or t for the abstract syntactic structure would perish the proof.

35This whole proof has been produced automatically by a small Prolog program.
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reaches an F ′ ∈ FmlFOL(Σ ∪ V ) of first-order logic, as can be seen from the
fact that, while there is still a remaining update left, it can be rewritten by
one of the update rules. Furthermore, any modality occurring is an update
since the update rules only introduce new updates and 〈U〉F did not initially
contain any other modalities.

For the rewriting continued with an application of one of the update
application term rewrite rules R27, R28, R29, implicitly assume that bound
α-renaming has been used. Whenever the term rewrite system is about to stop
because of the x /∈ FV (U) condition of the R29 rewrite rule, α-conversion is
used to rename the bound variable x.

4.5.4 Elementary Completeness

The next results prove completeness in an elementary case. Even though
having the same formulation as Th. 2 on the surface, those results only
express completeness limited to the simpler case of Hoare triples, i.e. pre-
and postcondition specifications restricted to first-order logic. In contrast to
full ODL, a Hoare specification F → 〈α〉G cannot contain further modalities
within F and G. In comparison to full dynamic logic, first-order Hoare triples
tremendously simplify the proof. Further the first-order cases constitute the
basis for the final completeness proof for arbitrary formulas of dynamic logic.

Proposition 4.5.13 (Elementary 〈〉 completeness) For each program α
∈ Prg(Σ ∪ V ) and each F,G ∈ FmlFOL(Σ ∪ V ) of first-order logic

� F → 〈α〉G ⇒ ` F → 〈α〉G

Proof: From the validity of � F → 〈α〉G we have to conclude that the
calculus can deduce the valid conjecture ` F → 〈α〉G as well. The proof
follows an induction of the structure of the program α.

IH As induction hypothesis this proof uses a slightly modified variant:
Whenever � F → 〈α〉G holds for first-order formulas F,G ∈ FmlFOL(Σ
∪ V ) then F ` 〈α〉G can be derived. From this the conjecture ` F →
〈α〉G can always be concluded by an application of the R10 inference
rule.

1. � F → 〈f(s)Ct︸ ︷︷ ︸
U

〉G. By Lem. 4.5.7 there is G̃ with 〈U〉G  ∗ G̃.

Moreover the proof of Lem. 4.5.7 shows that G̃ ∈ FmlFOL(Σ ∪ V ) is
first-order. From Prop. 4.4.7 we know that still � F → G̃, which is
first-order, because of which the ODL calculus can – by assumption of
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the notion of relative completeness – also prove ` F → G̃ by R56. Prop.
A.2.1 allows to conclude that there also is a derivation of F ` G̃. From
this the R36 inference rule of the ODL′ calculus allows to continue the
derivation to F ` 〈U〉G.

Here the ODL′ calculus works like the ODL calculus except that term
rewrites are restricted to occur according to  ∗ instead of  . To be
more precise, instead of the ODL inference rules R35 and R36, ODL′

contains the following.

(R57) term rewrite (left)
φ(t) `

φ(s) `
⇐ (s  ∗ t) holds

(R58) term rewrite (right)
` φ(t)

` φ(s)
⇐ (s  ∗ t) holds

From Lem. 4.5.7 we know that term rewrites can always be continued to
a fixed-point, while Prop. 4.4.7 allows to conclude that the final result
will still share the same value. So in a certain sense, ODL′ specialises
the ODL calculus to the case that term rewrites always accumulate to
one large term rewrite evaluating a single subterm as far as possible. If,
by this completeness proof for ODL, we have been able to show ODL′ is
relatively complete, then so is ODL even more, because amongst other
proofs it allows the emulation of the ODL′ behaviour by successive
term rewrites.

2. � F → 〈if(χ) {γ}else{δ}〉G then according to the semantics in Def.
2.3.8 this also implies that � F ∧ χ → 〈γ〉G, resp. � F ∧ ¬χ → 〈δ〉G.
The induction hypothesis allows to conclude F, χ ` 〈γ〉G, resp. F,¬χ `
〈δ〉G. With the branch (R23) inference rule this leads to a derivation
of F ` 〈if(χ) {γ}else{δ}〉G.

3. � F → 〈γ; δ〉G then according to Def. 2.3.8 this also implies that
� F → 〈γ〉〈δ〉G. By Lem. 4.5.4 there is a first-order formula G′ ∈
FmlFOL(Σ∪V ) with � G′ ↔ 〈δ〉G. From the validity of � F → 〈γ〉G′

the induction hypothesis allows to conclude

F ` 〈γ〉G′ (4.2)

126



Because of � G′ → 〈δ〉G the induction hypothesis allows to conclude
G′ ` 〈δ〉G. With an application of 〈〉 generalisation (R46) the deriva-
tion can be extended to 〈γ〉G′ ` 〈γ〉〈δ〉G. In combination with (4.2)
this allows to derive F ` 〈γ〉〈δ〉G, from which the composition (R21)
rule allows to derive F ` 〈γ; δ〉G.

4. � F → 〈while(χ) {γ}〉G. This case uses a first-order formula Ω express-
ing the termination of the loop after n iterations in a state satisfying
G. It is very similar to the expressibility formula τwhile(χ) {γ} from the
proof of Lem. 4.5.4, except for the export of the iteration count n.

Ω(n) := Enc→ ∃S :nat
(

nth(S, 0)
.
= z ∧ nth(S, length(S))

.
= z′

∧ ∀i :nat (i < length(S) → τα(nth(S, i), nth(S, i+ 1)))

∧ ∀i :nat (i < length(S) → χ′nth(S,i)
z )

∧ ¬χ′z
′

z

∧ Gz′

z ∧ length(S)
.
= n

)

So except for the iteration count export, Ω(n) and τwhile(χ) {γ}(z, z
′)∧Gz′

z

are equivalent.

� Ω(0) → G and � Ω(0) → ¬χ are valid. Thus, also � Ω(0)∧χ→ false.
As mere first-order, they are assumed to be derivable by R56. From
Ω(0) ` G the following formula can be derived by weakening (left)
(R6).

Ω(0),¬χ ` G (4.3)

Likewise from Ω(0), χ ` false the weakening (right) (R12) inference
rule can derive Ω(0), χ ` 〈γ〉〈while(χ) {γ}〉G, from which composition
(R21) can conclude

Ω(0), χ ` 〈γ; while(χ) {γ}〉G (4.4)

The branch (R23) inference rule can combine (4.3) and (4.4) to produce
a derivation of Ω(0) ` 〈if(χ) {γ; while(χ) {γ}}〉G from which the
loop unwind (R25) rule derives Ω(0) ` 〈while(χ) {γ}〉G such that the
→ right (R10) inference rule can come up with a derivation of the
following.

` Ω(0) → 〈while(χ) {γ}〉G (4.5)

which lies the anchor of the arithmetic object-level induction.
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According to the loop semantics � Ω(n + 1) → 〈γ〉Ω(n) is true, be-
cause of which it can be derived by induction hypothesis since γ is less
complex. Thus, this provides a derivation for

Ω(n+ 1) ` 〈γ〉Ω(n) (4.6)

The induction hypothesis on the object-level is

Ω(n) → 〈while(χ) {γ}〉G (4.7)

So for the moment let us assume there would be a derivation of

Ω(n) ` 〈while(χ) {γ}〉G

from which 〈〉 generalisation (R46) derives

〈γ〉Ω(n) ` 〈γ〉〈while(χ) {γ}〉G

which with (4.6) refines to Ω(n+ 1) ` 〈γ〉〈while(χ) {γ}〉G. Now R21
continues with Ω(n+ 1) ` 〈γ; while(χ) {γ}〉G, and weakening (left)
(R6) leads to a derivation

Ω(n+ 1), χ ` 〈γ; while(χ) {γ}〉G (4.8)

The loop semantics imply � Ω(n+1) → χ alias � Ω(n+1)∧¬χ→ false,
which – as mere first-order – is assumed to be derivable by R56. From
Ω(n+ 1),¬χ ` false weakening (right) (R12) the conclusion can be
drawn that

Ω(n+ 1),¬χ ` G (4.9)

The R23 inference rule can combine (4.8) and (4.9) to derive

Ω(n+ 1) ` 〈if(χ) {γ; while(χ) {γ}}〉G

which the R25 rule can carry forward to a derivation of

Ω(n+ 1) ` 〈while(χ) {γ}〉G (4.10)

To put it in a nutshell the above reasoning has constructed a derivation
of (4.10) from a sequent variant of (4.7). By Prop. A.2.1 this amounts
to a derivation of

Ω(n) → 〈while(χ) {γ}〉G ` Ω(n+ 1) → 〈while(χ) {γ}〉G (4.11)
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The induction (R15) inference rule for natural numbers allows to derive
from (4.5) and (4.11) the formula

` ∀n :nat (Ω(n) → 〈while(χ) {γ}〉G) (4.12)

By premise, � F → 〈while(χ) {γ}〉G holds, thus also � F → ∃n :
nat Ω(n), which is first-order and as such assumed derivable by R56.
In conjunction with (4.12), quantifier inference rules R14, R13 finally
allow to derive F ` 〈while(χ) {γ}〉G from this as follows.

Ω(N), (Ω(N) → 〈while(χ) {γ}〉G), F ` 〈while(χ) {γ}〉G

Ω(N), ∀n :nat (Ω(n) → 〈while(χ) {γ}〉G), F ` 〈while(χ) {γ}〉G

∃n :nat Ω(n), ∀n :nat (Ω(n) → 〈while(χ) {γ}〉G), F ` 〈while(χ) {γ}〉G

∃n :nat Ω(n), F ` 〈while(χ) {γ}〉G

F ` 〈while(χ) {γ}〉G

The bottommost two inferences are abbreviated R5 cuts with Prop.
A.2.2 according to the derivations already performed above. The top-
most situation can be closed by modus ponens (R55).

�

Proposition 4.5.14 (Elementary [] completeness) For each program α
∈ Prg(Σ ∪ V ) and each F,G ∈ FmlFOL(Σ ∪ V ) of first-order logic

� F → ¬〈α〉G ⇒ ` F → ¬〈α〉G

Or equivalently: for each α ∈ Prg(Σ ∪ V ) for each F,G ∈ FmlFOL(Σ ∪
V ) of first-order logic

� F → [α]G ⇒ ` F → [α]G

Proof: The duality of ¬〈α〉¬ψ ≡ [α]G establishes the equivalence.

The proof is similar to Prop. 4.5.13. The cases for updates, branching and
sequential composition are simple adaptations of the corresponding cases in
Prop. 4.5.13. What remains to show is that F ` [while(χ) {γ}]G can be
derived by the loop induction right (R45) inference rule. Define the loop in-
variant as a first-order encoding of the statement that all potential poststates
of the loop satisfy G. The formula τα(z, z

′) stems from the proof of Lem. 4.5.4.

p := Enc→ ∀z′ (τα(z, z
′) → Gz′

z )
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Since F → p and p∧¬χ→ G are valid, they are assumed to be derivable as
mere first-order by the notion of relative completeness. Thus, R56 provides
derivations of

F ` p (4.13)

p,¬χ ` G (4.14)

Likewise, p∧χ→ [γ]p is valid and – as γ is of a smaller complexity – derivable
by induction hypothesis.

p, χ ` [γ]p (4.15)

From (4.13), (4.15), and (4.14) the loop induction right (R45) inference rule
allows to conclude the intended derivation. �

Proposition 4.5.15 for each F ∈ FmlFOL(Σ ∪ V ) of first-order logic

� F → t instanceof C ⇒ ` F → t instanceof C

� F → ¬(t instanceof C) ⇒ ` F → ¬(t instanceof C)

Proof: As a preparation, note that the following correspondence holds in
ODL.

t instanceof C ≡ ∃n :nat t
.
= obj ≤ C(n) (4.16)

If in some state w of an interpretation `, the relation `, w � t instanceof C
holds, then due to the circumstance that t is an object of a subtype D of C.
Therefore, val`(w, t) ∈ OD and it holds for some d ∈ N by bijectivity of obj
according to Def. 2.3.1 that

`[n 7→ d], w � t
.
= objD(n)

Thus, `, w � ∃n :nat t
.
= obj ≤ C(n) is true. The converse relation is immedi-

ate.
If F → t instanceof C is a tautology then – by congruence – so is F →

∃n : nat t
.
= obj ≤ C(n) according to (4.16). Hence, � F → ∃n : nat t

.
=

obj ≤ C(n), which is first-order and thus assumed36 to be derivable with R56.

36Knowing that R41, R42 and R43 immediately characterise the semantical first-order
restrictions to obj. More precisely, this can be justified as follows. First-order logic without
arithmetic is complete. If, instead of first-order bijectivity and disjointness premises for
obj, inference rules had been added that express the very same meaning then the enhanced
first-order logic would still have been complete. Thereafter, the extension of ODL beyond
first-order logic can be considered.
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A derivation of ` F → ∃n : nat t
.
= obj ≤ C(n) can be continued to a

derivation of F ` t instanceof C by a cut (R5) in the sense of Prop. A.2.2
with the following deduction.

F, t
.
= obj ≤ C(N) ` obj ≤ C(N) instanceof C

F, t
.
= obj ≤ C(N) ` t instanceof C

F,∃n :nat t
.
= obj ≤ C(n) ` t instanceof C

The proof finally closes by R39.37

The derivation of ` F → ¬(t instanceof C) from the fact that � F →
¬(t instanceof C) is similar, but involves R40. �

4.5.5 Relative Completeness

Having succeeded with the proofs of the above auxiliary statements it is now
possible to finish the proof of the central theorem Th. 2 from p.110 on the
basis of the lemmata 4.5.1-4.5.15.

Broadly speaking, the proof proceeds as follows: By propositional recom-
bination, we inductively identify fragments of the formula at hand that have
a form qualitatively similar to φ1 → 〈α〉φ2. Its constituents ψi will then be
expressed equivalently in first-order logic with the power of arithmetic encod-
ing by Lem. 4.5.4. Finally, the proof relies on Prop. 4.5.13 and Prop. 4.5.14
to resolve the first-order Hoare triple base cases.

Proof: The proof of Th. 2 follows a basic structure analogue to that of
Th. 3.1 of §3.1 on p.28 in (Harel, 1979). For a formula φ with ` � φ for each
arithmetical structure φ, it has to be shown that ` φ can be proven within
the ODL calculus. A reasonable proof of this conjecture needs a number of
preparations to treat the separate aspects of ODL in isolation as much as
possible.

1. If φ is of the form ψ(if e then s else t fi) then (inductively) consider the
simpler38 and – by Prop. 4.4.4 – equivalent formula (e→ ψ(s))∧(¬e→
ψ(t)) instead. From this, the deduction of φ can be concluded with an
application of R38.

37Prior to the application of R16, the notational abbreviation obj ≤ C(N) has to be re-
solved into several branches involving objD(N) for D ≤ C instead. Further, in this deriva-
tion, the range of effect of

.
= subst (R16) has been restricted by Prop. 4.2.5 to prevent

performing replacements in F , though this is uncritical to the success of the proof.
38Simpler in terms of the number of occurrences of if then else fi .
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2. For preparation let us remark that one can assume φ to be presented
in conjunctive normal form. Otherwise let φ̃ be the conjunctive normal
form of φ. Provided that there is a derivation of ` φ̃ there is already

one of ` φ, since � φ↔ φ̃
4.5.1
⇒ ` φ↔ φ̃

`φ̃
⇒ ` φ̃ ∧ (φ̃→ φ)

R55
⇒ ` φ.

The remainder of the proof follows an induction on a measure |φ| with
the following definition.

|φ| := number of modalities, quantifiers39or instanceof in φ

IA n = 0 ⇒ φ ∈ FmlFOL(Σ ∪ V ) is first-order
4.5.2
⇒` φ.

IS n > 0 leaves several cases according to the conjunctive normal form of
φ.

– φ = φ1 ∧ φ2, then individually deduce the simpler proofs for ` φ1

and ` φ2, which are combined by R8. Likewise reasoning handles
the case φ = ¬φ1.

– φ is a disjunction and – without loss of generality40 – has one of
the following forms

φ1 ∨ 〈α〉φ2

φ1 ∨ [α]φ2

φ1 ∨ ∃xφ2

φ1 ∨ ∀xφ2

As a unified notation for those four cases use φ1 ∨ ρφ2.

Without loss of generality, it can further be assumed that ρφ2 is
not first-order since we could otherwise consider ρφ2 ∨ φ1 instead.
If φ1 was first-order as well, then the case n = 0 would apply.

The fact that ρφ2 is not first-order allows to conclude |φ2| < |φ|
because φ2 already has less modalities or quantifiers. Likewise
|φ1| < |φ| because ρφ2 contributes one modality or quantifier to
|φ| that is not part of φ1.

According to Lem. 4.5.4 there are first-order formulas φ′
1, φ

′
2 ∈

FmlFOL(Σ ∪ V ) with � φi ↔ φ′
i for i = 1, 2. Thus, by congruence

39In this case quantifiers in front of mere first-order formulas will not be taken into
account.

40Otherwise use associativity and commutativity to select a different order for the dis-
junction.
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this leads to � φ′
1 ∨ ρ(φ

′
2) ⇒ � ¬φ′

1 → ρ(φ′
2). Then – depending

on the particular case of ρ – Prop. 4.5.13, Prop. 4.5.14 or Prop.
4.5.2 derive

` ¬φ′
1 → ρ(φ′

2) (4.17)

Further � φ1 ↔ φ′
1 implies � ¬φ1 → ¬φ′

1, which, because of
|φ1| < |φ|, is derivable as well. In combination with (4.17), Prop.
4.5.1 allows to derive from ` ¬φ1 → ¬φ′

1 that

` ¬φ1 → ρ(φ′
2) (4.18)

Likewise � φ′
2 ↔ φ2 implies � φ′

2 → φ2, which is derivable because
of |φ2| < |φ|. From ` φ′

2 → φ2 Prop. 4.5.3 allows to extend the
derivation to ` ρφ′

2 → ρφ2. Finally Prop. 4.5.1 allows to combine
the latter with (4.18) to produce a derivation ` ¬φ1 → ρφ2 alias
` φ1 ∨ ρφ2.

– φ is a disjunction and has one of the following forms

φ1 ∨ t instanceof C

φ1 ∨ ¬(t instanceof C)

As a unified notation for those two cases use φ1 ∨ ρφ2.

The fact that ρφ2 contributes one instanceof to |φ|, which is
not part of φ1, entails |φ1| < |φ|.

According to the characterisation in Lem. 4.5.4 there is a first-
order formula φ′

1 ∈ FmlFOL(Σ ∪ V ) with � φ1 ↔ φ′
1. Thus, by

congruence this leads to � φ′
1 ∨ ρφ2 ⇒ � ¬φ′

1 → ρφ2. From this,
Prop. 4.5.15 derives

` ¬φ′
1 → ρφ2 (4.19)

The rest of the proof works similar to the above case, yet us-
ing (4.19) instead of (4.17). � φ1 ↔ φ′

1 implies � ¬φ1 → ¬φ′
1,

which, because of |φ1| < |φ|, is derivable as well. In combination
with (4.19), Prop. 4.5.1 allows to derive from ` ¬φ1 → ¬φ′

1 that
` ¬φ1 → ρφ2.

�

All sound dynamic logic inference rules not having been used during the
proof of Th. 2 are bound to be derived rules. Even though they are – to some
extent – superfluous from a logical perspective, they are important from
a pragmatical perspective in order to keep proofs down to a manageable
complexity. Finally, Lem. 4.2.7 reveals the ODL proof system relying on
merged parallel updates instead of singleton updates to remain relatively
complete.
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4.5.6 Completeness Lifting

ODL has been proven relatively complete in Th. 2 with the proof extending
from §4.5.1 on p.111 to §4.5.4 as far as p.134. The completeness proof further
imports some complicated proofs from results in earlier sections. Usually, one
would prefer not to repeat such a tremendous effort when moving on to a
calculus for another object-oriented programming language.

When confronted with programs of an object-oriented programming lan-
guage with more native features than ODL, verification can follow either
one of the two foreign language approaches drafted in §1.3. The intermediate
language translation approach 2 works perfectly well and does not need any
adaptation of the completeness proof. The full-custom calculus and language
extension approach 3, instead, necessitates a repetition and adaptation of
some parts of the completeness proof. We investigate this adaptation and
analyse the portability of the completeness proof: the question arises how
much effort can be reused for a completeness proof of an extended logic and
which parts have to be reconsidered.

The results from §4.5.1 remain valid for extended logics. Lem. 4.5.4 has
to be proven again. However, those parts of the structurally inductive proof
concerning features of the language that have not been affected by the ex-
tension can be reused. Likewise, Prop. 4.5.13 and Prop. 4.5.14 need to be
proven again for the new or modified syntactic elements. For changes that
affect large parts of the language semantics like side-effecting expression eval-
uation or partial expression evaluation due to exception raising, this can still
be a tremendous amount of work.

For those reasons, the next result provides a criterion that allows to lift
the completeness proof for the ODL logic to extended logics with less effort.

Proposition 4.5.16 (Completeness Extension) Let L′ > L be a logic
that is an extension of the logic L, i.e. all formulas of L are formulas of L′

and within those formulas they share the same tautologies. Let R′ ⊃ R be a
calculus of L that contains the calculus R of L. If

(i) R is complete for L, and

(ii) R′
e := {r ∈ R′ : r (locally) equivalent} finally reduces to L, i.e.

for each φ′ ∈ FmlL′(Σ∪V ) there is Φ ⊆ FmlL(Σ∪V ) such that Φ ` φ′

with inference rules from R′
e.

then R′ is complete for L′.

Proof: Let φ′ ∈ FmlL′(Σ∪V ) with � φ′, i.e. for each interpretation ` ` � φ′.
We are bound to show that ` φ′.
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Let Φ ⊆ FmlL(Σ ∪ V ) according to (ii). Since the inference rules in R′
e

are (locally) equivalent transformations ` � φ′ implies ` � Φ inductively. This
argument can be repeated for any `, because of which � Φ can be concluded.
By (i) this implies ` Φ. By transitivity of ` this can be combined with Φ ` φ′

to prolongate to the desired derivation of ` φ′. �

Note that – contrary to most other transformation situations – confluence
is not an issue for the reduction in (ii). It is of no importance at all whether
the additional inference rules of R′ can agree on one single target translation
of the additional concepts or lead to a variety of different translations. The
local equivalence ensures that whatever form the particular final translation
happens to take, it is an adequate starting point for proving the original state-
ment without losing relative completeness. It is, though, vitally important
for the overall argument that the translation process finally terminates.

Corollary 4.5.17 A calculus for JavaCardDL that extends the ODL cal-
culus by additional inference rules is relatively complete for JavaCardDL

if condition (ii) holds.

Proof: The restriction to relative completeness instead of completeness just
reflects the addition of the same inference rule First-Order Oracle (R56). �

Now, examine some examples of JavaCardDL inference rules that per-
mit the treatment of additional JavaCard features, which are not part of
ODL, without losing soundness or relative completeness.

Example 4.5.4

` 〈U ; while(χ) {α; γ}〉φ

` 〈for(U ;χ; γ){α}〉φ

This is a locally equivalent41 inference rule that directly reduces for loops
to ODL in a single inference. Thus, the additional language feature of for
loops will be completely dealt with by adding this single inference rule to the
ODL calculus. Likewise reasoning concludes the case of do-while loops with
the following inference rule.

` 〈α; while(χ) {α}〉φ

` 〈do{α}while(χ)〉φ

�

41Thus, it would be part of R′
e.
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Example 4.5.5 The following inference rule performs the transformation
from §3.4.2 on-the-fly.

` 〈bCobjC(nextC), nextCCnextC + 1〉φ

` 〈bCnew C()〉φ

is a locally equivalent42 inference rule that directly reduces to ODL. Thus,
all atomic object creation statements will be dealt with adequately by adding
this inference rule to the ODL calculus, apart from the fact that it does not
yet invoke the constructor. But this is just a matter of openly embedding the
constructor body due to the lack of dynamic dispatch for constructor calls.
�

Example 4.5.6 Due to the presence of side-effects the order of evaluation
is important in Java. Therefore, JavaCardDL has expression evaluation
inference rules, which ensure that the calculus respects the Java evaluation
order. The JavaCardDL inference rules successively transform expression
evaluations that possibly involve side-effecting subexpressions to a sequence
of assignments similar to the effect of the preprocessing transformation in
§3.4.1. Consider what happens to completeness when adding those inference
rules, which are aware of side-effecting expression evaluation. In this exam-
ple, vi will always denote atomic program variables, while ei denotes either
compound or atomic expressions. JavaCardDL contains a multitude of ex-
pression evaluation inference rules of the following flavour to treat compound
subexpressions.43

` 〈v0 = e0; v1 = e1; . . . vn = en; v0.a = op(v1, . . . , vn)〉φ

` 〈e0.a = op(e1, . . . , en)〉φ

` 〈v0 = e0; v1 = v1 + 1; v0.a = v1〉φ

` 〈e0.a = ++v1〉φ

Where op is an arbitrary Java operator with arity n and the new variable
vi has the same type as the expression ei. Those inference rules are locally
equivalent transformations.

Contrary to the previous examples those inference rules do not generally
reduce formulas to ODL directly but may need considerably more than one

42Notice that the soundness of this inference rule is bound to the fact that
update occurrence (R48) does not remove updates to nextC as long as an new C() term
could still expand to a nextC by this inference rule.

43This example is about Java assignments instead of ODL updates. Therefore, in order
to avoid confusion the assignment notation a = b is preferred instead of aCb in this context.
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inference to do so. Such a situation arises when the compound subexpressions
ei are again subject to side-effects and need further reduction by those rules.
Once ordinary ODL expressions have been reached, an assignment a = b
would constitute a well-formed update aCb.44 Further, as soon as none of
the above mentioned types of inference rules is applicable any more, ODL

expressions must have been reached. Thus, in order to show condition (ii) of
the completeness extension criterion termination has to be proven.

Proposition 4.5.18 The transformation performed by the above extended
evaluation order inference rules terminates.

Proof: To prove termination, pick a number b ∈ N that is strictly greater
than the arities of all Java operators plus 1. With this one can define a mea-
sure for terms that decreases in a Noetherian way during the transformation.

|Υ(u1, . . . , un)| := b ·
n∑

i=1

|ui|

|v| := 1

Then it remains to show that the overall measure decreases by each applica-
tion of the above inference rules. Consider

` 〈v0 = e0; v1 = e1; . . . vn = en; v0.a = op(v1, . . . , vn)〉φ

` 〈e0.a = op(e1, . . . , en)〉φ

Then the overall measure of the conclusion in comparison with the premise
is as follows.

|e0.a| + |op(e1, . . . , en)| = b · |e0| + b ·
n∑

i=1

|ei|

= b ·
n∑

i=0

|ei|

=
n∑

i=0

|ei| + (b− 1) ·
n∑

i=0

|ei|

≥
n∑

i=0

|ei| + (b− 1) · (n+ b)

≥
n∑

i=0

|ei| + (b− 1) · b

44For simplicity assume such a conversion to happen automatically as soon as possible.
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b−1>n
>

n∑

i=0

|ei| + b · n

=
n∑

i=0

|ei| + |op(v1, . . . , vn)|

The first inequality holds since – by premise – not all subexpressions ei are
mere atomic variables, otherwise the program would already constitute an
ODL update so that the translation would have terminated.45 �

As this proof shows, adding the evaluation order inference rules to ODL

still leads to a relatively complete calculus for object-oriented programming
languages in the presence of side-effecting expression evaluation. �

45Notice that the |vi| and |v0.a| occurrences from the left hand sides of the new tem-
porary value assignments do not contribute to | · |. This is due to the circumstance that
they could provide overhead when most of the ei are already atomic variables and n ≤ 1.
However, a straightforward optimisation of the transformation rule avoids the copying
to the temporary variable vi for atomic ei, thereby circumventing the counting problem
altogether.
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Chapter 5

Extensions

5.1 Object Createdness

Example 5.1.1 (Motivation) Consider the following conjecture φ about
a program α involving object creation.

b 6= null →
〈b.xCb.x+ 1;
cCnew C();
c.xCb.x+ 2〉c.x

.
= b.x+ 2

Though astonishing from a programming language point of view, this seem-
ingly basic conjecture cannot be proven. This is due to the fact that the proof
vitally depends on the ability to infer that b and c are distinct objects. Oth-
erwise the postcondition c.x

.
= b.x+2 cannot ever be true, since c.x

.
= c.x+2

is always false.
The Java language semantics, however, ensure for whatever object b

refers to, that this object must have been created at some time. Since b
already exists initially and prior to executing α, its object must also have
been created prior to the allocation of c during α. Since object creation pro-
duces distinct objects in distinct invocations, b and c can be inferred with
this meta-reasoning to refer to different objects.

Within the ODL calculus from §4.2, proving that b and c differ is impos-
sible, though. Yet this proves to be the desired outcome for a sound calculus,
since – for validity – the ODL language semantics permit b and c to draw
their initial values from any state of any interpretation. Whereas, choosing
val`(w, b) = val`(w, objC(5)) is quite possible for ODL states, even in the
worst case of val`(w, nextC) = 5, i.e. b refers to the (in w still uncreated) ob-
ject that will be returned on the next invocation of new C(), which constitutes
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a counter-example to φ.1 In general, the conjecture φ is untrue, but only in
states that cannot occur during the execution of Java programs anyway.

In C++, referring to arbitrary locations right in the middle of memory
that have not been issued by proper object creation before is very well possi-
ble with pointer arithmetics. In α, if b has been assigned an arbitrary memory
location by pointer arithmetics of some previous program run then b might
just happen to refer to the object that will be produced by object creation in
cCnew C(). Though this coincidence might seem unlikely, this is what program
verification is about: proving that programs work under all circumstances,
not just the sufficiently “regular” ones respected when programming.

Thus, for ODL to provide a faithful representation of both Java and
C++ programs, referring beyond the limit of nextC has to be possible. Still
there is a difference in the amount of structural information about the pro-
gram that needs to be accessible to the prover. In particular, as a C++

translation, conjecture φ has to be provably false, while as a Java trans-
lation2, φ should be true. The most simple way of achieving this is to add
additional premises to the specification in the case of Java that express
proper createdness constraints for all symbols completely under control of
the program. �

The question of whether or not symbols occurring in an ODL program
can denote uncreated objects is translation dependent. The remainder of
this chapter considers the case of an ODL translation with Java as source
language.

Definition 5.1.1 (Object Createdness) For a term t ∈ Trm(Σ∪V )C de-
fine an abbreviation for the createdness formula3

created(t) := ∃n :nat (n < next ≤ C ∧ t
.
= obj ≤ C(n))

A state w of an interpretation ` is called created if all program objects have
been created, i.e.

for each t ∈ Trm(Σ̃ ∪ ∅) it is `, w � created(t)

Where Σ̃ := Σ\{objC : C ∈ Typ} is the set of ground terms not including
objC.

4 The members of Trm(Σ̃ ∪ ∅) will be referred to as program terms.

1Remember that the object creation in §3.4.2 ensures that nextC always marks the OID
that will experience the next creation and is strictly larger than the OIDs of any objects
that have already been created so far.

2This also holds for a translation from Managed C++ (Thai & Lam, 2001).
3In contrast to the notion of existence, which is immediate in constant domain seman-

tics, createdness enjoys varying domain semantics.
4objC(1000) does not need to be created, of course.
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Remark 5.1.2 Adding the family of premises below to the specification of a
program originating from a Java translation is sufficient for proving conjec-
tures like that from Ex. 5.1.1.

for each constant symbol c ∈ Σ

created(c)

for each function symbol f ∈ Σ̃

∀x1 . . . ∀xn (created(x1) ∧ · · · ∧ created(xn)) → created(f(x1, . . . , xn)))

In the case of Ex. 5.1.1, the relevant family of premises is pleasantly
small due to the limited amount of symbols occurring in the program. In
general, the approach in Rem. 5.1.2 produces unnecessarily large formulas,
though. Rather than adding such a large family of premises, ODL pursues a
more implicit solution, which exhibits a high performance in practical proving
scenarios.

The basic idea underlying this concept is to provide createdness informa-
tion about program elements on demand rather than on the basis of explicit
additions to the specification in advance. Therefor, the family of explicit
premises from Rem. 5.1.2 will be replaced by a single schematic inference
rule expressing universal createdness: R59 in Fig. 5.1. Although, as the dis-
cussion in Ex. 5.1.1 shows, an inference according to R59 is not sound for all
states but only for those encountered during the execution of Java programs.
Therefore, in this chapter, states are restricted to let program terms denote
created objects only, thereby reducing the set of models a specification has to
comply with and further enlarging the set of true specifications about ODL

programs originating from Java.

Definition 5.1.3 For the remainder of this chapter, all states are restricted
to be created and all programs are restricted to preserve createdness5, thereby
attaining a well-defined semantics. When necessary to avoid confusion, the
logic with states and programs restricted as aforementioned is called ODL+ .

Remark 5.1.4 The requirements of Def. 5.1.3 are met in the case of Java.
The machine states, in which the Java Virtual MachineTM (Lindholm
& Yellin, 1999) starts execution of a Java program, correspond to created
states. Moreover, createdness is a property preserved within states under ex-
ecution of ODL programs translated from JavaCardDL.

Proof: (Sketch) According to the translation in Chapt. 3 from JavaCardDL,
the only access to new objects happens in the form of objC(nextC) in §3.4.2,

5i.e. the execution of programs never leaves the set of created states.
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where nextC increases simultaneously, thereby ensuring that the new denota-
tion refers to a (freshly) created object. A decrease or otherwise manipulation
of nextC does not occur in the case of JavaCardDL, which ensures that ob-
jects once having been created stay created and the interpretation of constant
symbols cannot be “invalidated” during a transition. �

5.2 Calculus Extension

(R59) new created

` ∃n :nat (n < next ≤ C ∧ tC
.
= obj ≤ C(n))

(R60) new created remark
〈U〉(tC

.
= obj ≤ C(X) ∧X < next ≤ C), 〈U〉tC

.
= objD(n) `

〈U〉tC
.
= objD(n) `

(R61) new created remark
〈U〉(tC

.
= obj ≤ C(X) ∧X < next ≤ C) ` 〈U〉tC

.
= objD(n)

` 〈U〉tC
.
= objD(n)

Figure 5.1: Object Createdness Inference Rules for Java and Managed

C++. Here, X is a new variable and tC ∈ Trm(Σ̃ ∪ ∅)C a ground term of
static type C.

The extended ODL calculus ODL+ consists of the inference rules from
Fig. 5.1 in addition to those in §4.2. As a notational simplification, consider
the following abbreviation.

Definition 5.2.1

n < next ≤ C ∧ x
.
= obj ≤ C(n) :=

∨

D≤C

(x
.
= objD(n) ∧ n < nextD)

The new created (R59) rule expresses that all objects are generated by
new object creation expressions, i.e. every object that exists must have been
created at some time. By the syntactical restriction of tC, R59 and its de-
scendants do not apply for terms of the form objC(s). However, discovering
about the term objC(s) that it can be written in the form objC(n) for some n
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is not a considerably remarkable insight to gain. Finally, note that the R60,
R61 inference rules are intended to be continued with R16 in order to utilise
the new knowledge about the structure of tC.

According to Def. 5.1.3, the set of possible denotations for constant sym-
bols extends6 with the transition from state to state. Constant and function
symbols from Σ̃ thus enjoy varying domain semantics in extended ODL. In
order to avoid technical subtleties with replacing possibilist quantification by
actualist quantification for proper varying domain semantics, variables keep
their unrestricted and state-independent domain of possible interpretations,
though. Essential for the language to retain overall constant domain seman-
tics and a possibilist-style calculus (Fitting & Mendelsohn, 1998) in this
semi-varying domain setting is the restriction of R59 and its descendants to
program terms. This phenomenon will be illustrated in the next example.

Example 5.2.1 (Variable Createdness) A (prohibited) application of the
R59 inference rule to a variable would be “unfortunate”7. Consider a formula
with a universal quantification

∀x :C φ(x) (5.1)

from which R17 allows to infer φ(y). Introducing R59 for an illegal tC = y as
a new premise in the antecedent according to Prop. A.2.2 leads to8

∃n :nat (n < nextC ∧ y
.
= objC(n)) ` φ(y)

After application of R14 and R16 this yields

N < nextC, y
.
= objC(N) ` φ(objc(N)) (5.2)

Although both formulas are (implicitly) universally quantified, (5.2) expresses
a considerably weaker circumstance than (5.1), since (5.2) is restricted by
N < nextC to objects that have already been created in the current state,
while (5.1) extends to all objects that will ever exist at any time. It is sim-
ple to add premises to the antecedent, which falsify (5.1) but validate the
(ill-)derived (5.2). �

6Strictly extending under transitions that increase nextC.
7It might even be incorrect, since – in general – it would be possible to derive contra-

dictions. Terms containing variables suffer from the same problem as they are not under
complete control of the program.

8For simplicity suppressing the subtype hierarchy aspects, here.
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Proposition 5.2.2 The following inference rules are derived rules

(R60) new created remark
〈U〉(tC

.
= obj ≤ C(X) ∧X < next ≤ C), 〈U〉tC

.
= objD(n) `

〈U〉tC
.
= objD(n) `

(R61) new created remark
〈U〉(tC

.
= obj ≤ C(X) ∧X < next ≤ C) ` 〈U〉tC

.
= objD(n)

` 〈U〉tC
.
= objD(n)

Proof: R60 and R61 are special instances of the following inference rules,
which will be proven to be derived rules.

〈U〉(tC
.
= obj ≤ C(X) ∧X < next ≤ C), 〈U〉φ(tC) `

〈U〉φ(tC) `

〈U〉(tC
.
= obj ≤ C(X) ∧X < next ≤ C) ` 〈U〉φ(tC)

` 〈U〉φ(t)

Even though the above inference rules are more general than R60 and R61,
this more focused application context leads to a higher goal orientation. R60
and R61 only annotate additional knowledge about generatedness when there
are first signs of it being of potential use. R60 and R61 considerably extend
the degree of automation in the verification system. For soundness, though,
this circumstance is of no importance, because of which the proof continues
for the more general and less focused variants.

The soundness of the inference rule is not bound to the presence of
〈U〉φ(t). Instead, applying the inference rule to annotate the generatedness
of arbitrary objects is always possible. Yet, this information about generated-
ness is only helpful in order to produce additional facts about the terms that
are actually present in the current proof obligation. Thus, the occurrence
constraint of 〈U〉φ(t) has a character more directed towards the goal rather
than being a logical prerequisite. Matching on occurrence of 〈U〉φ(t) only
directs the attention to the generatedness of terms that really could play a
role in the proof. This occurrence constraint prevents rule applications that
do not make sense in the current scenario.

By the above consideration, 〈U〉φ(t) will be left out completely, thereby
both inference rules can be treated simultaneously. R46 allow to derive the
following from axiom R59

` 〈U〉∃n :nat (n < next ≤ C ∧ t
.
= obj ≤ C(n))

144



With R5 in Prop. A.2.2, this can be inserted into the antecedent, rendering
possible the following derivation with the help of R14.

〈U〉(X < next ≤ C ∧ t
.
= obj ≤ C(X)) `

∃n :nat 〈U〉(n < next ≤ C ∧ t
.
= obj ≤ C(n)) `

〈U〉∃n :nat (n < next ≤ C ∧ t
.
= obj ≤ C(n)) `

The inference permuting quantifiers and modalities is crucial, here. An α-
renaming ensures that 〈U〉 does not contain n. Constant domain semantics
are characterised by the conjunction of Barcan formulas (Fitting & Mendel-
sohn, 1998)9 and Converse Barcan formulas:10

〈α〉∃xφ → ∃x 〈α〉φ

∃x 〈α〉φ → 〈α〉∃xφ

Therefore, having constant domain semantics for variables, the (Converse)
Barcan formulas are true in ODL, and – by Th. 2 – can be proven formally.
Hence, the quantifier-modality permutation of ∃n :nat and 〈U〉 is derivable.

�

As a preparation for a soundness and relative completeness theorem for
ODL+ consider the following auxiliary statement.

Remark 5.2.3 Except for arbitrary applications of cut (R5), the ODL cal-
culus only produces subprograms of programs from modalities occurring in
the formulas under consideration, which preserve createdness. Furthermore,
during the proof of Th. 2, the applications of R5 are limited to first-order cuts
resulting from expressibility or mere “structural” cuts that combine individual
derivations about subformulas according to Prop. A.2.2.

With the precautions from Ex. 5.2.1 in mind, soundness and relative
completeness of the extended ODL calculus inherit from Th. 1 and 2 for
a comparably simple reason, at least from an intuitive perspective. The re-
striction placed to the states by Def. 5.1.1 is first-order, and equivalent to
adding a set of premises to the specification, in which case the ODL calcu-
lus is relatively complete by Th. 2. Furthermore, this additional restriction
is directly made accessible to the extended ODL calculus by R59, because
of which the extended ODL calculus is relatively complete as well. Yet this
reasoning contains a minor subtlety: the set of additional premises is infi-
nite. After finishing the proof, though, this set can be projected in retrospect

9See Prop. 4.9.10 in (Fitting & Mendelsohn, 1998).
10Assuming x does not occur in α as is the case for 〈U〉.
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to the finite amount of instances needed during the proof. Essentially, this
observation motivates the proof of the following result.

Theorem 4 (Soundness & Completeness) With states restricted accord-
ing to Def. 5.1.3, the extended ODL+ calculus consisting of the inference rules
presented in §4.2 plus R59 is sound and complete relative to first-order arith-
metic assuming relative compactness, i.e. in conjunction with R56, ODL+

is complete under the premise that

If χ is a consequence of Φ in first-order arithmetic

then there is a finite subset E ⊂ Φ of which χ is a consequence (5.3)

⇐χ ∈ FmlFOL(Σ ∪ V ),Φ ⊆ FmlFOL(Σ ∪ V )

Proof: Createdness is characterised by the following set of global premises

Q := {created(t) : t ∈ FmlODL+(Σ̃ ∪ ∅)}

Proving in ODL+, which – by Def. 5.1.1 and Def. 2.3.11 – is equivalent to
proving in ODL under the additional global premises Q, remains sound. As
R59 only derives elements of Q, it is sound as well.

For relative completeness, assume that φ is a formula with modalities
limited to programs preserving createdness such that

� φ in created states11 (5.4)

By the correspondence from Def. 5.1.1 between the formula created(t) and
created states, (5.4) implies according to Def. 2.3.11 that

Q �g φ in all states

After defining12

�∗Q := {[α1] . . . [αn]︸ ︷︷ ︸
k times

F : k ∈ N , F ∈ Q , αi ∈ PrgODL+(Σ ∪ ∅)}

Lem. 2.3.14 implies �∗Q �l φ. To continue the proof as desired, we claim
that

there is a finite subset E ⊂ �∗Q with E �l φ (5.5)

Once this has been established, Lem. 2.3.13 allows to conclude �l E → φ,
which implies ` E → φ by Th. 2. In order to demonstrate that ` φ can be

11i.e. in all interpretations ` containing only created states
12Restricting α to subprograms of a program from a modality occurring in φ should be

sufficient according to Rem. 5.2.3.
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proven in ODL+, it remains to show that E only contains instances that can
be derived from R59 via Prop. A.2.2.

All formulas from �∗Q have the form [α1] . . . [αn]created(t), thus this also
holds for those remaining in E. Moreover, they can be obtained from the
following derivation involving several applications of R47 and one of R59.

` created(t)

` [αn]created(t)
...

` [α1] . . . [αn]created(t)

This concludes the proof apart from claim (5.5). If (5.5) does not apply, then
�∗Q and φ can be expressed equivalently in first-order logic as (�∗Q)′ ⊆
FmlFOL(Σ ∪ V ) and φ′ ∈ FmlFOL(Σ ∪ V ) according to Lem. 4.5.4. Since
Lem. 4.5.4 further establishes local equivalence, which is a congruence rela-
tion, (�∗Q)′ �l φ

′ still holds. In this situation, (5.3) implies the existence
of a finite first-order subset E ′ ⊂ (�∗Q)′ with E ′ �l φ

′. Since, again, Lem.
4.5.4 establishes the congruence of local equivalence, this ensures E ′ �l φ.
Continuing the argument with E ′ instead of E concludes the proof, if only
each ψ′ ∈ E ′ can be derived in ODL+. This, in turn, holds because – by
the above deliberations – the formula φ ∈ E, which has been expressed in
first-order logic as φ′ by Lem. 4.5.4, is derivable in ODL+. Since � ψ → ψ′

holds in ODL, Th. 2 ensures that ` ψ → ψ′ can be inferred in both ODL

and ODL+, ` ψ → ψ′ and ` ψ combine to a derivation of ` ψ′ by R55. �

Tracking down the uses of the additional relative compactness assumption
(5.3) of Th. 4 in comparison to Th. 2 leads to the conjecture (5.5). A for-
mula for which (5.5) does not hold necessarily requires an infinite amount of
premises. Obtaining a finite proof in any calculus for a formula that inherently
depends on the presence of infinitely many premises is hopeless, since even
mentioning all those required premises produces an infinite proof attempt.
From this perspective, a stronger notion of completeness than completeness
relative to first-order arithmetic assuming relative compactness seems un-
likely. What the notion of completeness assuming relative compactness at-
tempts to formalise is that all deficiencies of a calculus for an inherently
incomplete dynamic logic like ODL originate from corresponding shortcom-
ings of basic first-order arithmetic. Therefore, ODL does not introduce any
additional qualitative obstacles complexities. Apart from the logic imposing
global premises – Th. 4 does not seriously differ in qualitative character from
Th. 2. This circumstance suggests that not all possibilities can be eliminated
of the premise (5.3) being an artefact of the particular choice of proof, though.
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In fact, as will be sketched in the next corollary, the relative compactness
assumption can be removed from Th. 4 without loss of generality.

Corollary 5.2.4 (Relative Compactness Assumption) ODL+ is rela-
tively complete.

Proof: It remains to show that the relative compactness assumption can be
removed from Th. 4 by adjusting E “appropriately”.

Consider some formula φ satisfying (5.4). Denote by A0 the finite set of all
updates occurring as subprograms within modalities of φ. Similarly, let T the
finite set of all program terms occurring in φ. From an intuitive perspective,
only createdness about terms in T should play a role during a proof about
φ, although those terms can be subject to arbitrary nesting of updates from
A0. This intuition about what might matter to prove φ can be rendered more
precise with the “structural” behaviour of the ODL+ calculus circumscribed
in Rem. 5.2.3. Instead of �∗Q from the proof of Th. 4, any other means
of describing that only the terms constructed by nesting updates from U
in front of terms from T should be sufficient. Still, an arbitrary amount of
updates from U in front of the finite set T still leads to an infinite number
of terms replacing �∗Q.

In this situation, the built-in power of dynamic logic comes in handy.
Remember from the proof of Lem. 4.5.4 the existence of a formula nth for se-
quence13 encoding, which can be programmed in ODL using the computable
bijection N ∼= N2. Within ODL programs, use the notation dCnth(c, i)
as a macro call to this function resolved via open embedding. With A0 =
{α1, . . . , αr} being the updates relevant to φ, consider the following formula
R for characterising update sequences of φ.14

∀Z :nat
(
c
.
= Z →[while(c 6= 0) {

dCnth(c, 1);

cCnth(c, 2);

if(d
.
= 1) {α1};

...

if(d
.
= r) {αr};

}]
∧

t∈T

created(t)
)

13A pairing function derived from the predicate pair as occurring in footnote 24 during
the proof would be sufficient for the current context.

14c, d are new constant symbols and Z is a new variable.
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R is a very careful approximation of all sequences of updates that might be
performed during the execution of any programs occurring in φ. All ODL

programs consist of some control-structure surrounding updates as atomic
programs. Those updates are the only program statements that perform a
state change by themselves. Depending on the particular value of Z, the loop
body in program in R performs one of the relevant updates, with continuation
of the loop again depending on the value of Z. Thus any execution of any
program from a modality in φ can be emulated by the R program with the
right choice of Z. For this reason, using the single formula R instead of the
infinite family �∗Q as a premise during the proof of Th. 4 is sufficient for
obtaining a proof in ODL with the required createdness assertions.

What remains to be shown to complete the proof of Th. 4 without relative
compactness assumption is the derivability of R in ODL+. R45 performs an
induction with the invariant

p :=
∧

t∈T

created(t)

IA As a composition of createdness formulas, c
.
= Z ` p can be derived

by a sequence of R59 applications.

IE p,¬e ` p is immediate.

IS With α being the program in R, the induction p, e ` [α]p is a true
conjecture according to the restriction on αi in Def. 5.1.3. Since a single
execution of the loop body only performs one state transition (apart
from c, d), the knowledge contained in R59 about createdness of any
intermediate states is irrelevant to the proof. Hence, by relative com-
pleteness according to Th. 2 it can be derived within ODL plus R56
without any usage of R59.

Essentially, the induction proves that the programs contained in φ comply
with the createdness preserving restriction of Def. 5.1.3 by examining the
effect of each update in isolation. �

5.3 Verification Examples

Example 5.3.1 The new created remark (R61) rule bears some subtleties,
which involve updates to and simplification of access to nextC. The intro-
duction of nextC into the sequent by R61 leads to a formula depending on
the particular execution context, especially the current accumulated update
value of nextC. Notwithstanding, after all program statements have been
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processed and all updates have been promoted, this context reduces to a
first-order situation in which information about the progress of nextC will be
lost. Thus, the result of an application of R61 will give constraints of varying
precision. However, new symbols for objects that already persist since prior to
the execution of a program even satisfy the < nextC constraint in the initial
situation. This constraint holds even more so in any state reached after some
program statement execution in which nextC will never have decreased. Not
initially using the R61 information about b leads to information loss but can
keep branching low. On the other hand, new symbols for objects resulting
from object creation already have an explicit bCobjC(n) form, which will be
promoted to each corresponding occurrence of b by the update mechanism.
Either way, soundness is assured.

Consider the case of symbols for newly constructed objects.

〈xCnew C();x.vC1〉x.v
.
= 1

This example expands to the following formula, in which any application of
R61 happens in a context where the nextC update information will have been
kept.15

〈xCobjC(nextC), nextCCnextC + 1;x.vC1〉x.v
.
= 1

After promotion of the update, nextC update information will vanish, but
then x will already have been replaced by objC(nextC).

Now consider the case of symbols denoting objects that have already been
created prior to the execution of the piece of program at hand.

p.v
.
= 1 → 〈xCnew C()〉p.v

.
= 1

After the usual transformation according to §3.4.2 this looks as follows.

p.v
.
= 1 → 〈xCobjC(nextC), nextCCnextC + 1〉p.v

.
= 1

Now an application of the R61 rule is possible in the antecedent and within
the update with both applications leading to nextC constraints of different
precision. An application on the inner occurrence will lead to an additional
premise

〈nextCCnextC + 1〉(p
.
= objC(X) ∧X < nextC)

≡ p
.
= objC(X) ∧X < nextC + 1

15Compare for the update simplification restriction that nextC will never be removed
from an update by update occurrence (R48).
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Application on the outer occurrence will lead to the more precise premise

p
.
= objC(X) ∧X < nextC

Still both constraints are correct since p already existed prior to the execu-
tion of the program snippet. Using less precise constraints may still be more
appropriate for practical theorem proving because of the high branching po-
tential in case of weak16 static type information about p. Then, applying
R61 can be delayed during the proof and can be focused on those remaining
branches that truly need generatedness information, instead of introducing
a reason for premature high forking of the proof. �

Example 5.3.2 (Anonymous Object Creation) Consider again the con-
jecture from Ex. 5.1.1 about a program involving object creation. This time,
assume a translation from Java.

b 6= null →
〈b.xCb.x+ 1;
cCnew C();
c.xCb.x+ 2〉c.x

.
= b.x+ 2

During the proof, there is tremendous need to infer that b and c are distinct
non-aliased objects by nature of their different sources of creation. In contrast
to Ex. 4.3.4 establishing this information needs additional knowledge about
the nature of programs, though.

Reusing the abbreviations from Ex. 4.3.4, the proof looks as follows.

b 6= null ` b.x+ 3
.
= b.x+ 1 + 2

b 6= null ` 〈cCo(n), b.xCb.x+ 1, o(n).xCb.x+ 1 + 2〉φ

b 6= null ` 〈nCn+ 1, cCo(n), b.xCb.x+ 1〉〈c.xC . . .〉φ

b 6= null ` 〈b.xCb.x+ 1〉〈cC . . .〉φ

b 6= null ` 〈b.xC . . .〉c.x
.
= b.x+ 2

Again, the last inference involves two auxiliary rewrite computations for
update application. Abbreviate

〈U〉 := 〈cCo(n), b.xCb.x+ 1, o(n).xCb.x+ 3〉

It is utterly important to discover that the update to o(n).x does not affect
the value of b.x because b and o(n) are no aliases. Yet, this is not deducible

16i.e. the static type information about p allows a large amount of most special dynamic
types D ≤ C.
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with an application of R41 alone. Information about the origin of the object
b is missing. Not yet knowing when b has been created, the prover only
knows that it has been created at some time. A priori, it could have been
instantiated with the construction of c just as well, provided that there has
been an aliasing update like bCc. When in doubt, this calls for the case
distinction made by the update application rewrite rules.

〈U〉(b.x)

 if o(n)
.
= 〈U〉b then b.x+ 3 else b.x+ 1 fi

 if o(n)
.
= b then b.x+ 3 else b.x+ 1 fi

 if false then b.x+ 3 else b.x+ 1 fi

 b.x+ 1

Within this rewrite inferences the reduction of o(n)
.
= b to false is possible

by the following argument. Applying R60 for the antecedent b 6= null gives
an additional (b

.
= o(X) ∧X < n) ∨ b

.
= null with antecedental placement.

The case b
.
= null immediately contradicts the antecedent b

.
= null with

the remaining case being b
.
= o(X) ∧ X < n. From this, one is to conclude

with simple arithmetic reasoning X 6= n and by R41 o(n) 6= o(X), allowing
to continue the rewriting process after an application of R16.

 if o(n)
.
= b then b.x+ 3 else b.x+ 1 fi

 if o(n)
.
= o(X) then b.x+ 3 else b.x+ 1 fi

 if false then b.x+ 3 else b.x+ 1 fi

 b.x+ 1

Table 5.1: Measurements for the Anonymous Object Creation Ex. 5.3.2, cf.
Chapt. C

Calculus Inferences Branches Duration
E iODL 38 3 0s
E iODL +mo 46 4 0.1s
E JavaCardDL nomo > 120 > 2 (1 open) > 0.4s
E JavaCardDL mo > 165 > 3 (1 open) > 0.6s
C iODL 59 6 0.1s
C iODL +mo 68 7 0.2s
C JavaCardDL nomo > 399 > 14 (1 open) > 1.1s
C JavaCardDL mo > 560 > 19 (1 open) > 1.9s

The example has been run with two different magnitudes of subclasses.
First, the case C of Fig. 5.2 having a subtype hierarchy, and second, the flat
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Figure 5.2: UML Class Diagram of Object Creation Type Hierarchy

hierarchy case E. In case C, the specification is unprovable in JavaCardDL

with one remaining open goal that cannot be closed:17

b
.
= v, C.nextToCreate

.
= v ` null

.
= v

In class E case, the conjecture is still unprovable in JavaCardDL with one
remaining open goal that cannot be closed and looks like this:

b
.
= E.nextToCreate `

�

17C.nextToCreate is the JavaCardDL way of referring to the next object of type C.
Contrary to ODL, JavaCardDL manages objects in a linked list advancing by the field
nextToCreate of type C in class C.
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Chapter 6

Implementation

The ODL calculus is implemented as a (semi-)automatic theorem prover.
This implementation is based on an adaptation of the KeY system to ODL

demands. The KeY System comes in two flavours:

1. KeY/Java for verification problems about programs written in the
Java1 programming language, and

2. KeY/ODL for ODL verification problems.

Just as the KeY/Java verification system is based on the JavaCardDL

calculus, the new KeY/ODL prover is based on the ODL calculus presented
in §4.2. In order to overcome technical limitations of the KeY System and
to attain a smooth and non-invasive integration, it has been necessary to
attenuate the ODL calculus for matters of implementation and keep it a little
bit closer to the JavaCardDL implementation. Thus, what is implemented
is a compromise between ODL and JavaCardDL called iODL . The iODL

implementation has been used for the measurements of the examples in §4.3.
The most apparent discrepancy between iODL and ODL is the effect of

the R23 and R25 inference rules. While the ODL rules only need a single
inference to reach the final situation, iODL approximates the same effect by
a whole sequence of rule applications. Instead of moving the condition e from
the program if(e) {α}else{γ} to the sequent e ` ... all at the same time,
the iODL calculus only performs this conversion successively.

This behaviour is due to the strict distinction between program expres-
sions of type boolean and formulas within KeY. In the case of Java there
is indeed a difference. Unlike formulas, evaluation of program expressions of
type boolean can produce side-effects or raise exceptions. For this reason,

1More precisely: JavaCard.
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the KeY System prohibits inference rules that directly move boolean expres-
sions from programs to the level of formulas like R23 and R25 would do with
the condition e. But ODL has no need to artificially distinguish between
boolean program expressions and formulas. However, iODL has to respect
the limitations of KeY, because of which the translation of a program-level e
to a formula-level e passes several intermediate conversion stages. The con-
version works inductively on the structure of the formula e. Especially the
application of a single R23 ODL rule to a condition e, which is composed of
n logical operators, corresponds to n+ 1 iODL inferences.

Example 6.1 Consider the following ODL inference.

a ∧ b ∨ c ` 〈α〉A ¬(a ∧ b ∨ c) ` 〈γ〉A

` 〈if(a ∧ b ∨ c) {α}else{γ}〉A

This single ODL inference has to be emulated within iODL with the fol-
lowing sequence of inferences. For notational clarification denote, here, the
program-level conjunction operator by &&, its translation as a function on
boolean expression level as &, and the formula-level conjunction sign by ∧.
Further, denote by T the boolean literal TRUE of the KeY System, and FALSE

by F .

a
.
= T ∧ b

.
= T ∨ c

.
= T ` 〈α〉A

(a&b)
.
= T ∨ c

.
= T ` 〈α〉A

(a&b|c)
.
= T ` 〈α〉A

¬(a
.
= T ∧ b

.
= T ∨ c

.
= T ) ` 〈γ〉A

¬((a&b)
.
= T ∨ c

.
= T ) ` 〈γ〉A

¬(a&b|c)
.
= T ` 〈γ〉A

(a&b|c)
.
= F ` 〈γ〉A

` 〈if(a&&b||c) {α}else{γ}〉A

�

Contrary to the ODL principle outlined in §1.3, iODL adds on-the-fly
transformations of definable operators for convenience. For example, instead
of relying on a preprocessing transformation according to §3.4.2 to reduce ob-
ject creation statements to ordinary updates, iODL permits new C() state-
ments. Those object creation statements will be transformed according to
Ex. 4.5.5 on demand rather than prior to starting the prover. This is an
exemplary relaxation of the more strict ODL principle.

Apart from representing the ODL calculus in the KeY System and ar-
ranging the modifications to iODL, a major implementation effort has been
the need for various extensions to the KeY built-in mechanisms. It has been
necessary to introduce a new variety of schema variables for matching more
general expressions, and slightly extend the parser to make this possible. Pri-
marily, a set of new assignable generic symbols for objC and nextC needed
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to be introduced, along with a bunch of meta operators to overcome the
remaining limitations of the KeY taclet support in dealing with generically
sorted symbols and expressions. To improve the matching precision, generic
sort variable conditions are added to the taclet mechanism. Finally it has
been necessary to modify the update simplifier to properly treat the newly
introduced generic symbols.

In order to provide a good automatic theorem prover ODL has a new
dedicated prover strategy that pursues the right balance of additional infer-
ence rules. R22 receives lower priority than most of the other inference rules
but still higher priority than that of R26. This leads to the effect that inter-
mediate sequential composition will only be attempted when the alternative
would consist of obstinate unfolding of loops. Intermediate operator conver-
sion according to Ex. 6.1, on the other hand, has a very high priority such
that it almost always performs first, such that the intermediate operators &
vanish again as quickly as possible. To avoid unnecessary cluttering of the
proof in iODL, the attention span of the prover is focused so that – in Java

mode – he almost only applies R61 when there are no other possibilities of
closing the current goal.

Equation ordering is another important aspect for the automatic prover
capabilities. KeY follows a – possibly incomplete – canonicaliser approach to
term rewriting by equations. In automatic theorem proving, it is, of course,
vital to prevent applying R16 and R20 to the same equation over and over
again in a circular way, which would lead to much inferences with no progress
at all. The KeY solution to this antagonism is to assess left hand side and
right hand side and elect one side as the “canonical”2 representation. Then
all equations are only used to substitute occurrences of the greater side with
the “canonical” side. This election is based on a comparison of the terms
involved according to a combination of lexicographic and maximum term-
depth ordering. In the ODL setting, objC(n) is the preferable form for object
expressions, regardless of its depth. This preference is hard-coded into the
depth-based term comparison algorithm, with the effect that the theorem
prover automatically replaces any occurrence of an object expression with the
“canonical” objC(n) whenever possible to maximise the available knowledge
about all symbols in each context.

2Classical computer algebra terminology would prefer the term “normal”, reserving
canonicity to situations where the projection ensures unique canonical representatives.
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Chapter 7

Summary

This thesis defines an object-oriented dynamic logic, ODL, reduced to the
essentials of object-orientation and presents a sound and relatively complete
calculus for ODL. The conceptual design of the language ODL has been
guided by the ambition to find an adequate non-technical logic in between
the comprehensive, object-oriented but complicated JavaCardDL and the
frugal but only imperative dynamic logic for the While programming lan-
guage. Usually, language semantics, inference rules and meta property proofs
equally experience a far higher technical complexity in logics with an over-
whelming burden of features. Although a full 100% treatment of real Java is,
of course, vitally important for practical implementations of real-world verifi-
cation systems, it is not very well-suited for all types of theoretical investiga-
tions. The tremendous amount of special cases and side-conditions imposed
by the inclusion of language features like exceptional evaluation, reasons for
abrupt completion, or side-effecting expression evaluation strongly supports
this ambition – not to mention the sheer amount of syntactical variations of
loops and assignment statements to consider. Within feature-rich logics like
JavaCardDL, experience shows that several inference rules are surprisingly
complicated for the general case of arbitrarily “vicious” programs, but would
simplify tremendously for the typical program involving less breaks, less la-
bels, less intermediate side-effects and less “chaotic” exception raising. An
investigation of those programs of a simpler and more structural organisation
thus seems worthwhile.

Unlike JavaCardDL, ODL has – due to its simplistic nature – very
useful properties. ODL possesses standard sequential composition rules be-
cause there is no need to consider an abnormal program completion context
like surrounding try-catch blocks for exception handling. It guarantees reg-
ular evaluation of all expressions because of the exclusion of partiality as
would otherwise be caused by undefined subterms evaluating to null. The
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exclusion of side-effects supports the liberation of the calculus from forcibly
respecting the mandatory evaluation order during the proof. Furthermore,
the rigorously structural and local control-flow permits simpler and more
straightforward inference rules.

During our investigation we have discovered that only very few features
of object-orientation are truly essential characteristics. From a logical point
of view, most features reduce to mere syntactic sugar for coding convenience
but do not contribute to the logical qualities of object-orientation. Which is
the reason why they have been excluded from ODL in comparison to full
JavaCardDL. Those more contingent features of object-orientation have
been shown to possess a simple translation to ODL without the need to
add any surplus language capabilities. Additionally, this translation is ef-
fective and natural, which means that it works in a uniform and structural
way without coding. Even on a schematological level, ODL and more com-
prehensive object-oriented languages like JavaCardDL possess the same
expressiveness.

In comparison to While the object-oriented programming language un-
derlying ODL provides dynamic type checks and updates, i.e. operations to
change the interpretation of function symbols. ODL updates work locally, i.e.
pointwise, and can bundle changes to multiple locations of multiple function
symbols to one simultaneous update.

ODL handles object creation in an intrinsic way by providing object
enumerator symbols that allow access to new objects in a bijective way. Apart
from the addition of derived inference rules for optimisation purposes, the
axiomatisation of object creation is evident. Practical experiments show that
the bijective object enumerators are by far superior to list-based approaches
to object creation; not only in terms of execution speed but also by the
amount of programs that are provable at all. A large class of conjectures
about practically relevant Java programs are provable in automatic mode
with the ODL calculus, although they cannot be proven in JavaCardDL at
all. Hence, object enumerators constitute a viable choice for handling object
creation both in theoretical investigations and practical theorem proving.

ODL has been equipped with a calculus that has been proven both sound
and relatively complete. It is based on a classical sequent calculus for the
While programming language (Harel, 1979; Harel, 1984; Harel et al., 2000).
In order to deal with function update operations, rewrite rules have been
introduced that promote the effect of an update throughout the affected for-
mula. To resolve potential aliasing situations, the update promotion process
may introduce conditional terms. Both, updates and conditional terms help
to defer branching of the proof until necessary for the progress of the proof.
Therewith, common parts of the proof can be kept on the same proof branch
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as long as possible, for efficiency.
The ODL completeness proof is even relative to arithmetic and reveals a

flaw in the classical proofs for While (Harel, 1979; Schlager, 2000). This gap
in the characterisation treatment of assignments in programs with more than
one variable has been closed in our work. Further, a particularly astounding
fact is that the completeness and expressibility proofs presented in this thesis
even extend to the case of uncomputable functions.

To sum up, the feasibility of presenting an insightful essentials-only verifi-
cation calculus for general object-oriented programming, which is sound and
complete relative to classical first-order arithmetic, has been proven in this
thesis.
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Appendix A

Properties

A.1 Semantical Relationships

The next result establishes the formal relationship between branching on
program level and conditional terms on formula level. Though not needed
during the course of this thesis it may clarify the connexion between both
concepts in order to show that they are closely connected but still slightly
different.

Remark A.1.1

〈if(e) {α}else{γ}〉φ ≡ if e then 〈α〉φ else 〈γ〉φ fi

Proof: Let w ∈ W = `(`) be any state of any interpretation `.

val`(w, 〈if(e) {α}else{γ}〉φ) = true

⇐⇒ there is t ∈ W sρ`(if(e) {α}else{γ})t , val`(t, φ) = true

⇐⇒ there is t ∈ W with val`(w, e) = true and sρ`(α)t,

or val`(w, e) = false and sρ`(γ)t

and – in either case – val`(t, φ) = true

⇐⇒ if val`(w, e) = true, there is t ∈ W sρ`(α)t and val`(t, φ) = true

resp.

if val`(w, e) = false, there is t ∈ W sρ`(γ)t and val`(t, φ) = true

⇐⇒ if val`(w, e) = true then val`(w, 〈α〉φ) = true

resp. if val`(w, e) = false then val`(w, 〈γ〉φ) = true

⇐⇒ val`(w, if e then 〈α〉φ else 〈γ〉φ fi) = true

�
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A.2 Meta-Proving

Proposition A.2.1 The following statements interrelate derivations in the
ODL calculus.

1. If φ ` ψ is derivable, then so is ` φ→ ψ.

2. If ` φ→ ψ is derivable, then so is φ ` ψ.

3. If ` φ and φ,Γ ` ∆ are derivable, then so is Γ ` ∆.

4. If some derivation of φ ` ψ can be continued to a derivation of φ′ ` ψ′,
then φ→ ψ ` φ′ → ψ′ is derivable as well:

(φ ` ψ ⇒ φ′ ` ψ′)

⇒ φ→ ψ ` φ′ → ψ′

Proof:

1.
φ ` ψ

` φ→ ψ

can extend a derivation by the → right (R10) inference rule.

2. By modus ponens (R55), φ, φ → ψ ` ψ is directly derivable. In combi-
nation with the derivation of ` φ → ψ, (3) allows to conclude φ ` ψ.
This reasoning leads to the inverse of the → right (R10) inference rule.

3.

φ,Γ ` ∆

` φ

Γ ` φ,∆

Γ ` ∆

extends the assumed derivations of ` φ and φ,Γ ` ∆ by R6 resp. R12
weakening and combines them with a cut (R5).

4. By premise there is a “partial”1 derivation

φ ` ψ
...

φ′ ` ψ′

1i.e. a derivation following the ODL inference rules without starting with axioms.
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Extending all the inferences with an additional antecedent φ→ ψ leads
to the following proof, which has been continued by → right (R10) and
closed to a complete proof by R55.

φ→ ψ, φ ` ψ
...

φ→ ψ, φ′ ` ψ′

φ→ ψ ` φ′ → ψ′

�

Proposition A.2.2 When A is derivable in ODL, adding A to the an-
tecedent of any sequent is always a sound inference:

Γ, A ` ∆

Γ ` ∆

Proof: Using a cut (R5) to introduce the axiom into the antecedent the
derivation looks as follows, with the right branch closing according to the
derivation of ` A.

. . .

Γ, A ` ∆ Γ ` A,∆

Γ ` ∆

�

A.3 Deduction

This section contains a proof of the global deduction theorem Lem. 2.3.14,
which has been used in Th. 4.

Unlike the other parts of this thesis, the proof of Lem. 2.3.14, profits from
a shift in notation, which will be performed to better highlight the essential
aspects. As those aspects are of importance during the proof, instead of inter-
pretations ` with a unified notation, this section considers structures (W, ρ, β)
that are explicitly split into a set W of states, an2 accessibility relation ρ and
a variable assignment β on V . In order to avoid cluttering of notation during
the other chapters of this thesis, those more detailed structures are only used
during this section.

2See below for the reason why it is sufficient to consider only one accessibility relation
in this section.
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Lem. 2.3.14 considers for arbitrary programs all possible transitions. The
same effect is achieved when considering all transitions possible by program
execution at all.

Definition A.3.1 (Blurred Structures) For an interpretation ` with a
set W of states and accessibility relations ρ`(α), define the blurred struc-
ture (W, ρ, β) with

ρ :=
⋃

α∈Prg(Σ∪V )

ρ`(α)

β := (x 7→ val`(w, x))

Thereby note that for variables x ∈ V , val`(w, x) does not depend on the state
w according to Def. 2.3.1. As modalities belonging to ρ use � and ♦ instead
of [α] and 〈α〉, with a semantics that directly transfers the notions from Def.
2.3.8 to ρ instead of the parametric ρ`(α). The notation (W, ρ, β), s � F and
(W, ρ, β) � F also generalise from Def. 2.3.10. The set of states W along
with the accessibility relation ρ is called a Kripke frame.

Remark A.3.2 (W, ρ, β), t � �F holds if and only if (W, ρ, β), t � [α]F
holds for all α ∈ Prg(Σ ∪ V ). Similarly, (W, ρ, β), t � ♦F holds if and only
if (W, ρ, β), t � 〈α〉F holds for some α ∈ Prg(Σ ∪ V ).

With those concepts, Lem. 2.3.14 simplifies to Lem. A.3.3 below, since
{�nF} now is a singleton set and receives its standard meaning by3

�nF := �. . .�︸ ︷︷ ︸
n times

F

Lemma A.3.3 (Global Deduction Theorem)

Φ ∪ {F} � Ψ B χ ⇐⇒ Φ � Ψ ∪
⋃

n∈N

{�nF} B χ

Proof:

“⇐” simple

“⇒” Let (G, ρ, β) be an arbitrary structure, with (G, ρ, β) � Φ, i.e. for each
φ ∈ Φ(G, ρ, β) � φ. Furthermore, provided that s ∈ G is a state with
s � Ψ, s � F, s � �F, s � ��F , s � ���F , . . ., then assume that it
was s 6� χ, which we have to lead to a contradiction.

3Hence the odd abbreviation in Lem. 2.3.14, which is now justified in retrospect by
equivalence.
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Consider the variant M ′ := ( ¯{s}, ρ| ¯{s}, β) from A.3.5. According
to A.3.4, there it still is M ′, s � Ψ,M ′, s � F,M ′, s � �F,M ′, s �
��F , . . . (thus M ′ � F everywhere on ¯{s} ), and still M ′, s 6� χ. But
when we can further show that it still is M ′ � Φ, we have constructed
a model M ′ satisfying M ′, s � χ by premise, which is a contradiction.

So it only remains to show that M ′ � Φ. for each t ∈ ¯{s} closing
the mini-frame {t} by A.3.5 and localising ¯{t} in the frame ¯{s} by

A.3.4 leads to M ′, t � Φ
A.3.4
⇐⇒ ({s} ◦ ρ∗) ∩ ({t} ◦ ρ∗), t � Φ which,

(because t ∈ ¯{s} = {s} ◦ ρ∗ implies {t} ◦ ρ∗ ⊆ {s} ◦ ρ∗)4 is equivalent

to {t} ◦ ρ∗, t � Φ
A.3.4
⇐⇒ G, t � Φ which is true by premise.

�

Lemma A.3.4 (Localisation Lemma5) If H is a closed subframe6 of the
Kripke frame G, i.e. H ◦ ρ ⊆ H, then

for each g ∈ H for each A ∈ Fml(Σ) for each assignment β

(G, ρ, β), g � A ⇐⇒ (H, ρ|H , β), g � A

Proof: by definition, because of the unidirectional navigation within ρ during
the interpretation of � and ♦. �

Lemma A.3.5 (Modal closure) For a subframe H of the Kripke frame
G,

H̄ :=
⋂

H⊆F⊆G closed

F = H ◦ ρ∗ is closed

Proof:

“s” H̄ is closed

“⊆” H ◦ ρ∗ takes part in the intersection as an F because of

– H ⊆ H ◦ ρ∗.

– H ◦ ρ∗ ⊆ G since G is closed in itself.

– ρ|H◦ρ∗ = ρ on H ◦ ρ∗ by definition of restriction.

4This argument shows that the result ({s} ◦ ρ∗) ∩ ({t} ◦ ρ∗) of localising ¯{t} in ¯{s} =
({s} ◦ ρ∗) is the same as the result of immediately localising ¯{t} in M .

5Also called forward property in the case H := ¯{g}.
6H is a subframe of G if it has less states, but the same accessibility on H ⊆ G.
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– (H ◦ ρ∗) ◦ ρ = H ◦ (ρ∗ ◦ ρ) = H ◦
⋃

0<n∈N

ρn ⊆ H ◦ ρ∗

since ◦ is associative and distributive over
⋃

.

“⊇” for each x ∈ G \ (H ◦ ρ∗) we have to show that x 6∈ H̄. Let

F̃ := H ∪ {x} ⊇ F̄ when F := F̃ \ (ρ∗ ◦ {x}) ⊆ G

– F ⊇ H, since it is for each h ∈ H not (hρ∗x), by premise on x.

– F is closed due to the fact that for each f ∈ F for each y ∈

G fρy
F̃ closed
⇒ y ∈ F̃ . And if we assume that y ∈ F̃ \ F =

ρ∗ ◦ {x} then fρy , yρ∗x ⇒ fρ∗x ⇒ f ∈ ρ∗ ◦ {x} = F̃ \
F Contradiction!

Therefore the set F takes part in the intersection of the left hand side,
which proves that H̄ ⊆ F 63 x.

�
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Appendix B

Examples

B.1 Update Examples

Example B.1.1 An example which saves a lot of case distinctions.

〈f(s)Cs〉g(f(f(s)))

 g
(
〈f(s)Cs〉f(f(s))

)

 g
(
if s

.
= 〈f(s)Cs〉f(s) then s else f

(
〈f(s)Cs〉f(s)

)
fi
)

 g
(
if s

.
= 〈f(s)Cs〉f(s) then

s

else

f
(
if s

.
= 〈f(s)Cs〉s then s else f(〈f(s)Cs〉s) fi

)

fi
)

 g
(
if s

.
=

(
if s

.
= 〈f(s)Cs〉s then s else f(〈f(s)Cs〉s) fi

)
then

s

else

f
(
if s

.
= 〈f(s)Cs〉s then s else f(〈f(s)Cs〉s) fi

)

fi
)

 g
(
if s

.
=

(
if s

.
= s then s else f(〈f(s)Cs〉s) fi

)
then

s

else

f
(
if s

.
= s then s else f(〈f(s)Cs〉s) fi

)
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fi
)

 g
(
if s

.
=

(
if s

.
= s then s else f(s) fi

)
then

s

else

f
(
if s

.
= s then s else f(s) fi

)

fi
)

“  ”
(
s
.
= s→ g

(
if s

.
= s then s else f(s) fi

))
∧

(
s 6= s→ g

(
if s

.
= f(s) then s else f(f(s)) fi

))

“  ”
(
s
.
= s ∧ s

.
= s→ g(s)

)
∧(

s
.
= s ∧ s 6= s→ g(f(s))

)
∧(

s 6= s ∧ s
.
= f(s) → g(s)

)
∧(

s 6= s ∧ s 6= f(s) → g(f(f(s)))
)

“  ”g(s)

�

Example B.1.2 For higher arities, it is even more important to detect un-
necessary duplicate case distinctions in order to avoid branching as the fol-
lowing complicated derivation demonstrates. For notation, use 〈U〉 as an
abbreviation for 〈f(s1, s2)Cr〉.

〈f(s1, s2)Cr〉f(f(o1, o2), f(p1, p2))

 if s1
.
= 〈f(s1, s2)Cr〉f(o1, o2) ∧ s2

.
= 〈f(s1, s2)Cr〉f(p1, p2) then

r

else

f
(
〈f(s1, s2)Cr〉f(o1, o2), 〈f(s1, s2)Cr〉f(p1, p2)

)

fi

 if s1
.
= 〈f(s1, s2)Cr〉f(o1, o2) ∧ s2

.
= 〈f(s1, s2)Cr〉f(p1, p2) then

r

else

f
(
if s1

.
= 〈U〉o1 ∧ s2

.
= 〈U〉o2 then r else f(o1, o2) fi,

if s1
.
= 〈U〉p1 ∧ s2

.
= 〈U〉p2 then r else f(p1, p2) fi

)

fi
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 if s1
.
=

(
if s1

.
= o1 ∧ s2

.
= o2 then r else f(o1, o2)fi

)

∧ s2
.
=

(
if s1

.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi

)
then

r

else

f
(
if s1

.
= o1 ∧ s2

.
= o2 then r else f(o1, o2) fi,

if s1
.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi

)

fi

“  ”
(
s1

.
= o1 ∧ s2

.
= o2 → if s1

.
= r

∧ s2
.
=

(
if s1

.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi

)
then

r

else

f(r, if s1
.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi)

fi
)
∧

(
s1 6= o ∨ s2 6= o2 → if s1

.
= f(o1, o2)

∧ s2
.
=

(
if s1

.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi

)
then

r

else

f(f(o1, o2), if s1
.
= p1 ∧ s2

.
= p2 then r else f(p1, p2) fi)

fi
)

“  ”
(
(s1

.
= o1 ∧ s2

.
= o2) ∧ (s1

.
= p1 ∧ s2

.
= p2) →

if s1
.
= r ∧ s2

.
= r then r else f(r, r) fi

)
∧(

(s1
.
= o1 ∧ s2

.
= o2) ∧ (s1 6= p1 ∨ s2 6= p2) →

if s1
.
= r ∧ s2

.
= f(p1, p2) then r else f(r, f(p1, p2)) fi

)
∧(

(s1 6= o ∨ s2 6= o2) ∧ (s1
.
= p1 ∧ s2

.
= p2) →

if s1
.
= f(o1, o2) ∧ s2

.
= r then r else f(f(o1, o2), r) fi

)
(
(s1 6= o ∨ s2 6= o2) ∧ (s1 6= p1 ∨ s2 6= p2) →

if s1
.
= f(o1, o2) ∧ s2

.
= f(p1, p2) then r else f(f(o1, o2), f(p1, p2)) fi

)

“  ”
(
(s1

.
= o1 ∧ s2

.
= o2) ∧ (s1

.
= p1 ∧ s2

.
= p2) ∧ (s1

.
= r ∧ s2

.
= r)) →

r
)
∧(

(s1
.
= o1 ∧ s2

.
= o2) ∧ (s1

.
= p1 ∧ s2

.
= p2) ∧ (s1 6= r ∨ s2 6= r)) →

f(r, r)
)
∧
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(
(s1

.
= o1 ∧ s2

.
= o2) ∧ (s1 6= p1 ∨ s2 6= p2) →

if s1
.
= r ∧ s2

.
= f(p1, p2) then r else f(r, f(p1, p2)) fi

)
∧(

(s1 6= o ∨ s2 6= o2) ∧ (s1
.
= p1 ∧ s2

.
= p2) →

if s1
.
= f(o1, o2) ∧ s2

.
= r then r else f(f(o1, o2), r) fi

)
(
(s1 6= o ∨ s2 6= o2) ∧ (s1 6= p1 ∨ s2 6= p2) →

if s1
.
= f(o1, o2) ∧ s2

.
= f(p1, p2) then r else f(f(o1, o2), f(p1, p2)) fi

)

�

B.2 Substitutions versus Updates

Contrary to syntactical substitutions, updates also affect terms that bear no
deeper syntactical similarity but only partial semantical identity (by alias-
ing). This effect can be seen by the distinct effect of the two following infer-
ences. First consider the effect of the

.
= subst (R16) rule.

s
.
= t, f(s)

.
= 1 ` 1 > 0 ∧ f(t) > 0

s
.
= t, f(s)

.
= 1 ` f(s) > 0 ∧ f(t) > 0

Then compare it to the effect of a comparable update inference, which affects
the term f(t) on the basis of the additional knowledge that s

.
= t.

s
.
= t ` 1 > 0 ∧ 1 > 0

s
.
= t ` 〈f(s)C1〉(f(s) > 0 ∧ f(t) > 0)

The difference in effects is even more convincing in the case of unknown
aliasing relationships, where updates introduce a case distinction to cover all
possibilities of whether or not the affected terms are subject to aliasing.

s
.
= t ` 1 > 0 ∧ 1 > 0 s 6= t ` 1 > 0 ∧ t > 0

` 1 > 0 ∧ (if s
.
= t then 1 else t fi) > 0

` 〈f(s)C1〉(f(s) > 0 ∧ f(t) > 0)
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Appendix C

Measurements

All the measurements in this thesis have been performed on an AthlonTM XP
2700+ from AMD with 512MB DDR-SDRAM RAM PC2700 running Suse
Linux 9.0 with a 2.6.5-25 kernel. KeY has been run on a Java HotSpotTM

Client Virtual Machine, build 1.4.2-b28, in mixed mode. All measurements
are based on the ODL branch of the KeY system, which is an extended
descendant of the KeY major revision 0.1164.

The measurements have been repeated five times with the result being
the average of the last three runs. Disposing of the first two runs is important
for meaningful time measurements. Due to Java dynamic class loading and
caching effects initial runs tend to have a considerable variance. Those effects
stabilise after the first few runs. Nevertheless, due to the large amount of
nondeterministic factors involved, especially the timing measurements are not
statistically significant. Rather the timing information is intended to give a
feeling for magnitudal differences. Further, timing information is adequate to
balance measurements with contradicting number of inference and branching
information. Measurements that produce more inferences yet involve less case
distinctions are not easy to compare, qualitatively, to measurements of less
inferences scattered over a multitude of branches. Timing information helps
to judge an appropriate balance of inferences in comparison to branches.

Moreover, due to the coarse time resolution and the small durations,
timing information can result in zero seconds, which is an artifact. Still it
stands for quick runtime and – due to rounding effects – cannot be considered
significantly different from 0.1 seconds. With greater quantities the timing
measurements get more precise, though.

While the Java Virtual Machine itself already contributes to nondeter-
ministic effects that result from dynamic class loading, garbage collection and
caching, the implementation of the KeY system itself is subject to nondeter-
minism as well. At least at the time of writing, one source of nondeterminism
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is term ordering. KeY considers equations as directed, and will only rewrite
occurrences of the term that is greater according to the term ordering with
the smaller term. The default term ordering however uses the location of the
symbol object in memory amongst other deterministic criteria.

The measurements in this thesis compare the implementation variant
iODL of the ODL calculus to the original JavaCardDL calculus of the KeY
System. Apart from the difference of the calculi themselves, unlike Java-

CardDL, the ODL calculus does not employ an optimisation of update
merging, which will be referred to as “mo” during the course of this work.
The merge optimisation mo applied in JavaCardDL transforms an update
o.xCt, p.xCs to

o.xC(if o
.
= p then o.x else t fi), p.xCs

In order to support an orthogonal comparison of the ODL versus Java-

CardDL calculi, independent of the question of whether or not to use the
mo optimisation, the measurements will be provided in several flavours. The
measurements have been repeated for the iODL calculus with the mo trans-
formation (called “iODL +mo” in the measurement tables) and without mo
(called only “iODL”). Further the measurements have been performed for
the JavaCardDL calculus as is1 (called “JavaCardDL mo”) and for the
JavaCardDL calculus with mo disabled (called “JavaCardDL nomo”).
To compare the proper iODL and JavaCardDL approaches, compare the
“iODL” to the “JavaCardDL mo” measurements. The other measurements
are only provided to isolate the cause.

There is, of course, no need to emphasise that the iODL inference mea-
surements only place upper bounds to the ODL calculus. Apart from the
changes in the calculus this is due to the nature of the automatic theorem
prover, which does not search for the shortest proof or even cancel out void
inferences, but only derives as much as possible in short time. Some auto-
matic derivations still contain unnecessary intermediate steps.

1i.e. with mo transformation
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