The ASMKeY Theorem Prover

Stanislas Nanchen, Hubert Schmid, Peter H. Schmitt and Robert Stark

ETH Zurich
Department of Computer Science

Abstract. In [8], we presented a logic for Abstract State Machines
(ASMs). In this technical report, we present an interactive theorem
prover call ASMKeY where we implemented this logic. We also present
a small case study to show the effectivness of our approach.

1 Introduction

Abstract State Machines [4] (ASMs) are widely used as specification method for
software, algorithms, protocols and as operational semantic for many program-
ming languages. [2] is a thorough presentation of ASMs and their applications.

In [8], we presented a logic for ASMs for expressing and proving properties
of them. We will call this logic the basic logic for ASMs.

In this report, we present ASMKeY, a interactive theorem proved based on
the KeY system [1]. The KeY system is a proving environment integrated in
the CASE-tool Together from Borland; the KeY project is aimed into providing
a complete system for specification and verification of object oriented programs
in particular Java-Card programs. KeY is a project of the University of Karlsruhe
in Germany and Chalmers University of Technology in Sweden.

The report is organized as follow. After the introduction, we give a reminder
of the basic logic for ASMs and then introduce for it a sequent calculus version.

In section 3, we first discuss the ASMKeY prover and its relation with KeY;
in particular, we expose the taclet language which allows to express the sequent
calculus for use with the interactive prover.

Then we discuss automatisation and simplification technics for the proofs.
We move then on a case study, the correctness of the MERGESORT algorithm,
before concluding on the present and future works.

1.1 Related Works

In his thesis [6], Schellhorn proofs the correctness of the refinements from the
Prolog language to the WAM virtual machine. To achieve that, the ASMs are
first translated into the programs of Dynamic Logic (DL) : the dynamic functions
are represented by association lists, the parallel rules are sequentialized and the
if-then-else statements are flattened. The properties on ASMs are then expressed
as DL formulas and proved with the KIV theorem prover.



In [3], Gargantini and Ricobene show how to use the PVS theorem prover
for verifying ASMs. Functions are represented by PVS functions and a inter-
preter for ASMs is programed in PVS; in particular the parallel (block) rule is
sequentialized. It is possible to retain the abstraction level of the ASMs by giving
properties of PVS functions instead of defining them.

In her thesis [10], Winter applies to ASMs the other widely used verification
technique, namely Model Checking. The ASMs are encoded in the languages of
several Model Checking tools. In particular, the transformation algorithm unfold
the dynamic functions with n arguments into dynamic variables and flatten the
if-then-else structures. Properties are given as temporal formulas.

2 A Logical Calculus for ASMs

Before the presentation of the sequent caluculus, we briefly introduce the ASMs
and quickly recall the logic of [8].

2.1 ASM rules and update sets

ASMs are transition systems whose states are abstract states. The notion of
abstract state is the classical notion of first-order structure A over a vocabulary
Y. A structure A over a vocabulary X consists of a underlying set |A|, called the
superuniverse of the structure, and the interpretation of the function symbols of
XY over | A|. The interpretation of terms s,t and of first-order formulas ¢, is
done the standart way with respect to a variable assignement (.

The functions of the vocabulary X' are classified in two categories, the static
and the dynamic functions. As their name indicates, the static ones do not
change during the computation where the dynamic ones are updated during the
computation. The updates of dynamic functions at each step of the computation
are expressed with transition rules.

1. Skip Rule: skip
Meaning: Do nothing.
2. Update Rule: f(s):=t

Syntactic condition: f is a dynamic function name of X
Meaning: In the next state, the value of f at s is updated to .

3. Block Rule: P par @
Meaning: P and @ are executed in parallel.
4. If Rule: if ¢ then P else @
Meaning: If ¢ is true, then execute P, otherwise execute Q.
5. Let Rule: let z =tin P
Meaning: Assign the value of ¢ to z and execute P.
6. Forall Rule: forall z with ¢ do P
Meaning: Execute P in parallel for each z satisfying ¢.
7. Sequence Rule: Pseq Q

Meaning: P and @ are executed sequentially, first P and then @.



8. Try Rule: try P else @
Meaning: If P is consistent, execute P, else execute Q.
9. Call Rule: p(t)
Meaning: Call transition rule p(z) = P with parameters ¢.

Definition 1 (ASM). An abstract state machine M consists of a vocabulary X,
an initial state A for X, a rule definition for each rule name, and a distinguished
rule name of arity zero called the main rule name of the machine.

The semantics of transition rules of ASMs are given by sets of updates.
Because the presence of the Block and Forall rules, a ASM may try to fire
updates for a dynamic function f to the same argument a but with different
values, which is clearly inconstitent.

To capture the notion of consistency, we need to define what updates and set
of updates are.

Definition 2 (Update). An update for A is a triple (f, a,b), where f is a
dynamic function name, and a and b are elements of |AJ.

The meaning of an update is that the interpretation of the dynamic function f
has, for the next state, to be changed at point a with new value b. A update set
is simply a set of such updates.

Intuitively, an update set is consistent if its updates do not clash; more pre-
cisely, an update set U is called consistent, if it satisfies the following property:
if (f,a,b) € U and (f,a,c) € U, then b = c.

The semantic of rules are given by update sets. We write yields(P, A, ¢, U)
to mean ‘rule P yields in state A under the variable assignment ¢ the update
set U’. The table 1 gives, in a inductive manner, the properties of the yields
relation. The yields relation is the least relation satisfying these properties. Also
notice that, in the presence of recursive rule definitions, a rule M may induce
an infinite loop and therefore have no update set i.e., be undefined.

2.2 A logic for ASMs

To formalize the consistency and other properties of ASMs, we extend the lan-
guage of first-order logic with a modal operator [P]y and two new predicates
def(P) and upd(P, f,z,y).

The meaning of the modal operator [Py is that the formula ¢ is true after
firing P. The predicates def(P) and upd(P, f, z,y) asserts that the rule P is de-
fined, respectively than the rule P produces an update for the dynamic function
f at point z with new value y.

The formulas of the logic for ASMs are generated by the following grammar:

0, n=s=t|-p|eAY |V |o—yY|Vre|Tze|
def(P) [ upd(P, [, s, 1) | [Ple

A formula is called pure (or first-order), if it contains neither the predicate ‘def’
nor ‘upd’ nor the modal operator [P]. A formula is called static, if it does not



yields(skip, A, ¢, 0)
where | = (f, ([[31]24))

yields(f(s) = £, A, ¢ {0, v)]) and v = [1]¢
yields(P, A, ¢, U)  yields(Q, A, ¢, V)
yields(P par Q, A, {,UU V)
yields(P, A, ¢, U)
yields(if ¢ then P else Q, A, ¢, U)
yields(Q, A, ¢, V)
yields(if ¢ then P else Q, A, ¢,
yields(P, A, ¢[z + a], U)
yields(let z = ¢t in P, A, ¢, U)

(

(

(

(

(

(

(P

(

if [] = true

% if [] = false

where a = [[t]]f‘

yields(P, A, [z — a], Us) for each a €I
yields(forall z with ¢ do P, A,{,U,c; Ud)

yields(P, A, ¢, U) vyields(Q, A+ U,¢, V)
yields(P seq Q, A, (, U & V)

yields(P, A, ¢, U)

yields(P seq @, A, ¢, U)

yields(PL, A,¢, U) where r(z) = P is a
yields 7"( ) A, ¢, U) rule declaration of M

where I = range(z, p, A, ()

if U is consistent

if U is inconsistent

Table 1. Semantic of rules: yields predicate




contain dynamic function names. The formulas used in If-Then-Else and Forall
rules must be pure formulas.

The semantic of the formulas given a state A and a variable assignement
¢ is the usual one for the first-order formulas; the semantic for the new modal
operator and predicates is given in table 2.

The basic properties for def and upd are listed in the table table 3 and
table 4. Along with those properties, the following principles will be the basic
axioms and rules of our logic £L(M), for an abstract state machine M, the logic
being parametrized by M.

I. Classical logic with equality: We use the axioms and rules of the classical
predicate calculus with equality. The quantifier axioms, however, are restricted.

II. Restricted quantifier axioms:

1. Vo — pt if ¢ is static or ¢ is pure
2. ot -3z if ¢ is static or ¢ is pure

ITI. Modal axioms and rules:

oot W

IV. The Barcan axiom:
7. Vz[Plp — [PVzp if z ¢ FV(P).
V. Axioms for pure static formulas:

8. ¢ — [Ply if ¢ is pure and static
9. Con(P)A[Plp — ¢ if ¢ is pure and static

VI. Axioms for def and upd:

10. D1-D9 in Table 3
11. U1-U9 in Table 4

VII. Update axioms for transition rules:

12. upd(P, f,z,y) — def(P)
13. upd(P, f,z,y) — [P]f(z) = y
4. inv(P,f,z) A f(z) =y — [Plf(z) =y

VIII. Extensionality axiom for transition rules:

15. P~ Q — ([Ply < [Q]y)



if [ ]]A’Hj true for each consistent U

true,

[[[P]<p]]24 = w1thy|e|ds(P7A,(j, U);
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false, otherwise.
true, if there exists an update set U with yields(P, A, ¢, U);
false, otherwise.

true, if ex. U with yields(P, A, ¢, U) and
[upd(P, f, s, )] == (f,[s]¢, 11y e U

false, otherwise.

Table 2. The semantics of modal formulas and basic predicates.

D1. d
D2. d
D3. d
D4. d
D5. d
D6. d
D7. d
D8. d
D9. d

ef(skip)

ef(f(s) = 1)

ef(P par Q) < def(P) A def(Q)

ef(if ¢ then P else Q) <= (¢ Adef(P)) V (mp A def(Q))

ef(let z =t in P) < 3z (z = ¢t A def(P)) if z ¢ FV(t)
ef(forall z with ¢ do P) <= Vz (¢ — def(P))

ef(P seq Q) <= def(P) A [P]def(Q)

ef(try P else Q) <= def(P) A (Con(P) V def(Q))

ef(p(t)) <= def(Pi) if p(z) = P is a rule definition of M

Table 3. Axioms for definedness.




Ul. —upd(skip, f, z, y)

U2. upd(f(s) :=t,f,2,y) <= s=aAt=y, -—upd(f(s):=t,g,z,y) iff#g
U3. upd
U4. upd

(P par Q,f,z,y) <= def(P par Q) A (upd(P, f,z,y) Vupd(Q,f,z,y))
(if ¢ then P else Q,f,z,y) <= (p Aupd(P,f,z,y)) V (mp A
upd(Q, f,z,y))
(
(

U5. upd(let z =t in P) <= 3z (2 =t Aupd(P,f,z,y)) if 2 ¢ FV(¢)
U6. upd

forall z with ¢ do P, f,z,y) <—
def(forall z with ¢ do P) A 3z (¢ Aupd(P, f,z,y))

U7. upd(P seq Q,f,z,y) <

(upd(P, f,z,y) A [P](def(Q) Ainv(Q, f, x))) V
(Con(P) A [Plupd(Q, f, =, y))

U8. upd(try Pelse Q,f,z,y) <

(Con(P) Aupd(P, f,z,y)) V
(def(P) A =Con(P) Aupd(Q, f,z,y))

U9. upd(p(t),f,z,y) < upd(Pf,f,a:, y) if p(z) = P is a rule definition of M

Table 4. Axioms for updates.

IX. Axioms from dynamic logic:

16.
17.

[skip]p < ¢
[P seq Qlp < [P][Q]p

It is possibly to show in the system the following properties for the consis-

tency predicate Con(P):

Lemma 1. The following consistency properties are derivable:

18.
19. C
20. C
21. C
22.
23.

2.
25.
26.

Con(sklp)

on(f(s) = t)

on(P par Q) < Con(P) A Con(Q) A joinable(P, Q)

on(if ¢ then P else Q) <= (¢ A Con(P)) V (—¢ A Con(Q))
Con(let z = tin P) <= Jz (z =t A Con(P)) if © ¢ FV(t)
Con(forall z with ¢ do P) <—

Vz (¢ — Con(P) AVy(pZ — joinable(P, P¥))

Con(P seq Q) < Con(P) A [P]Con(Q)
Con(try P else Q) <= Con(P) V (def(P) A Con(@Q))
Con(p(t)) <= Con(P%) if p(z) = P is a rule definition of M

2.3 A sequent calculus for ASMs

To get a sequent calculus for ASMs, we translate the basic logic, which has a
Hilbert-style, to a sequent-style.



The First-Order part of the logic is translated into the classical sequent cal-
culus without forgetting the restriction of the quantifier rules.

The translation of the axioms for the main predicates def and upd is using
the following schema.

Let VZ(®(Z) < ¥(Z)) be an axiom of the Hilbert-style caluculus, we then
introduce the two following rules (with #staticterms:

RW(%);»A” I'=v(t),A oht
Lo =2 " T=o@{),a"®

The translation of the Step Rule is a little more tricky, as it is required that
the right side is not empty; for Ay not empty and ¥ pure and static formulas;
FQ, V= AQ
Fl; [P]FQ,W:>A1, [P]AQ

We can see that the pure and static assumptions ¥ are preserved during the
step.

The rest of the translation is rather straightforward. The whole sequent cal-
culus is rather large and the reader can find it in the appendix A. We already
know the Step Rule; we give two more rules as example.

Definition 3 (Rules).
step For Ay not empty and ¥ pure and static formulas;

FQ,W@AQ
F17[P}F27WZ>A17[P]A2

all-left (Aziom 10.D4) For t static or ¢ pure

I'Vzp,pt=A
I'Vep=A

upd-par-right (Aziom 11.U3)

I'=def(P par Q) A (upd(P, f,t,s) Vupd(Q,f,t,s)), A
['= upd(P par Q,f,1,5), A

2.4 Equivalence

Theorem 1 (Equivalence). The Hilbert-style calculus L(M) is equivalent to
the sequent calculus S(M) in the sense that L(M) F ¢ if and only if S(M) I ¢.

Proof. The proof is given by a transformation algorithm from a proof tree of one
calculus in a proof tree of the other and vice-versa. The proof is rather long and
technical, so it is not given here. The result is well-known for First-Order Logic
and this proof uses the same method. The method used can be found in [9]. O



3 KeY and ASMKeY

In this section, we present the ASMKeY interactive theorem prover (the tool).
Before presenting ASMKeY, we have first a look at the KeY theorem prover and
introduce the taclet language used to write the sequent calculus rules of the logic.

3.1 The KeY theorem prover

The KeY theorem prover is only a part of the KeY System. However the rest of
the KeY system (e.g. OCL to dynamic logic translator) has little relevance for us.
The KeY theorem prover is invoked when a user want to prove a properties of a
method or a class invariant. It present itself as a window with two distinguised
part : a tree viewer for presenting the proof tree and a view for presenting a
sequent. As ASMKeY conserves almost the same interface, the screenshot on
fig. 1 gives a fair impression of what the KeY theorem prover looks like.

The proving is done by clicking on a term or formula in the presented sequent.
Then a pop menu appears presenting the available rule applications that are
possible for the selected term or formula. If the user chooses such a rule, then
the rule is applied to the sequent and one or more new goals are added to the
proof tree.

3.2 Taclets

KeY is implemented in Java. But most of the rules of its logic are implemented
using the taclet language. Taclets (from tactic and applet, litterally lightweight
tactics) describe the way the rule is applied to the current goal. We do not
want to describe here the taclet language in its totality, but concentrate on its
main features. For a thorough introduction of the tactics language, the reader is
referred to [5].

To illustrate the taclet language, we give the taclet equivalent of the rules
in definition 3 in the table 5. To further illustrate the taclet language, we also
reproduce the rule for the conjunction on the right part of the sequent.

The statment find precise the pattern of the taclet which must match with
the principal formula on the current goal in order to be applicable; the ==
indicates wether the principal formula is on the left part or on the right part
of the current goal. The statment varcond precises additional conditions, for
instance in the all_left_static, the term #t we want to instanciate with must
be static.

The add and replacewith statments describe how new goal(s) must be cre-
ated. With add, the next goal simply receive a new formula; with replacewith
the principal formula is replaced. When many add and replacewith statments
are present, the goals splits in new subgoals, one per statment.

It is not possible to express the Step rule in the taclet language. The Step
rule is directly implemented in ASMKeY (in Java) and is presented to the user
as a built-in rule.



all_left_static {
find (all #x. #phi ==>)
varcond (static #t)
add ({#x #t} #phi ==>)
};

upd_par_right {
find (==> upd(#t <- #s in #R, #S))
varcond (dynamic #t, staticargs #t, static #s)
replacewith (==> def (#R, #S) &
(upd(#t <- #s in #R) | upd(#t <- #s in #3)));

3

and_right {
find (==> #phi & #psi)
replacewith (==> #phi);
replacewith (==> #psi)

}

Table 5. Some taclets

3.3 The ASMKeY theorem prover

The ASMKeY theorem prover is based on the KeY theorem prover and shares
almost all of its base code.

As in KeY, the proof process is done by clicking on formula in a sequent
and choosing a appropriate rule to simplify or close a goal. The figure 1 is a
screenshot of the ASMKeY theorem prover in action.

4 Simplification and Automatisation of Proof

The calculus presented in the previous section is low-level and as such ill-adapted
for proving properties on a large scale.

In this section, we present features we have developped or are developping
to improve the usability of the logic:

1. Taclets for Con and other derived predicates (implemented);
2. Simplified Taclets (in progress);
3. Heuristics (in progress).

4.1 Taclets for Con and other derived predicates

In the basic logic, derived predicates (especially the consistency Con) play an
important role in the axioms already (see [8]). Furthermore, these derived pred-
icates plays an important role in correctness properties.
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Fig. 1. A screenshot of ASMKeY

The consistency predicate Con is the more important of them, as proving the
consistency of an ASM M ensure the terminaison (of one step) of the program.
Also, as one generally includes consistency in the notion of correctness, the con-
sistency of a program must virtually always be proved. The invariant predicate
inv is very important when proving update properties in the presence of the seq
rule construct.

Therefore, we introduced taclets for directly using properties of Con, inv and
other properties found in [8]. This allow the user to directly proof those properties
without using the definition of the predicates. You can found the sequent rules
in the appendix B.

These taclets are not primitive in the sense that they do not come from
the axioms of the logic but from some of its properties. Unfortunately, at the
time of this writting, it is impossible in ASMKeY to prove a taclet from more
primitive taclets. However, we were able to prove them in ASMKeY under their
equivalence form for anonymous ASM rules.

4.2 Simplified Taclets
As previously stated, the consistency of an ASM is very often considered to

be part of its correctness. Together with the definedness def, the consistency of
an ASM will be often proved very early in the correctness proof of this ASM.

11



Therefore, it might be usefull to take in account that the consistency of an ASM
has already been proved when proving subsequent propreties.

As example, take M = P par @, suppose we want to prove upd(M, f, z,y).
The rule for proving upd(M, f,z,y) is :

I' = def(P par Q) A (upd(P, f,t,s) Vupd(Q,f,t,s)),A
I'=supd(M,f,t,s), A

upd-par-right

But, if we know that consistency of M holds, we could get rid of the def(M) as
consistency implies definedness. Furthermore, we could forward the consistency

information to subgoals for later use. The simplified rule for upd in the case
would look like :

I, Con(P) A Con(Q) A joinable(P, Q)= upd(P, f,t,s) Vupd(Q,f,t,s),A
I',Con(M)=upd(M, f,t,s), A

Notice that we do not have to prove def(M) anymore.
We are currently extending the taclet language used in ASMKeY in order to
write such rules.

4.3 Heuristics

Heuristics are already a part of the KeY theorem prover. A heuristic is a list
of taclets that may be applied automatically by the prover. By prioritazing the
heuristics and by carefully composing them, it is possible to achieve a great
automatisation of the proof.

As stated above, the heuristics must be carefully composed in order to get
good results; otherwise, we could end up during a proof in a very complicate
goal for which we have no idea from where it comes.

We are currently testing some basic heuristics; more elaborated heuristic will
come only when we have done enough case studies.

5 MergeSort.

As a first case study for the ASMKeY theorem prover, we use the MERGESORT
algorithm as it is a simple and well-known example, yet not trivial.

We reproduce in table 6 the algorithm in its ASM version using parallel
updates as much as possible.

We summerize below the four properties one has to prove in order to verify
the correctness of the MERGESORT algorithm. For all values of [ and r,

1. The rule MERGESORT(!, r) makes updates within its range.

Vi (3y upd(MERGESORT(I, 1), f,i,y) — (1 < i <))

12



MERGESORT(l, 1) =
if [ < r then
let m = [(I+r)/2] in
(MERGESORT(I, m) par MERGESORT(m + 1, 7)) seq
MERGE(l, m, 1)

MERGE(l, m, ) =
(forall ¢ with [ <4 < r do g(7) := f(i)) seq
MEeRrRGECoOPY(I, m,m + 1, r,1)

MERGECOPY(i, m,j, 7, k) =
if £ < r then
if(i<me&&j<r&&g(i)<gQy)) Il (r<j)then
f(k) :== g(i) par MERGECOPY (i + 1,m,j, 7,k + 1)
else
f(k) :== g(j) par MERGECOPY(%, m,j + 1,7,k + 1)

Table 6. The MERGESORT algorithm

2. The rule MERGESORT(/, r) is consistent.
Con(MERGESORT(I, 1))
3. After firing the rule MERGESORT(I, r), the array is sorted.
[MERGESORT(l, ")|Vi (I < i< r)— f(i) < f(i+1))
4. The sorted array is a permutation of the (old) unsorted array.

Ir € Perm([l... 1))
Vi(i€[l...r] = upd(MERGESORT(l,7), f, 4, f(7())))

We were able to fully prove in ASMKeY the three first properties of the
correctness. We are still working on ASMKeY to mechanically prove the fourth

as it requires to manipulate permutations directly. This is currently not possible
in ASMKeY.

6 Future work and extensions

As presented in this report, ASMKeY is still in its infancy and will need sub-
sequent development before doing large case studies. In this section, we present
three extensions that we think necessary to achieve larger case studies.

6.1 Basic lemma managment

The ability to reuse what has already been done is one of the common features of
computer systems in general and interactive theorem provers are no exceptions:

13



the possibility to define lemmas and theorems to be reused in other proofs is
therefore mandatory.

We are currently working on a basic lemma managment tool; the main dif-
ficulty in the programming of such tool is to ensure the non-circularity of the
dependancy of the lemmas.

6.2 Access properties and sequentialisation of parallel programs

In [7], we have worked on an extension of the basic logic to handle access (read)
properties. In particular, the logic allows the formulation and verification of secu-
rity properties like ensuring that certain locations are not accesssed. In addition,
it allows also the verification of sequentialisation of parallel programs.

We are currently in the process of adding the necessary predicates and taclets
to ASMKeY and will soon begin with the first tests.

6.3 Run properties and explicit step logic

Is [8], we presented also an explicit step extension to the basic logic. With this
extension, it is possible to express run properties of ASM, a feature that the
basic logic is missing. We are currently working on the integration of the explicit
step extension in ASMKeY.

7 Conclusion

We have presented in this technical report the actual state of the ASMKeY
interactive prover along with the future challenges in order to make the tool
more usable for mid-size case studies.
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A The sequent calulus

In the following tables, we are presenting all the rules and heuristics of the basic
logic of the ASMKeY theorem prover. We present here the different sections of
the calculus. Some section, like FOL, are well-known and are given for the sake
of integrality.

A.I First-order logic rules

axiom impl-right

Io=p, A
a4 I'p=1y, A

I'=sp—1, A
true-right

I'=true, A iF-left

Ne—ovrp—p=A4

false-left Ne—yp=A
I false= A
iff-right
not-left o A FspopAh—g A
Ii—p=A I'seeoyp, A
not-right and-left
Ip=A I, p=A
T=-0 A oNp=A
impl-left and-right
I'sp, A  Tp=>A I'se A I'sy,A
Tp—p=A I=ohd,A
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or-left all-right
(where ¢ is a new constant symbol)

Ie=A Ly=A

Iovy=A I's ez, A
I'=Vzp, A
or-right
I'=p,, A ex-right
T=oVy,A (where ¢ is ground term; and ¢ is
’ static or ¢ is pure)
I'= 3z, @57 A
all-left T T=dap, A

(where ¢ is a ground term; and ¢ is
static or ¢ is pure)

I Vzp, ot = A ex-left
ﬁ (where c¢ is a new constant symbol)
» VLY
T, w% = A
I''3zp=A

A.II Modal rules

mod-not-left (Lemma 4.28) mod-or-left
I'=Con(P), A I''=[Plp=A
I, [Py V [Plps = A
T [Plo v [Pl

L [P(p1V g2) = A

mod-not-right
M mod-or-right
I'= [P]—, A
I'=[Plp1 V [Plps, A
mod-and-left I'=[Pl(¢1Vg2), A
I, [Ple1 A [Plps = A
IV [Pl(p1 A pa) = A

mod-all-left (z not in P)

mod-and-right
I'= [P]g{)l A [P]@Q,A
I'=[Pl(¢1 AN p2), A

I'Vz[Plo= A
I [PlVzp= A
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mod-all-right (z not in P)

I' = Vz[Plp, A
I'= [PNVzp, A

mod-ex-left (z not in P)

I' 3z[Plo= A
I[P 3zp= A

mod-ex-right (z not in P)

I' = 3z[Plp, A
I'= [P 3zp, A

A.II1 def predicate

def-skip-left (Axiom 10.D1)

I true= A
I, def(skip) = A

def-skip-right (Axiom 10.D1)

I'=true, A
I' = def(skip), A

def-assign-left (Axiom 10.D2)

Itrue= A
I def(f(t) :==5)=A

def-assign-right (Axiom 10.D2)

I'=true, A
I'=def(f(t) :=5),A

def-par-left (Axiom 10.D3)

I',def(P) Adef(Q)= A
I',def(P par Q)= A

step For A; not empty and ¥ pure
and static formulas;

FQ,W:>A2
Fl,[P]FQ,WiAl,[P]AQ

mod-not-con (Axiom 5)

I'=—=Con(P), A
I'=[Plp, A

def-par-right (Axiom 10.D3)

I'=def(P) A def(Q), A
I' = def(P par Q), A

def-branch-left (Axiom 10.D4)

I'ip,def(P)=A I',—p,def(Q)= A
I', def(if ¢ then P else Q)= A

def-branch-right (Axiom 10.D4)

I'ip=def(P),A I'-p=-def(Q),A
I', = def(if ¢ then P else Q), A

def-let-left (Axiom 10.D5)
(where ¢ is a new constant symbol)
I'c=t,def(P)= A

I'deflet z =tin P)= A
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def-let-right (Axiom 10.D5)
(where ¢ is a new constant symbol)
I'c=t=def(P%),A
I' = def(let x =t in P), A

def-try-left (Axiom 10.D8)

I',def(P) A (Con(P) V def(Q)) = A
I',def(try P else Q)= A

def-all-left (Axiom 10.D6)
(where I = forall z with ¢ do P)

I'Vz(p — def(P))= A
I, def(I) = A

def-try-right (Axiom 10.D8)

I' = def(P) A (Con(P) V def(Q)), A
I' = def(try R else Q), A

def-all-right (Axiom 10.D6)
(where I = forall z with ¢ do P)

I'=Vi(p — def(P)), A
I'=def(1), A

def-seqg-left (Axiom 10.D7)

I',def(P) A [P]def(Q) = A
I',def(P seq Q)= A

def-seqg-right (Axiom 10.D7)

I' = def(P) A [P]def(Q), A
I'=def(P seq Q), A

A.IV  upd predicate

t and s are static terms.

upd-skip-left (Axiom 11.U1)

def-rule-left (Axiom 10.D9)
(with rule definition p(z) = P.)

I, def(P(t)) = A
T, def(p(1)) = A

def-rule-right (Axiom 10.D9)
(with rule definition p(z) = P.)

I'= def(P(t)), A
I = def(p(1)), A

I false= A

I',upd(skip, f, t,s) = A

upd-skip-right (Axiom 11.U1)

I'=false, A

I' = upd(skip, f, t,s), A



upd-assign-id-left (Axiom 11.U2)

Nt=t'ANs=s"=A
Loupd(f(t) = s,f,t',s") = A

upd-assign-diff-left (Axiom 11.U2) (for f # g)

I false= A
Lyupd(f(t) :=s,9,¢,8 )= A

upd-assign-id-right (Axiom 11.U2)

I'st=t'Ns=5,A

upd-assign-diff-right (Axiom 11.U2) (for f # g)

I' = false, A
I'=upd(f(t) :==s,9,t',8"), A

upd-par-left (Axiom 11.U3)

I',def(P par Q) A (upd(P,f,t,s) Vupd(Q,f,t,8))=A
I'yupd(P par Q,f,t,s)= A

upd-par-right (Axiom 11.U3)

T'=upd(P par Q.f,1,5), A

upd-branch-left (Axiom 11.U4)

F7<p7upd(P7f7 t7 S)jA F7_|<)07upd(Q7f7 t7 S)éA
I',upd(if ¢ then P else Q,f,t,s)= A

upd-branch-right (Axiom 11.U4)

Io=upd(P,f,t,5),A I,~p=upd(Q,f,t5s) A
I' = upd(if ¢ then P else Q,f,t,s), A
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upd-let-left (Axiom 11.U5)
(where ¢ is a new constant symbol)
I'ic=tupd(PZ,f,t,5)=A
Iupd(let x =tin P, f,t,5)= A

upd-let-right (Axiom 11.U5)
(where ¢ is a new constant symbol)
I'c=t=upd(P,f,t,s),A
I'=upd(let z =tin P, f,¢,s), A

upd-all-left (Axiom 11.U6)
(where I =forall z with ¢ do P)

I' def(I) AJz(p Aupd(P,f,t,s))=A
Tyupd(I,f,t,s)= A

upd-all-right (Axiom 11.U6)
(where I =forall z with ¢ do P)

I'=def(I) A3z(p Aupd(P, f,t,5)), A
I'=upd(I,f,t,s), A

upd-seq-left (Axiom 11.U7)

I, (upd(P, f, t,s) N[Plinv(Q, f, 1)) V (Con(P) A [Plupd(Q, f, t,5)) = A
I'yupd(P seq Q,f,t,s) = A

upd-seqg-right (Axiom 11.U7)

I'= (upd(P, f,t,8) A[Plinv(Q, f, 1)) V (Con(P) A [Plupd(Q, f, ¢, 5)), A
I'=upd(P seq Q,f,t,s), A

upd-try-left (Axiom 11.U8)

I, (def(P) A =Con(P) Aupd(Q, f,t,s)) V (Con(P) Aupd(P, f,t,s))= A
Iyupd(try Pelse Q,f,t,5)= A
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upd-try-right (Axiom 11.U8)
I'= (def(P) A =Con(P) Aupd(Q, f,t,s)) V (Con(P) Aupd(P, f,t,s)), A
I'= upd(try Pelse Q,f,t,s), A

upd-name-left (Axiom 11.U9)
(with rule definition p(z) = P.)

I upd(P(u), f,t,s) = A
I, upd(p(u), f,1,5) = A

upd-name-right (Axiom 11.U9)
(with rule definition p(z) = P.)

I'=upd(P(u), f,t,5), A
Ir= upd(p(,u’)afa t7 8)7A

A.V Rules for pure static formulas

pure-left (Axiom 9) pure-right (Axiom 8)
(¢ pure and static) (¢ pure and static)
I'=p, A
I'=[Plp, A

I'=Con(P), A Ip=A
I,[Plp=A

A.VI Update rules for transition rules
upd-def-axiom-12 (Axiom 12)
I' def(P)= A
Liupd(P, f,t,s)= A

mod-eq-left
I'=Con(P),A TIupd(P,f,t,s)V (inv(P,f,t)ANf(t)=s5)=A
LP)f(t)=s=A

mod-eq-right (Axiom 13)

I'=upd(P,f,t,s)V (inv(P,f,t) ANf(t) =s), A
I'=[P|f(t) =s,4

A.VII Extensionality
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extensionality-left-1 (Axiom 15) extensionality-right-1 (Axiom 15)

I'=P~Q,A I[Plp=A I'=P~Q,A TI'=[PlpA
L[Qlp=A r'=[Qlp, A

extensionality-left-2 (Axiom 15) extensionality-right-2 (Axiom 15)

I'sP~Q,A I[Qlp= A I'sP~Q,A I'=[Q]p, A
I',[Plp= A I'=[Plp, A

A.VIII Principles from dynamic logic

skip-left (Axiom 16) seq-left (Axiom 17)
o= A
7= I, P =A

I[P seq Qlp=A

skip-right (Axiom 16)
I'=sop A seq-right (Axiom 17)

I' = [skip]p, A I'=[P][Qp, A

I'= [P seq Qp, A

B Additional rules

B.I Con predicate
Con-skip-left (Lemma 3.18)

I true= A
I', Con(skip) = A

Con-skip-right (Lemma 3.18)

I'=true, A
I = Con(skip), A

Con-assign-left (Lemma 3.19)

I true= A
I',Con(f(t) :==95)=A

Con-assign-right (Lemma 3.19)

I'=true, A
I'= Con(f(t) :==s),A
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Con-par-left (Lemma 3.20)

I', (Con(P) A Con(Q) A joinable(P, Q)) = A
I''Con(P par Q)= A

Con-par-right (Lemma 3.20)

I'= (Con(P) A Con(Q) A joinable(P, Q)) = A
I'= Con(P par Q), A

Con-branch-left (Lemma 3.21)

I'ip,Con(P)=A I,-p,Con(Q)=A
I',Con(if ¢ then P else Q)= A

Con-branch-right (Lemma 3.21)

I'p=Con(P),A TI,—p=Con(Q),A
I' = Con(if ¢ then P else @), A

Con-let-left (Lemma 3.22)

I''c=t,Con(PL)= A
I''Con(let z =tin P)= A

Con-let-right (Lemma 3.22)

I''c=t=Con(P%),A
I'=Con(let z = tin P), A

Con-all-left (Lemma 3.23)

I''Vz(p — Con(P) AVy(p¥ — joinable(P, PY)))= A
I', Con(forall z with ¢ do P)= A

Con-all-right (Lemma 3.23)

I'=Vz(p — Con(P) AVy(p¥ — joinable( P, PY))), A
I' = Con(forall z with ¢ do P), A

Con-seq-left (Lemma 3.24)

I',Con(P) A [P]Con(Q)= A
I',Con(P seq Q)= A

Con-seq-right (Lemma 3.24)

I'= Con(P) A [P]Con(Q), A
I'=Con(P seq @), A
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Con-try-left (Lemma 4.25)

I',Con(P) V (def(P) A Con(Q))= A
I',Con(try P else Q)= A

Con-try-right (Lemma 4.25)

I'= Con(P) V (def(P) A Con(Q)), A
I'= Con(try P else @), A

Con-name-left (with rule definition p(t) = P)

I''Con(P(t))= A
I, Con(p(t))= A

Con-name-right (with rule definition p(t) = P)

I'=Con(P(t)), A
I'= Con(p(t)), A
B.II inv predicate
The inv predicate is defined as follow:
inv(P, f,z) :=def(P) AVy —upd(P, f,z,y)
t is a static term.
inv-skip-left

I true= A
I'inv(skip, f,t) = A

inv-skip-right
I' = true, A

I'=inv(skip, f,t), A

inv-assign-id-left
I''-s=t=A

Linv(f(s):=s',f,t)= A

inv-assign-diff-left

(where f # g)
I false= A

Liinv(g(s) :=¢,f, t)=A

inv-assign-id-right
I's-s=tA4A

I'=inv(f(s):=¢,f,t),A
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inv-assign-diff-right

(where f # g)
I' = false, A

I'=inv(g(s):=¢',f,1),A

inv-par-left

I',def(P par Q) Ainv(P, f,t) Ninv(@Q, f, t)= A
Ijinv(P par Q,f,t)= A

inv-par-right

I'=def(P par Q) Ainv(P, f,t) ANinv(Q, f, 1), A
I'=inv(P par Q,f,t), A

inv-branch-left

Lyp,inv(P,f,t)=>A T,—,inv(Q, f,t)= A
I'yinv(if ¢ then P else Q,f,t)= A

inv-branch-right

I'o=inv(P,f,t),A TI,~p=inv(Q,f,t),A
I'=inv(if ¢ then P else Q,f,t), A

inv-let-left
I'ic=t,inv(Ps,f, )= A

Iinv(let z =tin P, f, t)= A

inv-let-right
I'c=t=inv(P<,f, t),A

I'=inv(let c=sin P,f,t), A

inv-all-left
(where I =forall z with ¢ do P)

I',def(I) AVz(p — inv(P,f, 1) = A
Liinv(I,f,t)= A

inv-all-right
(where I =forall z with ¢ do P)

I'=def(I) AVz(p — inv(P, f, 1)), A
I'=inv(l,f,t),A

inv-seq-left
Lyinv(P, f,t) A [P](inv(Q, f, 1)) = A
I'jinv(P seq Q,f,t)= A
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inv-seq-right
I'=inv(P,f,t) A[Plinv(Q, f,t), A

I'=inv(P seq Q,f,t), A

inv-try-left

I, (Con(P) Ainv(P, f,z)) V (def(P) A =Con(P) Ainv(Q, f,z)) = A
I'yinv(try Pelse Q,f,z)=,A

inv-try-right
I'= (Con(P) Ainv(P, f,z)) V (def(P) A =Con(P) Ainv(Q, f,z)), A

I'=inv(try Pelse Q,f,z)= A
inv-name-left (with rule definition p(t) = P)

Linv(Pt f,s)= A
Linv(p(t),f,s)=A

inv-name-right (with rule definition p(t) = P)

I'=inv(Pt f s), A
= inv(p(t)., ), 2

B.IIT Principles from dynamic logic
branch-left (Lemma 6.34)

F,%[P]@/JZ>A F»—'%[Qwiﬂ
I',[if ¢ then P else Q= A

branch-right (Lemma 6.34)

L= [Pl A I-p=[Qlp,A
I' = [if ¢ then P else Q]y, A

let-left (Lemma 6.35) (c is a new constant symbol)

I'c=t,[Plp=A

<
T

I''llet z =tin Plp=A

let-right (Lemma 6.35) (c is a new constant symbol)

I'c=t=[PE&]p, A

<
T

I'=[let z =tin Plp, A

try-left (Lemma 6.36)

I, ([Ple A ((def(P) A =Con(P)) — [Qlp)) = A
I'|[try P else Qo= A
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try-right (Lemma 6.36)

I'= ([Ple A ((def(P) A ~Con(P)) — [Q¢)), A
I' = [try P else Q]p, A

name-left (Lemma 6.37) (with rule definition p(z) = P.)

I [P(t)]p=A
Lp(t)]e=A

name-right (Lemma 6.37) (with rule definition p(z) = P.)

I'=[P(t)]p, A
I'=[p(t)]p, A
B.IV Equivalence rules
weaken-equiv
I'=sP~Q,A
I'sP~Q,A

equi-par-skip-right (Lemma 8.38)

I'=[Plp, A
I' = [P par skip|p, A

equi-par-skip-left (Lemma 8.38)

I [Plp=A
I',[P par skip]p = A

equi-par-com-right (Lemma 8.39)

I'= [P par Q|p, A
I'=[Q par Plp, A

equi-par-com-left (Lemma 8.39)

I[P par Qo= A
I [Q par Plp= A

equi-par-ass-right (Lemma 8.40)

I'=[(P par Q) par R]p, A
I'= [P par (Q par R)]p, A

equi-par-ass-left (Lemma 8.40)

I'[(P par Q) par Rlp= A
I[P par (Q par R)|p=A

27



equi-par-idem-right (Lemma 8.41)

I'=[Plp, A
I'= [P par P|p, A

equi-par-idem-left (Lemma 8.41)

I,[Plp=A
I[P par Plp=A

equi-par-if-right-1 (Lemma 8.42)

I' = [if ¢ then (P par R) else (Q par R)]y, A
I' = [(if ¢ then P else Q) par Ry, A

equi-par-if-left-2 (Lemma 8.42)

I',[if © then (P par R) else (@ par R)|yp= A
I',[(if ¢ then P else Q) par Ry = A

equi-par-if-right-2 (Lemma 8.43)

I' = [if ¢ then (R par P) else (R par Q)]y, A
I' = [R par (if ¢ then P else )]y, A

equi-par-if-left-2 (Lemma 8.43)

I', [if ¢ then (R par P) else (R par Q)¢ = A
I',[R par (if ¢ then P else Q)jv = A

equi-seq-left-skip-left
I [Rlp=A

I, [skip seq R]p= A

equi-seq-left-skip-right

I'=[R]p, A
I' = [skip seq R]p, A

equi-seq-right-skip-left

I [Rlp=A
I',[R seq skip]p = A

equi-seq-right-skip-right

I'=[R]p, A
I' = [R seq skip|p, A
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equi-seq-ass-left
I [(P seq Q) seq Rlp= A

I[P seq (Q seq R)jp= A

equi-seq-ass-right
I'= [(P seq Q) seq Ry,

A
I'= [P seq (Q seq R)]p, A

equi-seq-if-left

I, [if ¢ then P seq R else @ seq Rjp= A
I, [(if ¢ then P else Q) seq Rjp= A

equi-seq-if-right
I' = [if p then P seq R else Q seq R]p, A

I'=[(if ¢ then P else Q) seq R|p, A
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