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Abstract. Most attempts at analysing secure information flow in pro-
grams are based on domain-specific logics. Though computationally fea-
sible, these approaches suffer from the need for abstraction and the high
cost of building dedicated tools for real programming languages. We re-
cast the information flow problem in a general program logic rather than
a problem-specific one. We investigate the feasibility of this approach by
showing how a general purpose tool for software verification can be used
to perform information flow analyses. We are able to handle phenomena
like method calls, loops, and object types for the target language JAVA
CARD. We are also able to prove insecurity of programs.

1 Introduction

Most attempts at analysing secure information flow in programs have followed
basically the same pattern: information flow is modeled using a domain-specific
logic (such as a type system or dataflow analysis framework) with a predefined
degree of approximation, and this leads to a fully automated but approximate
analysis of information flow. There are two problems stemming from this ap-
proach. Firstly, the degree of approximation in the logic is fixed and thus secure
programs will be rejected unless they can be rewritten. Secondly, implementing
a domain-specific tool for a real programming language is a substantial under-
taking, and thus there are very few real-language tools available [11].

This paper takes a first step towards an alternative approach based on a
general theorem prover:

— We recast the information flow problem in a general program logic rather
than a problem-specific one. Program logics based on simple safety and live-
ness properties (e.g. Hoare logic or weakest precondition calculus) are inade-
quate for this purpose, since information flow properties cannot be expressed
as a simple conjunction of safety and liveness properties!. Our approach is
to use dynamic logic, which admits a simple characterisation of secure infor-
mation flow for deterministic programs.

! This claim is not formal, since it depends on precisely what one means by “safety”
and “liveness”; for some concrete instances see [13, 9, 10].



— We investigate the feasibility of the approach by showing how a general
purpose tool for software verification (based on dynamic logic) can be used
to perform information flow analyses. So far, our examples are relatively
small, but we are able to handle phenomena like method calls, loops, and
object types. We are also able to prove insecurity of programs.

2 Modeling Secure Information Flow in Dynamic Logic

2.1 A Dynamic Logic for Java Card

The platform for our experiments is the KeY tool [1], an integrated tool for
development and verification of object-oriented programs. Among other things,
it features an interactive theorem prover for formal verification of JAvA CARD
programs. In KeY, the target program to be verified and its specification are both
modeled in an instance of dynamic logic (DL) [6] called Java CARD DL [3].

JAvA CARD DL generalizes variants of DL used so far for theoretical inves-
tigations [6] or verification purposes [2], because it handles such phenomena as
side effects, aliasing, object types, exceptions, as partly explained below. Other
programming languages than JAVA CARD could be axiomatized in DL. Once
this is done, the KeY tool can then be used on them.

Like other interactive theorem provers for software verification, the proving
process in KeY is partially automated by heuristic control of applicable rules.

Deduction in JAVA CARD DL is based on symbolic program execution and
simple program transformations and is, thus, close to a programmer’s under-
standing of JAVA. It can be seen as a modal logic with a modality (p) for every
program p, where (p) refers to the state (if p terminates) that is reached by
running program p.

The program formula (p)¢ expresses that the program p terminates in a
state in which ¢ holds. A formula ¢ — (p)% is valid if for every state s satisfying
pre-condition ¢ a run of the program p starting in s terminates, and in the
terminating state the post-condition v holds.

Thus, the DL formula ¢ — (p)1) is similar to the total-correctness Hoare triple
{6} p {¢} or to ¢ implying the weakest precondition of p wrt 1. But in contrast to
Hoare logic and weakest precondition calculus (wpc), the set of formulas of DL is
closed under the usual logical operators and first order quantifiers. For example,
in Hoare logic and wpc the formulas ¢ and i are pure first-order formulas,
whereas in DL they can contain programs. In general, program formulas can
appear anywhere in DL as subformulas.

The programs in JAvA CARD DL formulas are basically executable JAvA
CARD code. Each rule of the calculus for JAvA CARD DL specifies how to execute
one particular statement, possibly with additional restrictions. When a loop or
a recursive method call is encountered, it is necessary to perform induction over
a suitable data structure.

In Java (like in other object-oriented programming languages), different ob-
ject variables can refer to the same object. This phenomenon, called aliasing,



causes serious difficulties for handling of assignments in a calculus for JAva
CArD DL.

For example, whether or not a formula “o1.a = 1;” still holds after the (sym-
bolic) execution of the assignment “02.a = 2;”, depends on whether or not o1
and o2 refer to the same object.

Therefore, JAVA assignments cannot be symbolically executed by syntactic
substitution. In JAVA CARD DL calculus a different solution is used, based on
the notion of (state) updates. These updates are of the form {loc := val} and
can be put in front of any formula. The semantics of {loc := val}¢ is the same
as that of (loc = val;)¢. The difference between an update and an assignment is
syntactical. The expressions loc and val must be simple in the following sense:
loc is either (i) a program variable var, or (ii) a field access obj.attr, or (iii) an
array access arr[i]; and val is a logical term (that is free of side effects). More
complex expressions are not allowed in updates.

The syntactical simplicity of loc and wal has semantical consequences. In
particular, computing the value of val has no side effects. The KeY system has
simplification rules to compute the result of applying an update to logical terms
and program-free formulas. Computing the effect of an update on any program p
(that is, a formula (p)¢) is delayed until p was symbolically executed using other
rules of the calculus. Thus, case distinctions on object identity are not merely
delayed, but can often be avoided altogether, because (i) updates are simplified
before their effect is computed and (ii) their effect is computed when maximal
information is available (after symbolic execution of the program).

There is another important usage of updates. In JAVA CARD DL there are
two different types? of variables: program (local) variables and logic variables.
Program variables can occur in program parts of a formula as well as outside
program parts. Syntactically, they are constants of the logic. Their semantic in-
terpretation depends on the program execution state. Logic variables occur only
bound (quantified) and never in programs. Syntactically, they are variables of the
logic. Their semantic interpretation is rigid, that is, independent of the program
state. This is necessary for being able to store previous execution states. Hence,
in JavaA CARD DL quantification over program variables like “ Vx. (p[x])9[x]” is
syntactically illegal3.

Updates remedy this problem. Suppose we want to quantify over x of type
integer. We declare an integer program variable px, quantify over a logic variable
of type integer [z, and use an update to assign the value of [z to px:

(int px;) (Viz : int. {px := lz} (p[px])¢[lz, px]) (1)

2.2 Secure Information Flow Expressed in Dynamic Logic

We use the greater expressivity of DL as compared to Hoare logic and wpc
to give a very natural logic modeling of secure information flow. Let 1 be the

2 Ultimately, this distinction of variables is demanded by side effects in imperative
programming languages like JAVA. It is not present in “pure” DL [6].
3 To stress occurence of variables in formulas or programs, we use the notion p[x], etc.



low-security variables of program p and h the high-security ones. We want to
express that by observing the initial and final values of 1, it is impossible to
know anything about the initial value of h [5]. In other words:

“When starting p with arbitrary values 1, then the value r of 1 after
executing p, is independent of the choice of h.”

This can be directly formulated in standard DL:
V1. 3r. Vh. (p)r=1 (2)

To illustrate our formulation in JAVA CARD DL, assume that all variables are of
type integer and program variables and logic variables are prefixed by “p” and
“1”, respectively. Using (1), we obtain the formula:

(int pl; int ph;) (Vil:int. Irant. Vihint. {pl := ll}{ph :=lh}({p)r = pl) (3)

For sake of readability we use the simpler DL notation (2) in the rest of the
paper, unless the actual JAVA CARD DL formulation is of interest.

With the choice of DL, we exploit that one can quantify over variables oc-
curring anywhere in the assertions. Joshi and Leino [7, Cor. 3] arrive at a similar
formulation in Hoare logic, but there it is necessary to provide a concrete function
for the values of r. Moreover, their characterization assumes that p terminates.
In DL we can easily express the additional requirement that no information on
the value of h shall be leaked by p’s termination behaviour:

V1. (3h. (p) true — Ir.Vh. (p)r =1) (4)

In addition to (2) this expresses that, for any choice of 1, if p terminates for
some initial value of h, then it terminates for all values.

3 Interactive Proving of Secure Information Flow

In our experiments, we considered only problems of the form (2) (we could have
used form (4), but our examples are all terminating, so the antecedent of the
implication is true for all values of h).

In this section, we first show our approach on small programs taken from the
literature. Then a program containing a while loop will be examined; finally
we demonstrate with a somewhat bigger example how the approach works for
programs with object types.

3.1 Simple Programs

We demonstrate the feasibility of our approach with some examples taken from
papers [7,11]. Table 1 shows the example programs with the corresponding num-
ber of rules applied in the KeY system and the required user interaction, if any.
Note that 1, h, and r are single variables in each case.



program |rules applied | user interactions

1=h; 7 -
h=1; 10 instantiation
1=6; 10 instantiation
1=h; 1=6; 11 instantiation
h=1; 1=h; 11 instantiation
1=h; 1=1-h; 12 instantiation
if (false) 1=h; 10 instantiation
if (h>=0) 1=1; else 1=0; 21 —
if (h==1) 1=1; else 1=0; 1=0; 29 instantiation

Table 1. Example programs.

When evaluating the data one must keep in mind that we used the KeY prover
as it comes. The KeY system features so-called taclets, a simple, yet powerful
mechanism by virtue of which users can extend the prover with application
specific rules and heuristics.

The user interaction instantiation in Table 1 means a single quantifier elim-
ination by supplying a suitable instance term. In the KeY system, the user can
simply drag-and-drop the desired term from any place in the current goal over a
rule application. In the examples, one mainly has to specify a Skolem term or a
constant (e.g., 6 in program “1 = 6;”) to instantiate the result value r in (2). At
the time, when r must be instantiated, this kind of interaction could mostly be
eliminated by heuristics that perform instantiation automatically, when there is
only one candidate.

Not counting the time for user interactions, all proofs are obtained within
fractions of a second.

If a program is secure, then the DL formula (2) is provable. For insecure
programs the proof cannot be completed, and there will be one or more open
goal. Among our examples there are two insecure programs. Table 2 contains
the goals (in this case one for each program) that remain open in an attempt to
prove security of these programs in KeY. It is easy to observe that these formulas
are not provable. In fact, the open goals give a direct hint to the source of the
security breach.

It is important to note that the number of applied rules and user interactions
does not increase more than linearly if we take the composition of two programs.
For example, to verify security of the program “h =1; 1 = 6;”, one instantiation
is required, and the prover applies 11 rules. By comparison, to prove security of
the constituents “h = 1;” and “1 = 6;”, one instantiation and 10 rule applications
are used in each case.

3.2 Proving Insecurity

To prove that the programs in Table 2 are insecure, the insecurity property has
to be formalized. This can be done by simply taking the negation of formula (2).



| program | open goal |
1=h; dr.Vh.r=h

if (h>=0) 1=1; else 1=0;| Ir. (Vh. ((h < 0) —» 7 =1)

& Vh. (h < 0—r =0))

Table 2. Open goals for insecure programs.

| program |rules applz'ed| user interactions
1=h; 13 instantiation
if (h>=0) 1=1; else 1=0; 34 arithmetic, instantiation

Table 3. Proving insecurity.

The syntactic closure property of DL is crucial again here. Negating (2) and
straightforward simplification yields:*

J1.Vr.3h.(p)r#1 (5)

The intuitive meaning of the formula is the following:

“There is an initial value 1, such that for any possible final value r of 1
after executing p, there exists an initial value h which can prevent 1 from
taking that final value r.”

Table 3 contains the corresponding data of the proofs of insecurity. The user
interaction arithmetic means that the user has to apply (few) rules manually to
close subgoals containing arithmetic properties (e.g. Va.(a =0 — a # 1)). At
the moment these cannot be handled automatically by the prover.

3.3 Loops

In this section we report on an experiment with a program containing a while
loop. The DL formula is the following:

¥1.37.Vh. (h >0 — (while (h > 0) {h——; 1 =h; })1 =7) (6)

The loop contains the insecure statement 1 = h; but the condition of exiting the
loop is h = 0, thus the final value of 1 is always 0, independently of the initial
value of h.

To prove properties of programs containing loops requires in general to per-
form induction over a suitable induction variable. Finding the right induction
hypothesis is not an easy task, but once it is found, completing the proof is
usually a mechanical process; if one runs into problems, this is a hint, that the

4 We do actually a little more than is required by proving termination of p. Formula (5)
really is the negation of (4).



hypothesis was not correct. Heuristic techniques to find induction hypotheses
are available in the literature and will be built into KeY in due time.

After the induction hypothesis is given to the prover, three open goals must
be proven: (i) after exiting the loop, the post condition holds (induction base),
(ii) the induction step, (iii) the induction hypothesis implies the original subgoal.

To prove security of (6), the prover took 163 steps; in addition to establish-
ing the induction hypothesis, several kinds of user interactions were required:
instantiation, unwinding the loop, and arithmetic.

The proof cannot be quite completed with the current version of the KeY
tool, because the update simplifier is not (yet) powerful enough. In order to show
that this is in fact merely a technical problem, we outline the problem in detail.
One must be able to prove that the following two program states (expressed by
the corresponding updates) are identical:

{pl:=c1 +1} {pl:=c2}
{ph:=c1 + 1} {ph:=c1 + 1}
{p1:=ph}

The bottommost update is the most recent update (the sequence of updates
parallels the sequence of assignments that led to their creation). The ¢; are
Skolem constants.

3.4 Using Object Types

Next we demonstrate that our approach applies to an object-oriented setting in
a natural way. The example presented here is taken from [8, Fig. 5.], where an
object (specified by its statechart diagram) leaks information of a high variable
through one of its operations. The corresponding JAVA implementation is:

public class Account {
int balance;
boolean extraService;

public void writeBalance(int amount) {
if (amount>=10000) extraService=true; else extraService=false;
balance=amount;

}

public int readBalance() {return balance;}

public boolean readExtra() {return extraService;}

}

The balance of an Account object can be written by the method writeBalance
and read by readBalance. If the balance is over 10000, variable eztraService
is set to true, otherwise to false. The state of that variable can be read by



readExtra. The balance of the account and the return value of readBalance
are secure, whereas the value of extraService is not.

The program is insecure, since partial information about the high-security
variable can be inferred via the observation of a low-security variable. That is,
calling writeBalance with different parameters can lead to different observations
of the return value of readExtra.

To prove insecurity of this program, we continue to use (2,5). We give the
actual JAVA CARD DL formula of security to show how naturally objects are
woven into the logic. Where necessary, we use variables with object types in the
logic (a detailed account on how to render object types in first-order logic is [4]).

(Account o; int amount; booleanresult;)
VlextraService : boolean.Ar : boolean.V lamount : int.
{o.extraService := lextraService}{amount := lamount}
(o.writeBalance(amount); result = o.readExtra();)r = result

The prover applies 62 rules and stops at the unprovable open goal:

37 : boolean. (Y lamount : int. (I(lamount < 10000) — r = TRUE) &
Viamount : int. (lamount < 10000 — r = FALSE))

Insecurity of the program was proved in 82 steps with three user interactions.

4 An Alternative Formulation of Secure Information
Flow in Dynamic Logic

There is another approach which captures the definition of secure information
flow in an even more natural way than (2):

“Running two instances of p with equal low-security values and arbitrary
high-security values, the resulting low-security values are equal too.”

This can be rendered in DL as follows:
Vh.Vh'.V1.(1 =1 — (p[1,h]; p[1/.0])1 =1') (7)
It is easy to see the drawbacks of this formulation:

— The number of security-relevant program variables is doubled, therefore, the
state space might increase considerably.

— The approach can be used as it is only when the two instances of p do
not interfere, that is, p[1,h] uses only the variables 1 and h. Otherwise, the
remaining environment must be preserved.

— Leakage via termination behaviour cannot be expressed in an obvious way.

On the other hand, this approach potentially has important advantages:

— Instantiation of r is not required. Hence, all secure programs in Table 1 can
be proved secure without any user interaction.



— In certain cases programs need to leak some confidential information, in order
to serve their intended purpose [12]. Formulations (2,4) would classify these
as insecure programs. This is too restrictive when the leakage was intended.
We can extend (7) to express intended leakage via a suitable precondition.
For example, if the least significant bit of h is leaked intentionally, then we
add “hmod2 = h'mod?2” to the precondition.

— Executing the two instances of p in parallel (lockstep), instead of sequentially
first p[1,h] and then p[1’,h’], may lead to efficient proofs: after each step,
information that is irrelevant for the security analysis at hand can be deleted.

— Expressing insecurity can be easily done by taking the negation of (7). How-
ever, instantiation will be needed on the variables.

It is future work to investigate the possibilities and limitations of this ap-
proach, but it seems likely that both formulations should be used in combination
for different types of problems and programs.

5 Discussion and Future Work

In this paper we suggested an interactive theorem prover for program verification
as a framework for checking secure information flow properties. We showed the
feasibility of the approach by applying it to a number of examples taken from
the literature. Even without any tuning of the prover, the examples could be
mechanically checked with few user interactions. Within a short amount of time,
we managed to handle non-trivial properties such as method calls (with side
effects), loops, object types. The method allows also to prove insecurity.

Most approaches to secure information flow are based on static analysis meth-
ods using domain-specific logics. These have the advantage of being usually de-
cidable in polynomial time. On the other hand, they must necessarily abstract
away from the target program. This becomes problematic when dealing with
complex target languages such as JAVA CARD. By taking a theorem proving
approach and JAVA CARD DL, which fully models the JAvA CARD semantics,
we can prove any property that is provable in first-order logic. Our experiments
indicate that the penalty in terms of verification cost might be tolerable.

Joshi and Leino [7] consider how security can be expressed in various logical
forms, leading to a characterisation of security using a Hoare triple. This charac-
terisation is similar to the one used here—with the crucial difference that their
formula contains a Hoare triple, but it is not a statement in Hoare logic, and
thus cannot be plugged directly into a verification tool based on Hoare logic.
Thus, the greater expressivity of dynamic logic has important advantages over
Hoare logic in this context. We can provide mechanized, partially automated
proofs for JAVA CARD as target language.

In order to treat more realistic examples, we plan a number of improvements:
on the side of the logic modeling, it might be useful to avoid existential quantifi-
cation over the result values r in (2,4). In dynamic logic there are possibilities
to do this, but they make proof obligations more complicated. It is not clear



whether quantifier elimination over r will turn out to be a problem, because one
can symbolically execute the programs before quantifier elimination. In addition,
the KeY system will soon feature metavariables, by which instantiation can be
delayed and handed over to an automated theorem prover for first order logic.

An open question is how this approach would scale-up for more complex
programs with several high and low variables. To reduce the number of variables
(and thus the number of quantifiers) the idea of abstract variables as “functions
of the underlying program variables” proposed in [7] might be useful.

The KeY system is currently used “as-is”. It can and should be tuned and
adapted to security analysis, for example, by the addition of proof rules akin to
the compositional rules offered by type systems.
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