
Department of Computing Science
School of Computer Science and Engineering

Göteborg University
2003

OCL Specifications for
the Java Card API

By:

Daniel Larsson 730527-4651 GU

Supervisor:

Wojciech Mostowski

Examiner:

Wolfgang Ahrendt

2

API,
s for-
ods
de-

erifi-
ugh
nts in
age

OCL
for in-
riable

in-
it co-
Abstract

This Master’s thesis discusses the development of OCL specifications for Java Card
and is part of the KeY project. OCL is a specification language, i.e. it is used to expres
mally the requirements on a system. The KeY tool is a CASE tool, in which formal meth
(formal specification and formal verification) are integrated with contemporary software
velopment techniques. The main purpose of the OCL specifications is to simplify the v
cation of Java Card programs within the KeY tool. Verification means that one thro
mathematical and logical methods proves that the implementation fulfils the requireme
the specification. Already existing specifications written in JML, a specification langu
specially suited for Java, has been used as a starting point for the development of the
specifications. OCL is a more general language. Problems that have to be solved are,
stance, how to express in OCL the throwing of exceptions, how to test if a reference va
contains a null value, and how to handle the risk of overflow in the context of arithmetic
teger operations. It has been shown that OCL lacks some important properties when
mes to specifying Java programs, but in other aspects is superior to JML.
2003-05-20

3

API,
tt på
ktyg
ed
i för-
r att
raven
rdiga
r ett
kun-
ller ett
ope-
ecifi-
Sammanfattning

Det här examensarbetet behandlar utvecklingen av OCL-specifikationer till Java Card
och är en del av KeY-projektet. OCL är ett specifikationsspråk, d v s det används för a
ett formellt sätt uttrycka de krav man har på ett visst system. KeY är ett utvecklingsver
i vilket formella metoder (formell specifikation och formell verifiering) har integrerats m
moderna objektorienterade utvecklingsmetoder. Syftet med OCL-specifikationerna är
sta hand att underlätta verifieringen av Java Card-program i KeY. Verifiering innebä
man m h a matematiska och logiska metoder bevisar att implementeringen uppfyller k
i specifikationen. Som utgångspunkt för OCL-specifikationerna har använts redan fä
specifikationer skrivna i JML, ett specifikationsspråk specialanpassat till Java. OCL ä
mer generellt språk. De problem som varit tvungna att lösas är bl a hur man i OCL ska
na uttrycka kastandet av exceptions, hur man kan testa om en referensvariabel innehå
null-värde och hur man hanterar risken för overflow i samband med aritmetiska heltals
rationer. Det har visat sig att OCL saknar en del viktiga egenskaper när det gäller att sp
cera Java program men i andra avseenden är överlägset JML.
2003-05-20

4

nt of
ski,

siding

ject
es

point
n in
sys-
Preface

This report is the result of a Master’s thesis in Computing Science at the Departme
Computing Science, Göteborg University. Supervisor of this thesis is Wojciech Mostow
PhD student. Wolfgang Ahrendt, assistant professor, is the examiner. They are both re
at Department of Computing Science, Göteborg University.

This work is part of the KeY project [1] - a joint project of the University of Karlsruhe and
Chalmers University of Technology / Göteborg University, Gothenburg. The KeY pro
aims to integrate formal methods with object-oriented software development techniqu

The JML specifications for the Java Card 2.1.1 API, which has been used as a starting
for this thesis, are written by Engelbert Hubbers and Erik Poll at University of Nijmege
the Netherlands [14]. The reference implementation used [8] comes from Sun Micro
tems, Inc.
2003-05-20

5

8
.9
1

.13
14
.17
8

.20
22

26
27
32
32
35
38
40
.40
.4
.4
43
Table of Contents

Abstract ...2
Sammanfattning ...3
Preface ...4
1. Introduction ..6
2. Analysis..8

2.1. Formal methods and KeY ...
2.2. Java Card..
2.3. Overview of JML and OCL ..1
2.4. OCL syntax used..
2.5. Comparing JML and OCL ..
2.6. Semantics of constraints ..
2.7. Thenull value ..1
2.8. Exceptions..
2.9. Arithmetic ...
2.10. Theassignable clause in JML..25
2.11. Model fields ..
2.12. Method for creating the specifications..

3. Results and conclusions..
3.1. The specifications ...
3.2. Verification based on the specifications ...
3.3. The strengths of OCL..
3.4. Limitations ..
3.5. Conclusions..

4. References ..2
Appendices ...3

OCL specifications for Java Card 2.2 API...
2003-05-20

6 Introduction

The
s for

egrated
tains

he out-
cted to
il loy-
ivacy

e, i.e.
cation
age

cifica-
ci-

lling
ith
cili-
ion,
s, are

- to
lly
ble to
spe-
not
enta-

n. In
grams.

other
L as

Mo-
pro-
ping
stics
d in a
ilt-in
n

n for
the

lem,
t for-
1. Introduction

This Master’s thesis is about writing OCL [12] specifications for the Java Card API [6].
programming language Java Card is a subset of Java, and is used to write program
smart cards and other resource constrained devices. Smart cards are cards with an int
circuit incorporated in the credit card-sized plastic substrate. This integrated circuit con
elements used for data transmission, storage, and processing. To communicate with t
side world, a smart card is placed in or near a card acceptance device, which is conne
a computer. Smart cards are widely used for access control, banking applications, reta
alty applications, wireless telecommunication, and so on, where data security and pr
are major concerns [6]. OCL (Object Constraint Language) is a specification languag
it is used to express requirements on software systems. One might say that a specifi
describeswhat the system should do, while the implementation in a programming langu
describeshow it is done.

This task is part of the KeY project [1], a project that aims to integrateformal methodswith
contemporary software development techniques. Formal methods include formal spe
tion and formal verification. “Formal” here approximately stands for “mathematically pre
se”. In the KeY tool, which is a result of the KeY project, one can - besides doing mode
in UML (Unified Modelling Language) and implementing in Java - specify a model w
OCL constraints. (OCL is in fact part of the UML standard.) Furthermore, there are fa
ties in the KeY tool that enable verification of the implementation w.r.t. the specificat
i.e. one is able to prove that the requirements on the system, in form of OCL constraint
satisfied when the program is run.

The whole idea of the OCL specifications for Java Card API is - in the context of KeY
substantially simplify the verification of Java Card programs within the KeY tool. Virtua
any useful Java Card program - which are called applets - uses the API. If we are a
specify the API classes and to verify a reference implementation of the API w.r.t. these
cifications, then we can save a lot of time and effort at the verification of applets. We do
have to verify the API methods over and over again. They also serve as a useful docum
tion of the API, as they are in many aspects more clear than the informal specificatio
other words, these specifications are of great interest for developers of Java Card pro

The main purpose of this thesis is therefore to produce these useful specifications. An
purpose is - when trying to write these specifications - to evaluate the suitability of OC
the specification language used in the KeY tool.

There do already exist specifications [14] of the Java Card API, written in JML (Java
delling Language) [9, 10] - a specification language specially designed to specify Java
grams. Therefore, the JML specifications will be used as a starting point when develo
the OCL specifications. One problem, however, is that OCL has different characteri
than JML. For example, null values and the throwing of exceptions cannot be expresse
straightforward way in OCL. Furthermore, arithmetic becomes a problem, since the bu
integer types in Java Card -byte andshort - are finite, i.e. one can get an overflow whe
applying arithmetic operations to them, while the OCL typeInteger is infinite. This the-
sis will therefore also contribute with an useful comparison between OCL and JML.

Another part of the task is to test the specifications by using a reference implementatio
parts of the API [8], and then verify this implementation w. r. t. the specification, within
KeY tool.

The structure of this report is as follows. Chapter 2 contains an analysis of the prob
which leads to a method to solve it. This analysis starts with a description of the subjec
2003-05-20

Introduction 7

n of
ith an
null
s with
3 con-
- both

escrip-
nclu-
. All
mal methods, and how the KeY project fits in this context. Next is a short descriptio
Java Card, and especially its API. The major part of the analysis is then concerned w
introduction of, and a comparison between, JML and OCL. How OCL and JML treat
values, exceptions, integer arithmetic and other things is considered. The analysis end
a description of the approach used in this thesis to create the specifications. Chapter
tains the results of the thesis. The strengths and weaknesses of the OCL specifications
as they are and compared to the JML specifications - are described. Here is also a d
tion of the pro and cons of OCL as a specification language for Java. Finally, some co
sions are drawn. A selection of the produced specifications is found in appendix
specifications produced in this thesis are available at:

http://www.mdstud.chalmers.se/~md0dala/exjob.html
2003-05-20

8 Analysis

s that
ity of
s inclu-
rmal

se of
ion of
tem

e sys-
speci-

take

de-
r, the
uen-
Y tool,
n the

ted
sult
li-
t the
en-

ons:

en in
ban-

such
eans

will
like
2. Analysis

2.1. Formal methods and KeY

What are formal methods and what are they good for? Formal methods are technique
are mathematically precise and are applied to improve quality or increase productiv
developments of systems that perform computations in some sense. These technique
de formal formulations of requirements, formal descriptions of constructions, and fo
proofs of properties of the construction and the requirements. Theformal specificationgives
an exact description of the requirements of the construction. It is the starting point for u
formal methods. Just as the formal specification constitutes a mathematical descript
what the systemshould do, one also needs a mathematical description of what the sys
actually does. This description is called thesystem model. Formal verificationmeans that
one, through a mathematical proof, can be sure that the system (as it is described in th
tem model) fulfils the requirements of the system (as they are expressed in the formal
fication). A proof ca be performed

• manually

• semi-automatic, with the help of computer tools

• automatic, with a computer

Automatic construction of proofs is sometimes possible, but mostly a human needs to
part in the construction by interacting with a computer tool. [16]

The KeY project [1] is about integrating formal methods with object-oriented software
velopment. The target language of KeY-driven software development is Java. Howeve
verification facilities of KeY cannot handle all constructs in Java. For instance, only seq
tial Java can be used, i.e. not threads. Java Card, however, can be handled by the Ke
as it does not contain any of the “forbidden” constructs. When developing a system i
KeY tool, one may walk through the following steps:

• model the system with UML constructs

• extend this model with OCL constraints

• implement/construct the system with Java

The UML model and OCL constraints describe what the systemshould do. The Java code
describes what the systemactually does. But in this form one will not be able to verify that
the implementation (Java) fulfils the requirements (UML + OCL). It has to be transla
into logical formulas, and in KeY the logic used is an instance of Dynamic Logic. The re
of this translation isproof obligations. If one is able to construct proofs of these proof ob
gations with the help of KeY’s interactive theorem prover, one has in fact proved tha
implementation fulfils the requirements in the specification. In other words, the implem
tation has been verified w.r.t. the specification.

Java Card is a good target for the application of formal methods, for a number of reas

• Applications that run on smart cards and similar devices - and therefore can be writt
Java Card - are often safety critical, security critical (e.g. access control, electronic
king), cost critical (e.g. if they run on a large number of non-administrated devices,
as phone cards), and legally critical (e.g. falling under digital signature laws). This m
that the extra time and effort that the application of formal methods in these cases
lead to are highly motivated. It is extremely important that the applications behave
they should.
2003-05-20

Analysis 9

kes

elop-
s,

o
For in-
a
cifi-

ss at
hould

invo-
nd the
sertion.
a
nvo-
sup-

gram-
ation
ster-

ation
ponse
ards)
at im-

applets
ompa-

ction.
ample
cular
c ob-
tandard
rs

o
ge.

chno-
d from
tiona-
• The language Java Card is relatively simple, with a relatively small API, which ma
the application of formal methods to it manageable.

Well, how does one specify a program? Since we are talking about object-oriented dev
ment, the units that should be specified areclasses. A class consists of fields and method
and when objects of this class are created, the values of the fields constitute thestateof the
object, and the methods constitute thebehaviourof the object. Because of this, one way t
specify a class is to describe what states are acceptable for the objects in this class.
stance, if there is a classPerson with an instance fieldage , one probably does not see
negative value onage as something reasonable. So we might want to assert, in our spe
cation ofPerson , thatage must not be negative. Such an assertion is called aninvariant.
A class invariant is a proposition that has to be true for all instances (objects) of the cla
any time. Another way to specify a class is to describe what the methods of the class s
do, e.g. how they should alter the objects state. This can be expressed in a so-calledpostcon-
dition of the method, in which an assertion of the system state at the end of the method
cation is made. But often one needs to assume something about the objects state a
values of the arguments that are passed to the method, to be able to make such an as
This assumption can be expressed in apreconditionof the method. So the meaning of
method specification is that if the precondition is true at the beginning of the method i
cation, then the postcondition will be true at the end of the method invocation. OCL
ports precisely these two ways of specification - invariants and pre-/postconditions.

2.2. Java Card

Java Card provides means of programming smart cards with (a subset of) the Java pro
ming language. Smart cards communicate with the rest of the world through applic
protocol data units (APDUs, ISO 7816-4 standard). The communication is done in ma
slave mode - it is always the master/terminal application that initialises the communic
by sending the command APDU to the card and then the card replies by sending a res
APDU (possibly with empty contents). In case of Java powered smart cards (Java C
besides the operating system the card’s ROM contains a Java Card virtual machine th
plements a subset of the Java programming language and allows running Java Card
on the card. The following are the features not supported by the Java Card language c
red to full Java: large primitive data types (int , long , double , float), characters and
strings, multidimensional arrays, dynamic class loading, threads and garbage colle
Some of the actual Java Card devices go beyond those limitations and support for ex
the int data type and garbage collection. Most of the remaining Java features, in parti
object-oriented ones like interfaces, inheritance, virtual methods, overloading, dynami
ject creation, are supported by the Java Card language. The card also contains the s
Java Card API, which provides support for handling APDUs, Application IDentifie
(AIDs), Java Card specific system routines, PIN codes, etc. [11]

Java Card 2.2 API [7] consists of the following packages:

java.io - The java.io.IOException class is included in the Java Card API t
maintain a hierarchy of exceptions identical to the standard Java programming langua

java.lang - Provides classes that are fundamental to the design of the Java Card te
logy subset of the Java programming language. The classes in this package are derive
java.lang in the standard Java programming language and represent the core func
lity required by the Java Card Virtual Machine.
2003-05-20

10 Analysis

plica-
n

g,
faces
sses

s for
com-

ma-
and in-

er-
onents.

move

e ser-

ble
las-
r-

ub-
ava
java.rmi - The java.rmi package defines theRemote interface which identifies in-
terfaces whose methods can be invoked from card acceptance device (CAD) client ap
tions. It also defines aRemoteException that can be thrown to indicate an exceptio
occurred during execution of a remote method call.

javacard.framework - Provides a framework of classes and interfaces for buildin
communicating with and working with Java Card applets. These classes and inter
provide the minimum required functionality for a Java Card environment. The key cla
and interfaces in this package are:

• AID - encapsulates the Application Identifier (AID) associated with an applet.

• APDU - provides methods for controlling card input and output.

• Applet - the base class for all Java Card applets on the card. It provides method
working with applets to be loaded onto, installed into and executed on a Java Card-
pliant smart card.

• CardException , CardRuntimeException - provide functionality similar to
java.lang.Exception andjava.lang.RuntimeException in the standard
Java programming language, but specialized for the card environment.

• JCSystem - provides methods for controlling system functions such as transaction
nagement, transient objects, object deletion mechanism, resource management,
ter-applet object sharing.

• Util - provides convenient methods for working with arrays and array data.

javacard.framework.service - Provides a service framework of classes and int
faces that allow a Java Card applet to be designed as an aggregation of service comp
The package contains an aggregator class calledDispatcher , which includes methods to
add services to its registry, dispatch APDU commands to registered services, and re
services from its registry. The package also contains theService interface that contains
methods to process APDU commands, and allow the dispatcher to be aware of multipl
vices.

javacard.security - Provides classes and interfaces that contain publicly-availa
functionality for implementing a security and cryptography framework on Java Card. C
ses in thejavacard.security package provide the definitions of algorithms that pe
form these security and cryptography functions:

• implementations for a variety of different cryptographic keys

• factory for building keys

• data hashing

• random data generation

• signing using cryptographic keys

• session key exchanges

javacardx.crypto - Extension package that contains functionality, which may be s
ject to export controls, for implementing a security and cryptography framework on J
Card. The package contains theCipher class and theKeyEncryption interface.Cip-
her provides methods for encrypting and decrypting messages.KeyEncryption prov-
ides functionality that allows keys to be updated in a secure end-to-end fashion.

Here is an UML diagram with the packagesjavacard.framework and java-
card.security :
2003-05-20

Analysis 11

ect are
It
ages.
riants
for all
etween
calls

r gua-
cor-

ecti-
2.3. Overview of JML and OCL

As has already been mentioned, the specifications used as a starting point for this proj
written in JML [9, 10], while this project will result in specifications written in OCL [12].
would therefore be rewarding to get a quick overview of these two specification langu
In both JML and OCL the most important things that can be expressed are class inva
and pre-/postconditions of methods. Class invariants are assertions that should be true
instances of the class at any time. Pre- and postconditions can be seen as a contract b
the provider and the user of the method. The user has to fulfil the precondition when he
the method - usually by what arguments he attaches in the method call. The provide
rantees that if the precondition holds at the beginning of the method call, then the
responding postcondition will hold after the method call.

An example of a class definition and how it could be specified with JML and OCL resp
vely, is the following:
2003-05-20

12 Analysis

entifi-

, and

l

in

the

m of
ontext
ifica-
d can

r-
es and

OCL
public class OwnerPIN implements PIN {
private byte[] pin;
private byte maxTries;
private byte triesRemaining;
...
public boolean check(byte[] thePin,

 short offset, byte length)
throws ArrayIndexOutOfBoundsException,
 NullPointerException {

 ...

}

...
}

This class is actually a class in the Java Card API, and it represents a pin (personal id
cation number). Thepin array contains the actual number,maxTries is the maximal
number of tries of the user to present the correct number before the card is locked
triesRemaining has the obvious meaning.

A JML invariant for this class might look like this:

/*@ invariant triesRemaining >= 0 &&
triesRemaining <= maxTries;

@*/

This invariant states that the instance fieldtriesRemaining must be larger than or equa
to 0, and less than or equal tomaxTries , for all objects of this class at all times.

A JML method specification of the methodcheck might look like this:

/*@ public normal_behavior
 @ requires triesRemaining > 0 &&

 @ Util.arrayCompare(this.pin, (short)0,
@ thePin, offset, length)== 0;
@ ensures result == true && triesRemaining == maxTries;
@*/

The boolean expression in therequires clause is the precondition, and the expression
theensures clause is the postcondition. So this clause states that iftriesRemaining
> 0 and if thePin that is passed to the method is equal to the real pin number, than
method will returntrue and the value oftriesRemaining will be equal tomax-
Tries [9, 10]. JML specifications actually are embedded in the source code in the for
Java comments. They cannot stand alone, as there is no way to express in JML the c
in which the specification occurs. The class or method declaration is a part of the spec
tion. OCL, on the other hand, has means to express the context of the specification an
stand alone. By using the OCL keywordcontext , one is able to express which class/inte
face is specified, and - in the case of pre-/postconditions - the method name, the nam
types of the method parameters, and the return type of the method. The corresponding
invariant is therefore:

context OwnerPIN inv:
self.triesRemaining >= 0 and
self.triesRemaining <= self.maxTries

OCL pre- and postconditions for the methodcheck , look like this:
2003-05-20

Analysis 13

or-

ource
used

acks
ne is
in the

ng
d in

t
pe of

spe-
context OwnerPIN::check(thePin: Sequence(JByte),
 offset: JShort,

 length: JByte): Boolean
pre : self.triesRemaining > 0 and

Util.arrayCompare(self.pin,0,thePin,offset,length) = 0
post: result = 0 and self.triesRemaining = self.maxTries

OCL has in fact just one integer type -Integer . The use of the typesJByte andJS-
hort will be further explained later in this report, but it is a way to specify what the c
responding Java types should be in an implementation.

There is also the possibility to use OCL in the same way as JML - embedded in the s
code as Java comments. That is how it is done in the Key tool. Using the OCL syntax
in the KeY tool, we would get the following specifications:

 /**
 * @invariants
 * self.triesRemaining >= 0 and
 * self.triesRemaining <= self.maxTries
 */

 /**
 * @preconditions
 * self.triesRemaining > 0 and

* Util.arrayCompare(self.pin, 0, thePin,
 * offset, length) = 0
 * @postconditions
 * result = 0 and self.triesRemaining = self.maxTries
 */

For more information about OCL and JML, see [12] (for OCL) and [9] (for JML).

2.4. OCL syntax used

When trying to specify Java programs with OCL, it soon becomes evident that OCL l
properties that are necessary to produce efficient specifications in a convenient way. O
therefore forced to extend OCL with some constructs, and that is what has been done
KeY project.

One issue is theexcThrown construct that will be used in this report and in the resulti
specifications. It is not part of the actual OCL definition, but is an extension of OCL use
the KeY tool [15]. It will be discussed later in this report. The ideal semantics ofexcTh-
rown(SomeException) is that an instance of the classSomeException has been th-
rown in the method. This is also the semantics assumed in this project whenexcThrown is
used. The implementation ofexcThrown in the current version of KeY however, can jus
state that some kind of exception has been thrown. One may not specify the exact ty
exception.

It is also possible in KeY to check if a reference variable contains anull value [15], so-
mething that cannot be done in the standard OCL. This construct will also occur in the
cifications, and will be touched upon later in this report.
2003-05-20

14 Analysis

yntac-

oca-
e of

ld; if
this

care-
ition

mally
ion
. An-
2.5. Comparing JML and OCL

In JML there are three different constructs to specify a method; abehavior clause, a
normal_behavior clause or aexceptional_behavior clause. Thebehavior
clause is the most general one, and the other two can in fact be considered to be just s
tical sugar. Abehavior clause looks like:

/*@ behavior
@ requires <precondition>;
@ ensures <postcondition>;
@ signals(Exception_1) <condition_1>;
@ ...
@ signals(Exception_n) <condition_n>;
@*/

This specification states that if the precondition holds at the beginning of a method inv
tion, then the method either terminates normally or terminates abruptly by throwing on
the listed exceptions; if the method terminates normally, then the postcondition will ho
the method throws an exception, then the corresponding condition will hold. How could
construct be expressed in OCL? Well, a first naive try could be something like this:

context SomeClass::someMethod()
pre: true
post: if <precondition>

 then <postcondition>
 else
 if <condition_1>
 then excThrown(Exception_1)
 else
 if
 ...
 if <condition_n>
 then excThrown(Exception_n)
 endif
 ...
 endif
 endif
 endif

But this constraint does not have the same semantics as the JML clause. If one looks
fully at the definition of the behaviour clause, one sees that it states that if the precond
holds at the beginning of a method invocation, then the method either terminates nor
or terminates abruptly... In our naive OCL constraint we assumed that if the precondit
held at the beginning of the method invocation, then the method terminates normally
other attempt:

context SomeClass::someMethod()
pre: <precondition>
post: <postcondition>

 or
 (excThrown(Exception_1) and <condition_1>)
 or
 ...
2003-05-20

Analysis 15

ds at
r ter-

ex-
It is
s
e

if the
ina-

is

then
ition
 or
 (excThrown(Exception_n) and <condition_n>)

This is definitely a better attempt. This specification states that if the precondition hol
the beginning of a method invocation, then the method either terminates normally o
minates abruptly by throwing one of the listed exceptions. But if the method throws an
ception, then we do not know that the corresponding condition will hold. Why not?
possible that the method throws an exception, that the corresponding condition doenot
hold, but that<postcondition> holds. A method that behaves like that could still b
verified w.r.t. this specification, which would not be the intention.
Still another attempt is necessary:

context SomeClass::someMethod()
pre: <precondition>
post:(

 not excThrown(java::lang::Exception)
 and
 <postcondition>
)

 or
 (excThrown(Exception_1) and <condition_1>)
 or
 ...
 or
 (excThrown(Exception_n) and <condition_n>)

Since the classException in the packagejava.lang (is written java::lang in
OCL syntax) is the superclass of all exceptions, this specification states the following:
precondition holds at the beginning of a method invocation, then either the method term
tes normally and<postcondition> holds, or otherwise one of the listed exceptions
thrown and the corresponding condition holds. Exactly what we want it to state.

Next we have the normal_behavior clause:

/*@ normal_behavior
@ requires <precondition>;
@ ensures <postcondition>;
@*/

This one states that if the precondition holds at the beginning of a method invocation,
the method terminates normally (i.e. without throwing an exception) and the postcond
will hold at the end of the method invocation. This we can express in OCL like:

context SomeClass::someMethod()
pre: <precondition>
post: not excThrown(java::lang::Exception)

 and
 <postcondition>

Finally the exceptional_behavior clause:

/*@ exceptional_behavior
@ requires <precondition>;
@ signals(SomeException)
@*/
2003-05-20

16 Analysis

of a

ion,
in-

e. one
:

The semantics of this specification is that if the precondition holds at the beginning
method invocation, then the method terminates abruptly by throwing aSomeException .
The corresponding OCL constraint becomes:

context SomeClass::someMethod()
pre : <precondition>
post: excThrown(SomeException)

There is also the possibility in JML to put multiple clauses in one method specificat
with the help of the reserved wordalso . This can be seen as a kind of case analysis. For
stance it can look like this:

/*@ normal_behavior
@ ...
@ also
@ behavior
@ ...
@*/

This simply means that both clauses must be obeyed by the method implementation, i.
can put a logicaland between the clauses. So the translation to OCL is straightforward

context SomeClass::someMethod()
pre:true
post:(

 <translation of normal_behavior clause>
)
 and
 (

 <translation of behavior clause>
)

Below is a table with a number of features in OCL and their counterparts in JML:

Comments OCL JML

a, b and c are boolean
expressions.

not a !a

a and b a && b

a or b a || b

a xor b (a || b) && !(a &&b)

a implies b a ==> b

a = b a <==> b

if a then b else c endif if (a) {b} else {c}

a and b are arbitrary
expressions.

a = b a == b

a <> b a != b
2003-05-20

Analysis 17

s and

d?
2.6. Semantics of constraints

One subject that needs to be decided upon, before writing a specification with invariant
pre-/postconditions, is what they really mean. For instance:

• At which point in the execution of the program is the validity of an invariant enforce

• What happens if the precondition of an operation is violated?

a is an expression that
evaluates to a variable.
T is a class or interface.

a.oclIsKindOf(T) a instanceof T

a.oclIsNew() \fresh(a)

a@pre \old(a)

When one wants to
handle a collection of
objects in Java Card/
JML, one usually uses
an array (boolean[],
byte[], short[] or
Object[]). The counter-
part in OCL is the
Sequence type. One
important difference is
that Java arrays are
indexed from 0 and up,
while a Sequence is
indexed from 1 and up.

arr->size() arr.length

arr->at(i) arr[i-1]

arr1 = arr2 arr1.equals(arr2)

arr->subSequence(low, high) ---

arr1->union(arr2) ---

arr->count(obj) ---

arr->select(expr) ---

arr->collect(expr) ---

arr->includes(object) ---

arr->includesAll(collection) ---

arr->isEmpty() arr.length == 0

arr->iterate(elem: T;
acc: T = <expr> |
expression-with-elem-
and-acc)
The variable elem is the
iterator. acc is the accu-
mulator, which gets an
initial value <expr>

arr->iterate(expr) ---

The general syntax of
the exists and forall
clauses in JML is:
\exists T x;
R(x) ==> P(x)
where R(x) specifies the
range of x.

arr->exists(x:T | P(x)) \exists T x; x>=0 &&
x < arr.length ==> P(x)

arr->forAll(x:T | P(x)) \forall T x; x>=0 &&
x < arr.length ==> P(x)

Comments OCL JML
2003-05-20

18 Analysis

as an
to as

for

ring a
most

ants.

ich is

nd
e.

en

n-
ina-

n the

o-
ating
n the

ither
f the
ex-

ion,
o the
y the
e a
ks li-

f this

para-
Let us start with the invariants. In the OCL specification of UML v1.4 we can read:
"The OCL expression can be part of an Invariant which is a Constraint stereotyped
<<invariant>>. When the invariant is associated with a Classifier, the latter is referred
a ’type’ in this chapter. An OCL expression is an invariant of the type and must be true
all instances of that type at any time."
An interesting question is: does this mean that invariants must not even be violated du
method invocation, i.e. during intermediate computation steps? Not necessarily. The
common way to interpret an invariant seems to be that it must be true uponcompletionof
the constructor and every public method. This is also how the KeY tool handles invari

When it comes to pre-/postcondition pairs, there are several possible semantics, wh
shown in [4].
Partial Correctness- if the precondition holds at the beginning of a method invocation a
if the method terminates normally, then the postcondition holds in the terminating stat

Total Correctness- if the precondition holds at the beginning of a method invocation, th
the method terminates normally and the postcondition holds in the terminating state.

Partial Exception Correctness- if the precondition holds at the beginning of a method i
vocation and if the method terminates normally, then the postcondition holds in the term
ting state; if the precondition does not hold at the beginning of a method invocation the
method does not terminate normally.

Total Exception Correctness- if the precondition holds at the beginning of a method inv
cation, then the method terminates normally and the postcondition holds in the termin
state; if the precondition does not hold at the beginning of a method invocation, the
method does not terminate normally.

There are still other possibilities. We have already seen the semantics of the JMLbehavi-
our clause:
If the precondition holds at the beginning of a method invocation, then the method e
terminates normally or terminates abruptly by throwing one of the listed exceptions; i
method terminates normally, then the postcondition will hold; if the method throws an
ception, then the corresponding condition will hold.

The semantics of OCL pre- and postconditions is not clear from the UML v1.4 definit
but the theorem prover in KeY however interprets a pre-/postcondition pair according t
total correctness semantics. (The subject of abruptly terminating programs is solved b
use ofexcThrown , and will be discussed later in the report.) Let us imagine we hav
proof obligation as a result of a pre-/postcondition pair and an implementation that loo
ke:

φ -> <p> ψ

For deterministic programs - and Java programs are deterministic - the semantics o
proof obligation is:
For every states satisfying preconditionφ, a run of the programp starting ins terminates,
and in the terminating state the postconditionψ holds [1].

2.7. Thenull value

One problem with OCL is that there is nothing corresponding to thenull value in Java
(and JML). This is a problem that often occurs, as there is often a reason to check if a
meter reference is anull value, and in that case specifying the throwing of aNullPoin-
terException .
2003-05-20

Analysis 19

ays be
e-

sult
Let us see how this can be handled in different situations.

public class MyClass {
//@ invariant other1 != null;
private OtherClass1 other1;

/*@ public behavior
@ requires <precondition>;
@ ensures <postcondition>;
@ signals (java.lang.NullPointerException)

 @ other2 == null;
@*/

public void someMethod(OtherClass2 other2);
}

The invariant can be fairly accurate expressed in OCL, as an association-end can alw
interpreted as an OCLSet . The situation above interpreted as a UML diagram would, th
refore, have an association betweenMyClass andOtherClass1 , and the association-
end atOtherClass1 would be calledother1 . If, in the context ofMyClass , the OCL
expressionself.other1 was evaluated, and the association multiplicity was> 1, then it
would result in an OCLCollection (Set , Bag or Sequence). But even if the multipli-
city is <= 1, then - according to the OCL definition - one has the freedom to use the re
as aSet . This means that the invariant above, even ifother1 is a reference to just a single
Object and not an array ofObject s, can be expressed like this:

context MyClass inv:
self.other1->notEmpty()

The pre- and postcondition pair is a bit harder. The parameterother2 can be treated as a
OCL Collection only if OtherClass2 is of typebyte[] , short[] or some kind
of Java Collection type. In that case we can use the same technique as above:

context MyClass::someMethod(other2: OtherClass2)
pre : <precondition>
post: (

 not excThrown(java::lang::NullPointerException)
 and
 <postcondition>
)
 or
 (
 excThrown(java::lang::NullPointerException)
 and

 other2->isEmpty()
)

Otherwise there is no way to test fornull in a straightforward way. However, in the KeY
tool, an extension of OCL is used, that permit us to check fornull values in a Java-like
manner [15]. For instance the method specification above would then look like this:

context MyClass::someMethod(other2: OtherClass2)
pre : <precondition>
post: ...

 or
 (
2003-05-20

20 Analysis

a di-
lude

de

d not
crea-

ram,

ex-
his

of this
 excThrown(java::lang::NullPointerException)
 and
 other2 = null
)

2.8. Exceptions

There is no construct in OCL that is letting us express the throwing of an exception in
rect manner. How could we solve this? Let us assume that we in our UML diagram inc
the exception classSomeException , and that we have an association fromMyClass to
SomeException calledthrownExceptions . Then we might do something like this:

public class MyClass {
...
public SomeResultType aMethod() throws SomeException {

 if (<someCondition>)
 throw new SomeException();
 ...

}
}

context MyClass::aMethod(): SomeResultType
pre : true
post: let e: SomeException

 in
 <someCondition>
 implies
 self.thrownExceptions->includes(e)
 and
 e.oclIsNew()

But this would not work within the KeY tool. The problem lies in how Key handles the co
fragment

throw new SomeException();

The fact is that a method that terminates abruptly - e.g. if an exception is thrown an
caught - is handled as a non-terminating method. Let us see how a proof obligation is
ted and what it means. If we have a program (method body)p, a preconditionφ and a post-
conditionψ, then we will get the following proof obligation:

φ -> <p> ψ

This formula is valid if for every states satisfying preconditionφ, a run of the programp
starting ins terminates, and in the terminating state the postconditionψ holds. So ifp con-
tains a throw-statement then the KeY tool would consider it as a non-terminating prog
and the proof obligation would be unsatisfiable for all postconditionsψ. This in turn means
that there is no way to specify - with normal OCL constructs - that a method throws an
ception, and then - within the KeY tool - verify an implementation of this method w.r.t. t
specification. The way to handle this in KeY is the extra constructexcThrown [15], which
is an extension of the OCL standard and has been used earlier in this report. The idea
construct is to get around the problem by placing the whole method body in atry/catch -
2003-05-20

Analysis 21

t ins-

tion

non-

s
-
wn

e

is
a de-
a new

an

. Let
construct (program transformation). In the example above we would get this constrain
tead:

context MyClass::aMethod(): SomeResultType
pre : <<someCondition>>
post: excThrown(SomeException)

And when this is translated to Dynamic Logic we would - ideally - get the proof obliga

 ==>
 <<someCondition>>
 -> <{
 boolean thrownException = false;
 try {
 self.aMethod();
 } catch(Exception thrownExc) {
 thrownException
 = thrownExc instanceof SomeException;
 }
 }> thrownException = TRUE

This works, because a thrown exception that is caught is not considered to result in a
terminating program.

However, the wayexcThrown is implemented in the current version of KeY, it just state
that the method does throw anException , i.e. one cannot specify what particular sub
class ofException that is thrown. For instance, one cannot check if the exception thro
is aNullPointerException or anArrayIndexOutOfBoundsException . So
the proof obligation above would actually look like this:

 ...
 thrownException
 = thrownExc instanceof Exception;
 ...

But even ifexcThrown was implemented in the “ideal” way, it still would not have th
same expressive power as the JMLsignals clause. In thesignals clause you may use
an actual instance of the thrown exception and, for instance, call the methodgetRea-
son() defined in theCardException andCardRuntimeException classes. In
other words, it works similar to thecatch clause in the Java language. However, there
fortunately a way to get around this problem in the context of Java Card. The whole ide
pends on the fact that, when programming Java Card, one is not supposed to create
Exception every time one wants to throw one. Instead,CardException , CardRun-
timeException and all their descendants have a static field - let us call itsystemIn-
stance - which holds an instance of the class itself. If a programmer wants to throw
Exception in his applet code, he invokes the static methodthrowIt - in the specific ex-
ception class he wants to throw - with a special reason code as argument. ThethrowIt
method sets thereason field in the class instance held bysystemInstance , and then
throws this instance. This all has to do with the limited memory space in a smart card
us look at an example to clarify this:

 public void aMethod() throws APDUException {
 ...
 APDUException.throwIt(APDUException.IO_ERROR);
 }
2003-05-20

22 Analysis

ld be

era-
itive

er

x-
f
e-
to be
amic

de-
in [2].
,
ould
ion
The JML specification:

 /*@
 @ behavior
 @ requires ...
 @ ensures ...
 @ signals(APDUException e)
 @ e.getReason() == APDUException.IO_ERROR
 @*/

The OCL specification:

 context SomeClass::aMethod()
 pre : ...
 post: ...
 or
 (
 excThrown(APDUException)
 and
 APDUException.systemInstance.getReason()
 = APDUException.IO_ERROR
)

However, this would not work in the ordinary Java language, because then there wou
no way to access the actual object that is thrown. This is a severe weakness in theexcTh-
rown construct, the way it is implemented today in the KeY tool.

2.9. Arithmetic

Still another difference between OCL and JML/Java is the semantics of arithmetic op
tions on integers. The problem is that when one applies arithmetic operations to a prim
Java integer type,byte or short , then there is a possibility that the resultoverflows. At
the same time, the OCLInteger type behaves like a real mathematical object, i.e. it nev
overflows. An example will make this fact clear:

public byte add(byte b1, byte b2) {
return (byte)(b1 + b2);

}

context SomeClass::add(b1: Integer, b2: Integer): Integer
post: result = b1 + b2

A method invocation -add(Byte.MAX_VALUE, 1) - would return the valueBy-
te.MIN_VALUE (-128) . At the same time the result of an evaluation of the OCL e
pressionb1 + b2 is Byte.MAX_VALUE + 1 (128) . Consequently the semantics o
byte + and theInteger + is not the same. How is this solved in KeY when the impl
mentation is to be verified w.r.t. the specification? The integers in the specification are
treated according to the OCL semantics, when translating the specification into Dyn
Logic. But how should we handle the integers in the implementation? How are thebyte s
andshort s treated when the implementation is translated into Dynamic Logic? That
pends on what semantics we use. This issue and how it is solved in KeY is discussed
We could choose to ignore the fact thatbyte s are finite, i.e. that overflow is a possibility
and treatbyte s as real mathematical objects. In that case the implementation above c
be verified w.r.t. the specification, although the program would not fulfil the specificat
2003-05-20

Analysis 23

not
,

rify in-
w.r.t.
s and
form-

pos-
his
fact
. For

t. A

. The

lt-
h-
“The
t
s of
sent in
s re-
alcu-

d and
u-
s

g the

s the
pro-
ne
sol-
ould
nding

pro-
e the
ation

tation
ant to

. A
under certain conditions. In other words, we might verify incorrect programs - clearly
what we want. Another alternative is to treat thebyte s exactly as the Java Virtual Machine
i.e. to use the Java semantics. This is clearly a better choice since then we cannot ve
correct programs. With this semantics, the implementation above cannot be verified
the specification. This however means that the semantics of the specification integer
implementation integers are different, and this leads to other problems. For instance,
ulas that are intuitively true, like -for all x, there i s a y such that y > x
- are no longer true ifx andy are Java built-in types likebyte andshort . This problem is
very obvious in the example above. Another problem is that it is easy to overlook the
siblity of overflow. This can lead to programs that are merely “incidentally” correct. T
means that “a program fulfills its specification although overflow may occur, but the
that overflow occurs was not intended neither by the modeller nor the programmer” [2]
example, the formula

 i > 0 -> <i=i+1; i=i-1;>(i > 0)

is valid although in case the value ofi is Byte.MAX_VALUE , an overflow occurs and the
value of i is (surprisingly) negative in the intermediate state after the first assignmen
more realistic example can be found in [2].

In KeY, a third alternative is used that elegantly solves the problems mentioned above
Java syntax is extended with additional primitive data typesarithByte , arithShort ,
arithInt , andarithLong , which are called arithmetical types in contrast to the bui
in typesbyte , short , int , andlong . In the semantics used in KeY, the additional arit
metical types basically have an infinite range. Here is a quotation from the paper [2]:
operators acting on them have the same semantics as SOCL [the semantics in which we trea
the integer types as real mathematical objects] with the following restriction: If the value
the arguments of an operator are in valid range (this means, they are possible to repre
the corresponding built-in types) but the result would not (this means, overflow occur
placing the arithmetical types with the corresponding built-in types), then the result is c
lated by an invocation of the implicitly defined methodoverflow(x, y, op) whose
behaviour remains unspecified. This means in case of overflow, the result is unspecifie
the execution of the methodoverflow does not have to terminate. (...) If a JavaDL form
la φ is derivable in our calculus based on SKeY [the semantics used in KeY] (i.e. overflow i
unspecified), thenφ is valid in SKeY for all implementations ofoverflow (this follows
from the soundness of the calculus). Thus (...) one knows that no overflow occurs durin
execution ofp [p is the program in the formula<p>φ].” So the problem of “incidentally
correct” programs can with this semantics be avoided. An implementation that use
arithmetical types can never be verified, using this semantics, if the execution of the
gram may lead to overflow. If the possibility of overflow in the program is desirable, o
simply uses the built-in types instead. The problem with intuitively true formulas is also
ved with this approach. Arithmetical types are not allowed to occur in a program that sh
be compiled and executed, so - before this - they have to be replaced with the correspo
built-in types.

In the name of justice, it should be pointed out that the JML approach is not free of
blems either, as shown in [5]. In JML, the semantics of integer arithmetic operations ar
same as in Java, i.e. there is the possibility of overflow. Notice the difference to the situ
with OCL. The problem with OCL is that theInteger type has an infinite range, while
the Java types are finite. In JML, both the specification integer types and the implemen
types have a finite range, but problems arises anyway as we shall see. Let us say we w
specify a methodintSqrt , which should return the integer square root of its argument
JML specification of this method could look like this:
2003-05-20

24 Analysis

g
rs over

pes
apper
ses

+, -,
st are

a

them

.
d
ro-
 /*@ public normal_behavior
 @ requires y >= 0
 @ ensures Math.abs(\result) <= y
 @ && \result * \result <= y
 @ && y < (Math.abs(\result) + 1)
 @ * (Math.abs(\result) + 1);
 @*/
 public static int intSqrt(int y)

Let us say that we implement this method in the following strange way:

 public static int intSqrt(int y) {
 ...
 if (y == 0)
 return Integer.MIN_VALUE;
 ...
 }

This implementation would be possible to verify w.r.t. the specification (if the remaininy
values is treated in a correct way). This unexpected situation arises because operato
the int type in Java/JML obey the rules of modular arithmetic - thus,Inte-
ger.MIN_VALUE = Integer.MAX_VALUE + 1 , etc. The problem is that specifiers
think in terms of infinite precision arithmetic when they read and write specifications.

It would be nice to have a way to express in the OCL specification, what integer ty
should be used in the implementation. This is solved in this thesis by the use of the wr
classesJByte andJShort (J stands for Java), which are used for specification purpo
only. This means that instead of just writing

 context AClass::aMethod(a: Integer): Integer
 pre : ...
 post: ...

one is able to specify the actual Java types to be used:

 context AClass::aMethod(a: JByte): JShort
 pre : ...
 post: ...

The disadvantage of this is that one cannot apply the normal arithmetic operators, like
*, and /, directly on objects of these types. This is due to the fact that these operators ju
applicable to the OCL typesInteger andReal . The solution to this problem is to have
methodasInt() in the wrapper classes, which converts theJByte/JShort object to an
ordinaryInteger . An implementation ofJByte would have an instance field calledva-
lue or something similar. The OCL specification of the methodasInt() would then look
something like this:

 context JByte::asInt(): Integer
 pre : true
 post: result = self.value

Since the calls to this method become very frequent in the specifications, and make
less clear, they have been left out in this report. That is, theJByte andJShort types are
used, but we “cheat” and treat them asInteger s without any calls toasInt() . All for
the sake of clarity. The methodasInt() is however used in the original specifications
Note that the wrapper classesJByte andJShort do not solve the problems mentione
above. There is still the possibility of overflow. In the KeY tool we do not have this p
2003-05-20

Analysis 25

d in
beco-
type

easy

mple:

nding
field
ey did

e, say
field.
blem. As shown earlier in this report, the specification of a method in KeY is integrate
the source code in form of Java comments. The method declaration in Java actually
mes a part of the specification, and we therefore do not need to worry about the OCL
Integer when we write the specification.

2.10. Theassignable clause in JML

There is a construct in JML, which we have not touched upon yet and that is not very
to express in OCL - theassignable clause. The semantics of theassignable clause
is that only the fields mentioned in the clause can be assigned to. Let us look at an exa

 public class AClass {
 private byte a;
 private byte b;
 ...

 /*@ normal_behaviour
 @ requires ...
 @ assignable a
 @ ensures ...
 @*/
 public void aMethod(...) {

 a = 0;
 b = 1;
 }
 }

This implementation cannot be verified w.r.t. the specification, asb is not mentioned in the
assignable clause but is assigned a value in the method body. There is no correspo
construct in OCL. The best one could do is to state - in the postcondition - that every
that is not mentioned in the JML assignable clause should have the same value as th
before the method invocation. The example above would look like this:

 context AClass::aMethod(...)
 pre : ...
 post: ...
 and
 b = b@pre

This can, however, lead to specifications that are very hard to read. Let us, for instanc
that a class has 10 fields, and that all the methods of the class just assign a value to 1
This would lead to postconditions that all contain a list similar to:

 ...
 and
 field1 = field1@pre
 and
 field2 = field2@pre
 and
 ...
 and
 field10 = field10@pre
2003-05-20

26 Analysis

So the
void
ss the
risk of
OCL
for-

tance
mple-
ution
in-
er the
he
s?) In
10],
refer
e. Ul-
ation
d as a
ard

me is

late
ed is

ject
model

elp of
and
Furthermore, a method may also assign values to non-private fields in other classes.
list above should in fact contain all fields accessible from the context in question. To a
these problems, the OCL specifications produced by this project do not always expre
information in the assignable clauses. In cases where there seems to be a minimal
problems to leave it out, that has been done. There is an ongoing work to extend the
used in the KeY tool with a construct similar to the assignable clause in JML. More in
mation about this can be found in [3].

2.11. Model fields

Very often in a specification one has to refer to the object state, i.e. the values of the ins
fields. How do we specify an interface or a class where we do not have access to an i
mentation, that is, we do not have any (private) instance fields to refer to? One sol
would be if we had access methods (get -methods) to all the relevant parts of the state, s
ce we are allowed in our OCL constraints to use methods of the class that do not alt
object state (so-calledisQuery -methods). But what if there are no such methods in t
class, or at least not all the methods we need? (And how do we specify the get-method
JML there is a way to solve this problem. One may declare so-called model fields [
which are specification-only variables - they are used in the specification constraints to
to the object state, but do not need to appear in an implementation of the class/interfac
timately, there should be a relation between the model variables used in the specific
and variables actually used in the implementation, and this relation can again be state
JML annotation. Let us look at a real example from the JML specifications for Java C
2.1.1 API. The specification of PIN contains a model field called_maxTries . It is decla-
red like this:

 //@public model byte _maxTries ;

In the reference implementation of Java Card 2.1.1 API from Sun, another variable na
used to refer to this part of the object state:

 private byte tryLimit;

Therefore, in order to verify the implementation w.r.t to the specification, one has to re
these variables to each other in some way. In this case it is very simple. All that is need
an invariant like this:

 //@ invariant _maxTries == tryLimit;

This means that when we refer to_maxTries in our specification, we also implicitly refer
to tryLimit . Of course, the implementer of a class might want to implement the ob
state in a different manner than the specifier. In that case, the relations between the
fields and the variables used in the implementation would be more complicated.

Can this be expressed in OCL? Yes, this can be expressed in standard OCL, with the h
the <<definition>> constraint. This constraint must be attached to a class or interface
may only contain let definitions. The example above would look like this in OCL:

 context PIN def:
 let _maxTries: JByte

And we would need a similar invariant to relate_maxTries to tryLimit :

 context PIN inv:
 ...
 self._maxTries = self.tryLimit
2003-05-20

Analysis 27

port

API?
ifica-
en ex-
OCL

as to
re the
ion of
light-
ensu-
nted
d can
mitting
ifica-
terfa-
e to

6] of

ents

ing

d

However, this cannot be done in the current version of KeY. The KeY tool does not sup
the <<definition>> constraint.

2.12. Method for creating the specifications

What approach has been used when writing the OCL specifications for Java Card
What are the guidelines that have been followed? Well, to start with, the informal spec
tion has been read through and considered. Second, the JML specifications have be
amined. Based on these sources, an effort has been made to write reasonable
specifications for the Java Card API. Using a formal language such as OCL, one still h
decide how detailed the specifications should be. At one end of the spectrum there a
very complete and detailed specifications, as for instance the reference implementat
the Java Card API. At the other end of the spectrum there are very incomplete or
weight specifications that concentrate on specifying the preconditions of methods that
re normal behaviour of the method, i.e. preconditions that rule out some - or all - unwa
run-time exceptions. Such specifications are relatively easy to write and to check, an
be used to guarantee the absence of most run-time exceptions. This is important, as o
the proper handling of such exceptions is a common source of failures [13]. The spec
tions produced in this project will be somewhere in the middle. Some of the classes/in
ces will be specified in a rather lightweight manner, while others will be shown feasibl
specify in more detail.

Let us look at an example that can clarify the process. In the interfacePIN , residing in the
packagejavacard.framework , there is a methodcheck that checks if the pin value
given by the card user agrees with the correct pin value. The informal specification [
this method is like follows:

public boolean check(byte[] pin, short offset, byte length)

Comparespin against thePIN value. If they match and thePIN is not blocked, it sets the
validated flag and resets the try counter to its maximum. If it does not match, it decrem
the try counter and, if the counter has reached zero, blocks thePIN . Even if a transaction

 is in progress, internal state such as the try counter, the validated flag and the block
 state must not be conditionally updated.

 Notes:

 * If NullPointerException or ArrayIndexOutOfBoundsException is th
rown, the validated flag must be set tofalse , the try counter must be decremented, an

 thePIN blocked if the counter reaches zero.

 * If offset or length parameter is negative anArrayIndexOutOfBoundsEx
 ception is thrown.

 * If offset+length is greater thanpin.length , the length of thepin array, an
 ArrayIndexOutOfBoundsException is thrown.

 * If pin parameter isnull a NullPointerException is thrown.

Parameters:
pin - thebyte array containing thePIN value being checked
offset - the starting offset in thepin array
length - the length ofpin

Returns: true if thePIN value matches;false otherwise
2003-05-20

28 Analysis

ame
ero.
Throws: ArrayIndexOutOfBoundsException - if thecheck operation would
 cause access of data outside array bounds.

NullPointerException -if pin is null

The JML specification [14] of this method looks like this:

 /*@ public normal_behavior
 @ requires _triesRemaining == 0;
 @ assignable \nothing;
 @ ensures result == false;
 @ also
 @ public normal_behavior
 @ requires _triesRemaining > 0 && pin != null
 @ && offset >= 0 && length>=0
 @ && offset+length == pin.length &&
 @ Util.arrayCompare(_pin,(short)0,pin,
 @ offset,length) == 0;
 @ assignable _isValidated, _triesRemaining;
 @ ensures result == true && _isValidated &&
 @ _triesRemaining == _maxTries;
 @ also
 @ public behavior
 @ requires _triesRemaining > 0 &&
 @ ! (pin != null && offset >= 0 &&
 @ length >= 0 &&
 @ offset+length == pin.length &&
 @ Util.arrayCompare(_pin,(short)0,pin,
 @ offset,length) == 0) ;
 @ assignable _isValidated, _triesRemaining;
 @ ensures result == false &&
 @ !_isValidated && _triesRemaining ==
 @ \old(_triesRemaining)-1;
 @ signals (NullPointerException)
 @ !_isValidated &&
 @ _triesRemaining == \old(_triesRemaining)-1;
 @ signals (ArrayIndexOutOfBoundsException)
 @ !_isValidated &&
 @ _triesRemaining == \old(_triesRemaining)-1;
 @*/

 /// Some (all?) applets do not check if thepin & offset they pass on
 /// to this method are ok, hence the need for the second "also behavior"
 /// to say what happens ifpin==null or the array bounds are violated.

 public boolean check(byte[] pin, short offset, byte length)
 throws ArrayIndexOutOfBoundsException,
 NullPointerException;

The firstnormal_behavior clause takes care of the case when the try counter (the n
_triesRemaining in the JML spec is definitely a better name choice) has reached z
It states that the state cannot be altered in any way, and that the method returnsfalse . The
2003-05-20

Analysis 29

,

en re-

n

cir-

sub-
e in-
try

e En-
pecifi-
the

other
fica-

infor-
ust be

n
spe-
secondnormal_behavior clause specifies what will happen if thepin array passed as
an argument is not anull value, theoffset andlength arguments are non-negative
the length added to theoffset is equal to the size of the passedpin array, and the pin
value given by the user matches the correct pin value. It states that the method will th
turn true , the_isValidated field will be set totrue and the_triesRemaining
field will be reset, i.e. set to_maxTries . (The variables mentioned here starting with a
underscore - _<fieldname> - are all model fields, i.e. specification-only variables.) Thebe-
havior clause, finally, specifies the exceptions that can be thrown and under which
cumstances. ANullPointerException will be thrown if pin is anull reference,
and anArrayIndexOutOfBoundsException will be thrown if the array bounds are
violated. It also states that, if an exception is thrown, then_isValidated will be set to
false and_triesRemaining will be decremented.

It seems like the JML specification mainly agrees with the informal specification. One
ject that is not touched upon in the JML specification is the following sentence from th
formal specification: “Even if a transaction is in progress, internal state such as the
counter, the validated flag and the blocking state must not be conditionally updated.”This is
not very easy to specify, as it has to do with atomicity aspects of the Java Card Runtim
vironment, and furthermore - as has already been mentioned - the purpose of these s
cations (neither the JML or the OCL specifications) is not to specify every detail of
classes. Consequently, this is not touched upon in the OCL specification either. An
thing that one might notice is the fact that the informal specification and the JML speci
tion disagree on the subject of whetheroffset+length must be equal topin.length
or if offset+length might be less than or equal topin.length . It seems like a
mistake has been made in the JML specifications, since it clearly disagrees with the
mal specification and since there seems to be no good reasons to demand that there m
no free elements in thepin array, following the actual pin value. The OCL specificatio
therefore agrees with the informal specification in this case. Here is the resulting OCL
cification:

 context PIN::check(pin: Sequence(JByte),
 offset: JShort,
 length: JByte): Boolean
 pre : true
 post: if
 self.triesRemaining = 0
 then
 result = false
 endif
 and
 if
 (
 self.triesRemaining > 0
 and
 pin <> null
 and
 offset >= 0
 and
 length >= 0
 and
 offset+length <= pin->size()
 and
2003-05-20

30 Analysis
 Util.arrayCompare(self.pin, 0,
 pin, offset, length) = 0
)
 then
 (
 result = true
 and
 self.isValidated
 and
 self.triesRemaining
 = self.maxTries
)
 endif
 and
 if
 (
 self.triesRemaining > 0
 and
 not
 (
 pin <> null
 and
 offset >= 0
 and
 length >= 0
 and
 offset+length <= pin->size()
 and
 Util.arrayCompare(self.pin, 0,
 pin, offset, length) = 0
)
)
 then
 (
 not self.isValidated
 and
 self.triesRemaining
 = self.triesRemaining@pre-1
 and
 (
 (
 not excThrown(java::lang::Exception)
 and
 result = false
)
 or
 excThrown(NullPointerException)
 or
 excThrown(ArrayIndexOutOfBoundsException)
)
2003-05-20

Analysis 31
)
 endif
2003-05-20

32 Results and conclusions

Card

h as
. With
s. For

ample,
y
ternal
thod in
d into

thod
idea
3. Results and conclusions

3.1. The specifications

This project has resulted in OCL specifications for all classes and interfaces in Java
2.2 API. These specifications express, with a few exceptions (thesignals andassig-
nable clauses in JML have not always been possible to express fully in OCL), as muc
the JML specifications for Java Card 2.1.1 API that has been used as a starting point
some methods, the OCL specifications express even more than the JML specification
instance, in the numerous interfaces and classes that extends/implements theKey interface
in the packagejavacard.security , the specifications of theget andset methods
have been somewhat extended compared to the JML specifications. Let us, as an ex
look at the methodsetKey in the interfaceDESKey. This method copies the data (an arra
of byte s) that is passed as an argument and that constitutes the actual key, to the in
representation. Under certain circumstances, these data are not passed to the me
plaintext but as a cipher and the method must then decrypt the data before it is copie
the internal representation. Here is the JML specification [14] for this method:

 /*@ public behavior
 @ requires keyData != null && kOff >= 0 &&
 @ kOff < keyData.length;
 @ assignable CryptoException.systemInstance._reason;
 @ ensures isInitialized();
 @ signals (CryptoException e)
 @ e.getReason() == CryptoException.ILLEGAL_VALUE;
 @*/
 void setKey(byte[] keyData, short kOff)
 throws CryptoException;

As can be seen, this specification does not give much information about what this me
actually accomplishes. In the OCL specification though, there is an attempt to give an
of this:

 context DESKey::setKey(keyData: Sequence(JByte),
 kOff: JShort)
 pre : not (keyData = null)
 and
 kOff >= 0
 and
 kOff < keyData->size()
 post: (
 not excThrown(java::lang::Exception)
 and
 self.isInitialized()
 and
 (
 not self.oclIsKindOf(
 javacardx::crypto::KeyEncryption)
 or
 self.getKeyCipher() = null
 implies
2003-05-20

Results and conclusions 33

d
pted

n
d one
the in-
stead

hat it
 Util.arrayCompare(self.data, 0,
 keyData, kOff, self.getSize()/8) = 0
)
)
 or
 (
 excThrown(CryptoException)
 and
 CryptoException.systemInstance.reason
 = CryptoException.ILLEGAL_VALUE
 and
 (
 not self.oclIsKindOf(
 javacardx::crypto::KeyEncryption)
 or
 self.getKeyCipher() = null
 implies
 kOff+self.getSize()/8 >
 keyData->size()
)
)

We see that if it is not the case that this particular instance ofDESKeyis also an instance of
javacardx.crypto.KeyEncryption or, if it is, that this instance is not associate
with a Cipher object (the circumstances under which the in-data have to be decry
[6]), then the in-data is to be copied directly into the internal representation.

Let us also look at the methodgetKey in DESKey. This method returns the key-data i
plain text. It does not, however, return it as the return value of the method, but instea
has to pass a reference to a byte array as an argument to the method. The key-data in
ternal representation is then copied into this array. The return value of the method is in
the byte length of the key-data. Here is the JML specification for this method:

 /*@ public behavior
 @ requires keyData != null && kOff >= 0 &&
 @ kOff < keyData.length && isInitialized();
 @ ensures true;
 @*/
 byte getKey(byte[] keyData, short kOff);

We see that this specification says nothing about what the method accomplishes or w
returns. The OCL specification expresses some more:

 context DESKey::getKey(keyData: Sequence(JByte),
 kOff: JShort): JByte
 pre : keyData <> null
 and
 kOff >= 0
 and
 kOff < keyData->size()
 and
 self.isInitialized()
 post: result = self.getSize()/8
 and
2003-05-20

34 Results and conclusions

the
f

that
os-

ill
tor is

be.
e

the

is
rnal
ditio-
 Util.arrayCompare(self.data, 0, keyData,
 kOff,self.getSize()/8) = 0

There are a lot of similarset andget methods in the interfaces injavacard.securi-
ty , and they are all treated in the same way as above.

Another example where the OCL specifications differ from the JML specifications is
classOwnerPIN in javacard.framework . The invariants and method specification o
the constructor, in the JML specification of this class, look like this:

 //@ invariant 0 < _maxPINSize && 0 < _maxTries;
 //@ invariant 0 <= _triesRemaining &&
 //@ _triesRemaining <= _maxTries;
 //@ invariant (_triesRemaining == 0) <==>
 //@ (* the PIN is blocked *);
 //@ invariant _pin != null && _pin.length <= _maxPINSize;

 /*@ public normal_behavior
 @ requires maxPINSize > 0 && tryLimit > 0;
 @ assignable _maxPINSize, _maxTries, _triesRemaining,
 @ _isValidated;
 @ ensures _maxPINSize == maxPINSize &&
 @ _maxTries == tryLimit &&
 @ _triesRemaining == tryLimit &&
 @ ! _isValidated;
 @*/
public OwnerPIN(byte tryLimit, byte maxPINSize)
 throws PINException;

There are a number of problems here. To start with, the model field_pin is not in theas-
signable clause of the constructor, and at the same time there is an invariant stating
_pin must not be anull -reference at any time. These conditions are obviously not p
sible to satisfy. We must be allowed to assign a value to_pin in the constructor, otherwise
_pin will be a null -reference upon completion of the constructor, and the invariant w
not be satisfied. Another problem is that according to this specification, the construc
not allowed to throw any exceptions, although the informal specification says it should
The informal specification states that if themaxPINSize argument is less than 1, then th
constructor should throw aPINException with reason codePINExcep-
tion.ILLEGAL_VALUE . Depending on how one chooses to implement this class
constructor might also throw aSystemException with reason codeSystemExcep-
tion.NO_TRANSIENT_SPACE . This has to do with the special requirements on th
class mentioned in the informal specification: Even if a transaction is in progress, inte
state such as the try counter, the validated flag and the blocking state must not be con
nally updated. This leads to the OCL specification of theOwnerPIN constructor:

 context OwnerPIN::OwnerPIN(tryLimit: JByte,
 maxPINSize: JByte)
 pre : maxPINSize > 0
 and
 tryLimit > 0
 post: (
 not excThrown(java::lang::Exception)
 and
 self.maxPINSize = maxPINSize
 and
2003-05-20

Results and conclusions 35

s li-

rd 2.2

not
cifica-

to the
one
have
 self.maxTries = tryLimit
 and
 self.triesRemaining = tryLimit
 and
 not self.isValidated
)
 or
 (
 excThrown(PINException)
 and
 PINException.systemInstance.getReason()
 = PINException.ILLEGAL_VALUE
 and
 maxPINSize < 1
)
 or
 (
 excThrown(SystemException)
 and
 SystemException.systemInstance.getReason()
 = SystemException.NO_TRANSIENT_SPACE
)

A final little example. The JML specification of theObject class in java.lang looks like
this:

 /*@ public normal_behavior
 requires true;
 assignable \nothing;
 ensures true;
 @*/
 public boolean equals(Object obj){}

There is a rather obvious way to improve this specification. The OCL specification look
ke:

 context Object::equals(obj: Object): Boolean
 pre : true
 post: result = (self = obj)

There are a number of packages (java.io , java.rmi and javacard.frame-
work.service), interfaces, classes and methods that have been added in Java Ca
API [7], that were not part of Java Card 2.1.1. Furthermore, the extension packagejava-
cardx.crypto has not been specified in the JML specification. In these cases it has
been possible to use the JML specifications as a reference, but just the informal spe
tions.

3.2. Verification based on the specifications

Because of the current state of the KeY tool, the specifications have not been tested
extent one would like. There are in the KeY tool still some severe limitations that have d
this impossible. For instance, the current version of KeY cannot handle methods that
2003-05-20

36 Results and conclusions

e been

p-
e speci-

ple-
arrays as either parameter value or return value. Some method implementations hav
verified w.r.t. their specification, though.

In the packagejavacard.framework there is a number of exception classes. The sim
le set and get methods in these classes have been verified. Let us see an example - th
fication and implementation of theCardException methods.

 /**
 * @invariants not (systemInstance = null)
 */
 public class CardException extends Exception {
 private static CardException systemInstance;
 private short reason;
 ...

 /**
 * @preconditions true
 * @postconditions
 not excThrown("Exception")
 and
 result = self.reason
 */
 public short getReason() {
 return reason;
 }

 /**
 * @preconditions true
 * @postconditions
 not excThrown("Exception")
 and
 self.reason = theReason
 */
 public void setReason(short theReason) {
 this.reason = theReason;
 }
 ...
 }

When the KeY tool is asked to generate a proof obligation of the specification and im
mentation ofgetReason() , the following is the result.

 ==>
 !self.systemInstance = null
 -> <{
 boolean thrownException = false;
 try {
 result=self.getReason();
 } catch (Exception thrownExc) {
 thrownException
 =thrownExc instanceof Exception;
 }
 }> ((!thrownException = TRUE
2003-05-20

Results and conclusions 37

heu-

on
 & result = self.reason)
 & !self.systemInstance = null)

The KeY tool is able to prove this proof obligation automatically, when one applies the
ristics. This means that we have proved that the implementation ofgetReason() is veri-
fied w.r.t. the specification. The proof obligation ofsetReason() is similar.

 ==>
 !self.systemInstance = null
 -> <{
 boolean thrownException = false;
 try {
 self.setReason(theReason);
 } catch (Exception thrownExc) {
 thrownException
 =thrownExc instanceof Exception;
 }
 }> ((!thrownException = TRUE
 & self.reason = theReason)
 & !self.systemInstance = null)

This proof obligation is also proved automatically in KeY.

An example that is a little more complicated is the methodreset in classOwnerPIN .
Here is the specification and implementation (both the specification and implementati
have gone through minor changes to work around the limitations in the KeY tool):

 /**
 * @invariants
 self.maxPINSize > 0

 and
 self.maxTries > 0
 and
 self.triesRemaining >= 0
 and
 self.triesRemaining <= self.maxTries

 */
 public class OwnerPIN implements PIN {
 private byte maxPINSize;
 private byte maxTries;
 private boolean isValidated;
 private byte triesRemaining;
 private byte[] pin;
 ...
 /**
 * @preconditionsnot self.isValidated
 * @postconditions
 not excThrown("Exception")
 and
 not self.isValidated
 and
 self.triesRemaining = self.triesRemaining@pre
 */
 public void reset() {
2003-05-20

38 Results and conclusions

ion

ier to
e the
ar-
 if (isValidated())
 resetAndUnblock();

 }
 }

The KeY generated proof obligation looks like this:

 ==>
 ((((!self.isValidated = TRUE
 & self.maxPINSize > 0)
 & self.maxTries > 0)
 & self.triesRemaining >= 0)
 & self.triesRemaining <= self.maxTries)
 & all o:OwnerPIN.OwnerPIN::triesRemaining@pre(o)
 = o.triesRemaining
 -> <{
 boolean thrownException = false;
 try {
 self.reset();
 } catch(Exception thrownExc) {
 thrownException
 = thrownExc instanceof Exception;

 }
 }> ((((((!thrownException = TRUE
 & !self.isValidated = TRUE)
 & self.triesRemaining
 = OwnerPIN::triesRemaining@pre(self))
 & self.maxPINSize > 0)
 & self.maxTries > 0)
 & self.triesRemaining >= 0)
 & self.triesRemaining <= self.maxTries)

KeY is not able to construct a proof of this automatically, but simplifies the proof obligat
to this:

 0 < self.maxPINSize,
 0 < self.maxTries,
 all o:OwnerPIN.OwnerPIN::triesRemaining@pre(o)
 = o.triesRemaining
 ==>
 self.maxTries < self.triesRemaining,
 self.triesRemaining < 0,
 self.isValidated = TRUE,
 self.triesRemaining
 = OwnerPIN::triesRemaining@pre(self)

After five more rule applications (manually applied) the proof obligation is proved.

3.3. The strengths of OCL

OCL is in some respects a more powerful language than JML. For instance, it is eas
compare a part of one array with a part of another array in OCL than in JML, becaus
built-in array methodequals is only applicable to whole arrays. Say that we have two
2003-05-20

Results and conclusions 39

in an

ame

s
the
raysarr1 andarr2 . We want to check if all elements inarr1 , from the indexoff1 to
indexoff1+length , are equal to the elements inarr2 , from off2 to off2+length .
In JML we would have to do like this:

 \forall short i; i >= 0 && i < length
 ==> arr1[off1+i] == arr2[off2+i]

In OCL it is easier to express. (Remember that the first index in a Java array is 0 while
OCL Sequence it is 1):

 arr1->subSequence(off1+1, off1+length)
 = arr2->subSequence(off2+1, off2+length)

Though it may not be particularly shorter, it is a more intuitive way to express the s
thing. We can see an example of this in the specifications ofAID . The JML specification of
the constructor inAID looks like this:

 /*@ public behavior
 @ requires ...
 @ assignable ...
 @ ensures length == theAID.length &&
 @ (\forall short i; 0 <= i && i < length
 @ ==> theAID [i] == bArray [offset+i]);
 @ signals (TransactionException e) ...;
 @*/
 public AID(byte[] bArray, short offset, byte length)

The counterpart in OCL looks like this:

 context AID::AID(bArray: Sequence(JByte),
 offset: JShort,
 length: JByte)
 pre : ...
 post: (
 not excThrown(java::lang::Exception)
 and
 self.theAID
 = bArray->subSequence(offset+1, offset+length)
)
 or
 (
 excThrown(TransactionException)
 and
 ...
)

Another example is OCL’s ownexists andforAll operations, which in many aspect
are more intuitive and easier to use than their counterparts in JML. An example from
specifications ofJCSystem will illustrate this. Here first is the JML specification of the
methodmakeTransientBooleanArray :

 /*@ public normal_behavior
 @ requires ...
 @ assignable ...
 @ ensures (\forall byte i; 0 <= i &&
 @ i < result.length ==> result[i]==false)
2003-05-20

40 Results and conclusions

the

ady
l” pro-
o des-
g the

in-
n-

sed for
e

ithin
can
infor-
 @ &&
 @ ...
 @ also
 @ ...
 public static native boolean[] makeTransientBooleanArray(

short length, byte event) throws SystemException;

Here is the OCL counterpart, which looks much nicer:

 context JCSystem::makeTransientBooleanArray(
length: JShort,event: JByte): Sequence(Boolean)

 pre : ...
 post: if ...
 then
 (
 not excThrown(java::lang::Exception)
 and
 result->forAll(b: Boolean|b = false)
 and
 ...
)
 endif
 and
 ...

OCL is equipped with a lot of other operations on the differentCollection types (Set ,
Bag andSequence) [12]. Some of these operations have already been mentioned in
table earlier in the report.

3.4. Limitations

The specifications produced in this project are limited in a number of ways. As alre
mentioned, they have not been tested to the desirable extent, because of “technica
blems. One also has to have in mind that some of these specifications are not trying t
cribe the behaviour of the methods in every detail but more concentrate on specifyin
conditions of methods that ensure normal behaviour, i.e. no throwing of exceptions.

Other limitations of these specifications have to do with limitations of OCL itself. For
stance, the constructexcThrown used is not part of standard OCL, but is almost indispe
sable when specifying Java programs. Under certain conditionsexcThrown can however
be expressed in standard OCL, but that depends on - for instance - the semantics u
abruptly terminating programs. Thenull value is also not part of standard OCL, but can b
expressed to some extent with ordinary OCL constructs.

3.5. Conclusions

What are the contributions of this work?

• The specifications themselves.
When the KeY project has made further progress, the specifications can be used w
the KeY tool and substantially simplify the verification of Java Card programs. They
serve as a documentation of Java Card API that in many aspects is clearer than the
2003-05-20

Results and conclusions 41

de-

seful if
eci-

t are

fica-

ified

bli-
API

with
od is
tcon-

e API

work
ble to

uage.
imp-
is
ains a
o the

L.

in the

a-
mal specification from Sun. They can also work as a foundation to build on for future
velopment towards more complete specifications for the Java Card API.

• The comparison between OCL and JML.
The pro and cons of these languages have been made clearer. The comparison is u
one wants to use existing JML specifications as a starting point when writing OCL sp
fications, and vice versa.

• Evaluation of OCL as a specification language for Java programs. Constructs tha
missing in OCL when specifying Java programs has been pointed out.

Let us look at an example to illustrate the point that the specifications simplify the veri
tion of Java Card programs. Say we have a methodaMethod that we have specified and
want to verify. This method invokes a method in the API, which has already been spec
and verified.

 /**
 * @preconditions <pre>
 * @postconditions <post>
 */
 public void aMethod(...) {
 ...
 APIClass.apiMethod(...);
 ...
 }

This is translated into a proof obligation. When trying to construct a proof to this proof o
gation, we sooner or later have to apply a rule that takes care of the invocation of the
method. If there is no specification for this method we have to replace the method call
the actual method body. But if there is a specification, and the precondition of this meth
satisfied in the current state, then one may actually replace the method call with its pos
dition. This means that we do not have to do the same work over and over again. Th
methods are verified once and for all.

What about the evaluation of OCL as a specification language for Java programs? This
clearly shows that the OCL standard definition needs to be extended if one should be a
specify important aspects of a program written in Java or a similar object-oriented lang
First and foremost, a construct that allow us to specify the throwing of exceptions in a s
le but powerful way - similar to thesignals clause in JML - needs to be added. This
very fundamental. Second, we need to be able to check if a reference variable cont
null value. This is also very important when specifying a Java program. There is als
problem with integer arithmetic and this might be difficult to solve in a generic way in OC
Finally a construct similar to theassignable clause in JML would be very useful in
OCL.

Otherwise, OCL has shown to be an expressive and elegant specification language
context of Java Card. OCL contains a great number of operations on theCollection ty-
pes (Set , Bag andSequence), which makes it powerful and easy to use in many situ
tions.
2003-05-20

42 References

Com

a
s

.

ät
n et

r Ty

,

ity.

e

4. References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel, W.
 Mostowski, A. Roth, S. Schlager, P. H. Schmitt.The KeY Tool. Department of Compu
 ting Science, Chalmers University of Technology, Gothenburg and Department of
 puter Science, University of Karlsruhe, Karlsruhe.

2. B. Beckert, S. Schlager.Integer Arithmetic in the Specification and Verification of Jav
 Programs. University of Karlsruhe, Institute for Logic, Complexity and Deduction Sy
 tems, Karlsruhe.

3. B. Beckert, P. H. Schmitt.Program Verification Using Change Information. Institute for
 Logic, Complexity, and Deduction Systems, Universität Karlsruhe, Germany. 2003

4. M. Bidoit, R. Hennicker, H. Hussmann.On the Precise Meaning of OCL Constraints. In
 stitut fur Informatik, Ludvig-Maximilians-Universität Munchen, Germany and Fakult
 Informatik, Technische Universität Dresden, Germany and Laboratoire Specificatio
 Verification, CNRS & ENS de Cachan, France. 2002.

5. P. Chalin.Back to Basics: Language Support and Semantics of Basic Infinite Intege
 pes in JML and Larch. Computer Science Department, Concordia University. CU-CS
 2002.003.1. 2002.

6. Z. Chen.Java Card Technology for Smart Cards. Addison-Wesley. 2000.

7. Java Card 2.2 Application Programming Interface. Sun Microsystems, Inc. September
 2002.

8. Java Card 2.1.1 Development Kit. http://java.sun.com/products/javacard/
 dev_kit.html#212. 2003-05-16

9. G. T. Leavens, A. L. Baker, C. Ruby.JML: A Notation for Detailed Design. Kluwer Aca
 demic Publishers. 1999.

10. H. Meijer, E. Poll.Towards a full formal specification of the Java Card API. Computing
 Science Institute, University of Nijmegen, The Netherlands.

11. W. Mostowski.Towards Development of Safe and Secure Java Card Applets. Depart-
ment of Computing Science, Chalmers University of Technology/Göteborg Univers

 2002.

12. Object Management Group.Unified Modelling Language Specification, version 1.4.
 Sept. 2001.

13. E. Poll, J. van den Burg, B. Jacobs.Formal specification of the JavaCard API in JML:
 the APDU class. Computing Science Institute, University of Nijmegen, The Nether
 lands. 2001.

14. E. Poll.Formal interface Java specifications for the Java Card API 2.1.1. http://
 www.cs.kun.nl/~erikpoll/publications/jc211_specs.html. 2003-05-16.

15. Andreas Roth.Deduktiver Softwareentwurf am Beispiel des Java Collections Fram
 work - Verfeinerungsbeziehungen in UML/OCL.Diploma thesis, University of Karlsru
 he, Department of Computer Science. 2002.

16. Vad är formella metoder?. http://www.l4i.se/S_form.htm. 2003-03-06.
2003-05-20

Appendices 43

e OCL
oth as
d met-
ey can

en by
ents.

s. The

sim-
ppen-
en -

g in
Appendices

OCL specifications for the Java Card 2.2 API

Java Card 2.2 API consists of the following packages (javacardx.crypto is actually
an extension package):

These packages are given a short description under the section 2.2, “Java Card”. Th
specifications of these packages, which this thesis has resulted in, are available b
stand-alone OCL specifications (only OCL code) and as Java class skeletons (class an
hod declarations) with the specifications integrated as comments in the Java code. Th
be found on the following web page:

http://www.mdstud.chalmers.se/~md0dala/exjob.html

Available on this web page is also some classes with the reference implementation giv
Sun Microsystems (to Java Card 2.1.1) and OCL specifications integrated as comm
These files have been used when trying to verify some methods w.r.t. the specification
OCL syntax used in these files is tailored to the syntax accepted by the KeY tool.

Due to the volume of the specifications and the recurrence of similar specifications for
ilar methods, only a selection of the stand-alone specifications is reproduced in this a
dix. Simply put, the specifications that are most interesting have been chos
specifications that are not to trivial and that have been a challenge to specify.

java.io andjava.rmi are very small and simple packages, and not very interestin
this context.

java javacard javacardx

io lang rmi framework security crypto

service
2003-05-20

44 Appendices
java.lang.Object

package java::lang

context Object::Object()
 pre : true
 post: true

context Object::equals(obj: Object): Boolean
 pre : true
 post: result = (self = obj)

endpackage
2003-05-20

Appendices 45
javacard.framework.AID

package javacard::framework

-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe-
-- cification. An
-- implementer of this class is naturally free to represent -
-- the system state
-- with the help of other class and instance fields.
--
-- byte[] theAID;

context AID def:
 let theAID: Sequence(JByte)

context AID inv:
 self.theAID <> null
 and
 self.theAID->size() >= 5
 and
 self.theAID->size() <= 16

...

context AID::getBytes(dest: Sequence(JByte), offset: JShort):
JByte
 pre : true
 post: if
 (
 dest <> null
 and
 dest <> self.theAID
 -- <> is defined on OclAny. Means ’is a different
 -- object than’
 and
 offset.asInt() >= 0
 and
 offset.asInt()+self.theAID->size() <= dest->size()
)
 then
 (
 (
2003-05-20

46 Appendices
 not excThrown(java::lang::Exception)
 and
 result.asInt() = self.theAID->size()
 and

Util.arrayCompare(self.theAID, 0, dest, offset,
 self.theAID->size()) = 0
)
 or
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.
 getReason().asInt()
 = TransactionException.BUFFER_FULL

 and
 JCSystem.getTransactionDepth() = 1
)
)
 endif
 and
 (
 not excThrown(java::lang::Exception)
 or
 (
 excThrown(java::lang::NullPointerException)
 and
 dest = null
)
 or
 (
 excThrown(java::lang::ArrayIndexOutOfBounds)
 and
 dest <> null
 and
 (
 offset.asInt() < 0
 or
 offset.asInt()+self.theAID->size()
 > dest->size()

)
)
 or
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance
 .getReason().asInt()

 = TransactionException.BUFFER_FULL
 and
 JCSystem.getTransactionDepth() = 1
2003-05-20

Appendices 47
)
)

...

endpackage
2003-05-20

48 Appendices
javacard.framework.APDU

package javacard::framework

-- PUBLIC FIELDS:
-- public static final byte STATE_INITIAL;
-- public static final byte STATE_PARTIAL_INCOMING;
-- public static final byte STATE_FULL_INCOMING;
-- public static final byte STATE_OUTGOING;
-- public static final byte STATE_OUTGOING_LENGTH_KNOWN;
-- public static final byte STATE_PARTIAL_OUTGOING;
-- public static final byte STATE_FULL_OUTGOING;
-- public static final byte STATE_ERROR_NO_T0_GETRESPONSE;
-- public static final byte STATE_ERROR_T1_IFD_ABORT;
-- public static final byte STATE_ERROR_IO;
-- public static final byte STATE_ERROR_NO_T0_REISSUE;
-- public static final byte PROTOCOL_MEDIA_MASK;
-- public static final byte PROTOCOL_TYPE_MASK;
-- public static final byte PROTOCOL_T0;
-- public static final byte PROTOCOL_T1;
-- public static final byte PROTOCOL_MEDIA_DEFAULT;
-- public static final byte
-- PROTOCOL_MEDIA_CONTACTLESS_TYPE_A
-- public static final byte
-- PROTOCOL_MEDIA_CONTACTLESS_TYPE_B;
-- public static final byte PROTOCOL_MEDIA_USB;
--
--
-- PRIVATE FIELDS:
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this class is naturally free to represent
-- the system state
-- with the help of other class and instance fields.
--
-- //model fields in the JML spec
-- private short Lc; // incoming command length
-- private short Lr; // response length
-- private short Le; // terminal expected length
-- //////////////////////////////
--
-- private static final short BUFFERSIZE = 37;
-- private byte[] buffer;
-- private byte APDU_state;
2003-05-20

Appendices 49
context APDU def:
 let Lc: JShort
 let Lr: JShort
 let Le: JShort
 let BUFFERSIZE: JShort -- static final
 let buffer: Sequence(JByte)
 let APDU_state: JByte

context APDU inv:
 self.buffer <> null
 and
 APDU.BUFFER_SIZE.asInt() >= 37
 and
 self.buffer->size() = APDU.BUFFER_SIZE.asInt()
 and
 APDU.PROTOCOL_T0 = 0
 and
 APDU.PROTOCOL_T1 = 1
 and
 self.getCurrentState().asInt() >= APDU.STATE_INITIAL
 and
 self.getCurrentState().asInt() <= APDU.STATE_FULL_OUTGOING
 and
 self.Lc.asInt() >= 0
 and
 self.Lc.asInt() < 256
 and
 self.Lr.asInt() >= 0
 and
 self.Lr.asInt() <= 256
 and
 self.Le.asInt() >= 0
 and
 self.Le.asInt() <= 256

...

context APDU::setIncomingAndReceive(): JShort
 pre : self.APDU_state = 1
 -- and
 -- ’self.Lc bytes still to be received’
 post: (
 not excThrown(java::lang::Exception)
 and
 self.APDU_state = 2
 and
 result.asInt() >= 0
 and
2003-05-20

50 Appendices
 result.asInt() <= self.Lc@pre
 and
 self.Lc = self.Lc@pre - result.asInt()
 and
 result.asInt()+5 <= APDU.BUFFERSIZE
 -- and
 -- ’self.Lc bytes still to be received’
 -- and
 -- ’data received in self.buffer->subSequence(6,

-- 6+result.asInt()-
1)’
)
 or
 (
 excThrown(APDUException)
 and
 (

APDUException.systemInstance.getReason().asInt()
 = APDUException.IO_ERROR
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.T1_IFD_ABORT
)
)

context APDU::receiveBytes(bOff: JShort): JShort
 pre : self.getCurrentState().asInt()
 = APDU.STATE_PARTIAL_INCOMING

 and
 bOff.asInt() >= 0
 and
 bOff.asInt()+self.getInBlockSize().asInt()
 <= APDU.BUFFERSIZE.asInt()
 -- and
 -- ’self.Lc.asInt() bytes still to be received’
 post: (
 not excThrown(java::lang::Exception)
 and
 (
 self.getCurrentState().asInt()
 = APDU.STATE_PARTIAL_INCOMING

 or
 self.getCurrentState().asInt()
 = APDU.STATE_FULL_INCOMING

)
 and
 result.asInt() >= 0
 and
2003-05-20

Appendices 51
 result.asInt() <= self.Lc@pre.asInt()
 and
 self.Lc.asInt()
 = self.Lc@pre.asInt() - result.asInt()

 and
 result.asInt()+bOff.asInt()
 <= APDU.BUFFERSIZE.asInt()

 -- and
 -- ’self.Lc.asInt() bytes still to be received’
 -- and
 -- ’data received in self.buffer->subSequence(

-- bOff.asInt()+1, bOff.asInt()+1+result.asInt()-1)’

)
 or
 (
 excThrown(APDUException)
 (

APDUException.systemInstance.getReason().asInt()
 = APDUException.IO_ERROR
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.T1_IFD_ABORT
)
)

context APDU::setOutgoing(): JShort
 pre : self.getCurrentState().asInt() = APDU::STATE_INITIAL
 or
 (
 self.getCurrentState().asInt()
 = APDU::STATE_FULL_INCOMING

 and
 self.Lc.asInt() = 0
)
 post: (
 not excThrown(java::lang::Exception)
 and
 self.getCurrentState().asInt()
 = APDU::STATE_OUTGOING

 and
 result.asInt() = self.Le.asInt()
 -- and
 -- ’self.Le.asInt() is the terminal expected
 -- response length’

)
 or
 (
2003-05-20

52 Appendices
 excThrown(APDUException)
 and
 APDUException.systemInstance.getReason().asInt()
 = APDUException.IO_ERROR
)

context APDU::sendBytes(bOff: JShort, len: JShort)
 pre : (
 self.getCurrentState().asInt()
 = APDU::STATE_OUTGOING_LENGTH_KNOWN
 or
 self.getCurrentState().asInt()
 = APDU.STATE_PARTIAL_OUTGOING

)
 and
 len.asInt() >= 0
 and
 len.asInt() <= self.Lr.asInt()
 and
 bOff.asInt()+len.asInt() <= APDU.BUFFERSIZE.asInt()
 post: (
 not excThrown(java::lang::Exception)
 and
 (
 self.getCurrentState().asInt()
 = APDU.STATE_PARTIAL_OUTGOING
 or
 self.getCurrentState().asInt()
 = APDU.STATE_FULL_OUTGOING

)
 and
 self.Lr.asInt() = self.Lr@pre.asInt()-len.asInt()
 -- and
 -- (
 -- self.Lr.asInt() >= 0
 -- implies

-- ’self.buffer->subSequence(bOff.asInt()+1,
 -- bOff.asInt()+1+len.asInt()-1) sent’
 --)
 -- and
 -- (
 -- self.Lr.asInt() = 0
 -- implies

-- ’self.buffer->subSequence(bOff.asInt()+1,
 -- bOff.asInt()+1+len.asInt()-1) will
 -- be sent later! Namely at end of current
 -- process invocation.
 -- so self.buffer->subSequence(
2003-05-20

Appendices 53
 -- bOff.asInt()+1,

-- bOff.asInt()+1+len.asInt()-1) shouldn’t
 -- be altered.’
 --)
 -- and
 -- ’self.Lr.asInt() bytes still to be sent’
)
 or
 (
 excThrown(APDUException)
 and
 (

APDUException.systemInstance.getReason().asInt()
 = APDUException.ILLEGAL_USE
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.IO_ERROR
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.NO_T0_GETRESPONSE
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.T1_IFD_ABORT
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.NO_T0_REISSUE
 or

APDUException.systemInstance.getReason().asInt()
 = APDUException.BUFFER_BOUNDS
)
)

...

endpackage
2003-05-20

54 Appendices
javacard.framework.APDUException

package javacard::framework

-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this class is naturally free to represent
-- the system state
-- with the help of other class and instance fields.
--
-- private static APDUException systemInstance;
-- private short reason;

context APDUException def:
 let systemInstance: APDUException -- static
 let reason: JShort

context APDUException
 inv: APDUException.systemInstance <> null

context APDUException::APDUException(reason: JShort)
 pre : true
 post: (
 not excThrown(java::lang::Exception)
 and
 self.getReason().asInt() = reason.asInt()
)
 or
 (
 excThrown(SystemException)
 and
 SystemException.systemInstance.getReason().asInt()
 = SystemException.NO_TRANSIENT_SPACE
)

context APDUException::getReason(): JShort
 pre : true
 post: not excThrown(java::lang::Exception)
 and
 result.asInt() = self.reason.asInt()
2003-05-20

Appendices 55
context APDUException::setReason(reason: JShort)
 pre : true
 post: not excThrown(java::lang::Exception)
 and
 self.getReason().asInt() = reason.asInt()

-- static
context APDUException::throwIt(reason: JShort)
 pre : true
 post: excThrown(APDUException)
 and
 APDUException.systemInstance.getReason().asInt() =
reason.asInt()

endpackage
2003-05-20

56 Appendices
javacard.framework.Applet

package javacard::framework

...

-- protected final
context Applet::register(bArray: Sequence(JByte),
 bOffset: JShort,
 bLength: JByte)
 pre : true
 post: if
 (
 bLength.asInt() >= 5
 and
 bLength.asInt() <= 16
 and
 bOffset.asInt() >= 0
 and
 bArray->notEmpty()
 and
 bOffset.asInt()+bLength.asInt() <= bArray->size()
)
 then
 (
 not excThrown(java::lang::Exception)
 or
 excThrown(TransactionException)
)
 endif
 and
 (
 not excThrown(java::lang::Exception)
 or
 (
 excThrown(java::lang::NullPointerException)
 and
 bArray = null
)
 or
 (
 excThrown(java::lang::ArrayIndexOutOfBoundsEx
ception)
 and
 (
 bOffset.asInt() < 0
 or
 bLength.asInt() < 0
 or
2003-05-20

Appendices 57
 bOffset.asInt()+bLength.asInt()
 > bArray->size()

)
)
 or
 (
 excThrown(SystemException)
 and
 (
 (
 SystemException.systemInstance.

getReason().asInt()= SystemException.ILLEGAL_AID

 and
 (
 bLength.asInt() < 5
 or
 bLength.asInt() > 16
)
)
 or
 (
 SystemException.systemInstance.
 getReason().asInt()= SystemException.ILLEGAL_VALUE

 -- and
 -- (

-- the AID bytes in bArray are already in
 -- use
 -- or

-- the RID portion of the AID bytes does
 -- not match

-- the RID portion of the Java Card name
 -- of the applet
 -- or
 -- a JCRE initiated install() method ex
 -- ecution is not
 -- in progress
 --)
)
)
)
)

...

endpackage
2003-05-20

58 Appendices
javacard.framework.JCSystem

package javacard::framework

-- PUBLIC FIELDS
-- public static final byte CLEAR_ON_DESELECT;
-- public static final byte CLEAR_ON_RESET;
-- public static final byte NOT_A_TRANSIENT_OBJECT;
--
--
-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this class is naturally free to represent
-- the system state
-- with the help of other class and instance fields.
--
-- In the context of JCSystem, there are further complica
-- tions. JCSystem does
-- not provide a piece of functionality that provides an addi
-- tion to the bare
-- JCVM and that can be understood in isolation. The parts of
-- the system state
-- that are represented by the variables below, can be changed
-- by normal Java
-- Card statements, i.e. as ’side effects’ of certain virtual
-- machine instructions.
-- For instance, the variable activeContext may need to be
-- changed at every method
-- invocation. All this means that ultimately a specification
-- of the Java Card API
-- cannot be considered on its own, but has to be considered
-- together with a
-- formalisation of the Java Card language itself.
--
-- //The amount of free (i.e. unallocated) transient memory
-- private static int freeTransient;
--
-- private static byte previousContext;
-- private static byte selectedContext;
-- private static byte activeContext;
--
-- private static byte transactionDepth;
--
-- //registeredAIDs is the domain of appletTable
2003-05-20

Appendices 59
-- //the objects in registeredAIDs are of type AID
-- //appletTable is a partial function from AIDs to applets
-- private static Set registeredAIDs;
-- private static Map appletTable;
--
-- private static byte JCRE_CONTEXT;

context JCSystem def:
 let freeTransient: Integer
 let previousContext: JByte
 let selectedContext: JByte
 let activeContext: JByte
 let transactionDepth: JByte
 let registeredAIDs: Set
 let appletTable: (Map)
 let JCRE_CONTEXT: JByte

context JCSystem inv:
 JCSystem.NOT_A_TRANSIENT_OBJECT = 0
 and
 JCSystem.CLEAR_ON_RESET = 1
 and
 JCSystem.CLEAR_ON_DESELECT = 2
 and
 (
 JCSystem.transactionDepth.asInt() = 0
 or
 JCSystem.transactionDepth.asInt() = 1
)

...

-- static

context JCSystem::makeTransientBooleanArray(length: JShort,
 event: JByte):
Sequence(Boolean)
 pre : true
 post: if
 (
 length.asInt() >= 0
 and
 length.asInt() <= JCSystem.freeTransient@pre
 and
 (
 event.asInt() = JCSystem.CLEAR_ON_RESET
 or
2003-05-20

60 Appendices
 event.asInt() = JCSystem.CLEAR_ON_DESELECT
)
 and
 (
 event.asInt() = JCSystem.CLEAR_ON_DESELECT
 implies
 JCSystem.selectedContext.asInt()
 = JCSystem.activeContext.asInt()

)
)
 then
 (
 not excThrown(java::lang::Exception)
 and
 not (result = null)
 and
 result->size() = length.asInt()
 and
 result.oclIsNew()
 and
 JCSystem.isTransient(result).asInt()
 = event.asInt()

 and
 JCSystem.freeTransient
 = JCSystem.freeTransient@pre-length.asInt()
 and
 result->forAll(b: Boolean|b = false)
)
 endif
 and
 if
 true
 then
 (
 not excThrown(java::lang::Exception)
 or
 (
 excThrown(java::lang::NegativeArraySizeExcep
tion)
 and
 length.asInt() < 0
)
 or
 (
 excThrown(SystemException)
 and
 (
 (
 SystemException.systemInstance.getRea
son().asInt()
2003-05-20

Appendices 61
 = SystemException.ILLEGAL_VALUE
 and
 event.asInt() <> JCSystem.CLEAR_ON_RESET
 and

event.asInt() <> JCSystem.CLEAR_ON_DESELECT
)
 or
 (
 SystemException.systemInstance.getRea
son().asInt()
 = SystemException.NO_TRANSIENT_SPACE
 and
 JCSystem.freeTransient < length.asInt()
)
 or
 (
 SystemException.systemInstance.getRea
son().asInt()
 = SystemException.ILLEGAL_TRANSIENT
 and

event.asInt() = JCSystem.CLEAR_ON_DESELECT
 and
 JCSystem.selectedContext.asInt() <> JCSys
tem.activeContext.asInt()
)
)
)
)
 endif

-- static
context JCSystem::beginTransaction()
 pre : true
 post: if
 JCSystem.transactionDepth.asInt@pre() = 0
 then
 (
 not excThrown(java::lang::Exception)
 and
 JCSystem.transactionDepth.asInt() = 1
)
 endif
 and
 if
 JCSystem.transactionDepth.asInt@pre() = 1
 then
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.getRea
son().asInt()
2003-05-20

62 Appendices
 = TransactionException.IN_PROGRESS
)
 endif

-- static
context JCSystem::abortTransaction()
 pre : true
 post: if
 JCSystem.transactionDepth.asInt@pre() = 1
 then
 (
 not excThrown(java::lang::Exception)
 and
 JCSystem.transactionDepth.asInt() = 0
)
 endif
 and
 if
 JCSystem.transactionDepth.asInt@pre() = 0
 then
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.getRea
son().asInt()
 = TransactionException.NOT_IN_PROGRESS
)
 endif

-- static
context JCSystem::commitTransaction()
 pre : true
 post: if
 JCSystem.transactionDepth.asInt@pre() = 1
 then
 (
 not excThrown(java::lang::Exception)
 and
 JCSystem.transactionDepth.asInt() = 0
)
 endif
 and
 if
 JCSystem.transactionDepth.asInt@pre() = 0
 then
 (
 excThrown(TransactionException)
2003-05-20

Appendices 63
 and
 TransactionException.systemInstance.getRea
son().asInt()
 = TransactionException.NOT_IN_PROGRESS
)
 endif

-- static
context JCSystem::getAppletShareableInterfaceObject(serve
rAID: AID,

parameter: JByte):
Shareable
 pre : true
 post: if
 not (serverAID = null)
 then
 not excThrown(java::lang::Exception)
 endif
 and
 if
 (
 not (serverAID = null)
 and
 JCSystem.previousContext.asInt()
 = JCSystem.JCRE_CONTEXT.asInt()

 and
 JCSystem.registeredAIDs.has(serverAID)
)
 then
 (
 not excThrown(java::lang::Exception)
 and
 result =
 JCSystem.appletTable.apply(serverAID).
 oclAsType(Applet).

 getShareableInterfaceObject(null, parameter)

)
 endif
 and
 if
 (
 JCSystem.previousContext.asInt() <> JCSys
tem.JCRE_CONTEXT.asInt()
 and
 JCSystem.registeredAIDs.has(serverAID)
)
 then
 (
 not excThrown(java::lang::Exception)
 and
2003-05-20

64 Appendices
 result =
 JCSystem.appletTable.apply(serverAID).oclAsTy
pe(Applet).
 getShareableInterfaceObject(
 JCSystem.getPreviousContextAID(), parame
ter)
)
 endif
 and
 if
 (
 not (serverAID = null)
 and
 not JCSystem.registeredAIDs.has(serverAID)
)
 then
 (
 not excThrown(java::lang::Exception)
 and
 result = null
)
 endif

...

endpackage
2003-05-20

Appendices 65
javacard.framework.OwnerPIN

package javacard::framework

-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this class is naturally free to represent
-- the system state
-- with the help of other class and instance fields.
--
-- private byte maxPINSize;
-- private byte maxTries;
-- private boolean isValidated;
-- private byte triesRemaining;
-- private byte[] pin;

context OwnerPIN def:
 let maxPINSize: JByte
 let maxTries: JByte
 let isValidated: Boolean
 let triesRemaining: JByte
 let pin: Sequence(JByte)

context OwnerPIN inv:
 self.maxPINSize.asInt() > 0
 and
 self.maxTries.asInt() > 0
 and
 self.triesRemaining.asInt() >= 0
 and
 self.triesRemaining.asInt() <= self.maxTries.asInt()
 and
 self.pin <> null
 and
 self.pin->size() <= self.maxPINSize.asInt()

...
2003-05-20

66 Appendices
context OwnerPIN::update(pin: Sequence(JByte),
 offset: JShort,
 length: JByte)
 pre : pin <> null
 and
 offset.asInt() >= 0
 and
 offset.asInt()+length.asInt() <= pin->size()
 and
 length.asInt() >= 0
 post: (
 not excThrown(java::lang::Exception)
 and
 Util.arrayCompare(self.pin, 0, pin,
 offset, length) = 0

)
 or
 (
 excThrown(PINException)
 and
 length.asInt() > self.maxPINSize
)
 or
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.reason
 = TransactionException.BUFFER_FULL
)

...

endpackage
2003-05-20

Appendices 67
javacard.framework.PIN

package javacard::framework

-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this interface is naturally free to repre
-- sent the system state
-- with the help of other class and instance fields.
--
-- private byte maxPINSize;
-- private byte maxTries;
-- private boolean isValidated;
-- private byte triesRemaining;
-- private byte[] pin;

context PIN def:
 let maxPINSize: JByte
 let maxTries: JByte
 let isValidated: Boolean
 let triesRemaining: JByte
 let pin: Sequence(JByte)

context PIN inv:
 self.maxPINSize.asInt() > 0
 and
 self.maxTries.asInt() > 0
 and
 self.triesRemaining.asInt() >= 0
 and
 self.triesRemaining.asInt() <= self.maxTries.asInt()
 and
 self.pin <> null
 and
 self.pin->size() <= self.maxPINSize.asInt()

...

context PIN::check(pin: Sequence(JByte),
 offset: JShort,
 length: JByte): Boolean
2003-05-20

68 Appendices
 pre : true
 post: (
 if
 self.triesRemaining.asInt() = 0
 then
 result = false
 endif
)
 and
 (
 if
 (
 self.triesRemaining.asInt() > 0
 and
 pin <> null
 and
 offset.asInt() >= 0
 and
 length.asInt() >= 0
 and
 offset.asInt()+length.asInt() <= pin->size()
 and
 Util.arrayCompare(self.pin, 0, pin, offset,
length) = 0
)
 then
 (
 result = true
 and
 self.isValidated
 and
 self.triesRemaining.asInt() = self.max
Tries.asInt()
)
 endif
)
 and
 (
 if
 (
 self.triesRemaining.asInt() > 0
 and
 not
 (
 pin <> null
 and
 offset.asInt() >= 0
 and
 length.asInt() >= 0
 and
 offset.asInt()+length.asInt() <= pin->size()
2003-05-20

Appendices 69
 and
 Util.arrayCompare(self.pin, 0, pin, offset,
length) = 0
)
)
 then
 (
 not self.isValidated
 and
 self.triesRemaining.asInt() = self.triesRemain
ing@pre.asInt()-1
 and
 (
 (
 not excThrown(java::lang::Exception)
 and
 result = false
)
 or
 excThrown(java::lang::NullPointerException)
 or
 excThrown(java::lang::ArrayIndexOutOf
BoundsException)
)
)
 endif
)

...

endpackage
2003-05-20

70 Appendices
javacard.framework.Util

package javacard::framework

-- static final native
context Util::arrayCopy(src: Sequence(JByte),

srcOff: JShort,
dest: Sequence(JByte),
destOff: JShort,
length: JShort): JShort

 pre : true
 post: -- not assignable
 (
 destOff.asInt() >= 1
 implies
 dest->subSequence(1, destOff.asInt())
 = dest@pre->subSequence(1, destOff.asInt())
)
 and
 (
 destOff.asInt()+length.asInt()+1 <= dest->size()
 implies
 dest->subSequence(de
stOff.asInt()+length.asInt()+1, dest->size())
 = dest@pre->subSequence(de
stOff.asInt()+length.asInt()+1, dest->size())
)
 --
 and
 (
 if
 (
 src <> null
 and
 srcOff.asInt() >= 0
 and
 srcOff.asInt()+length.asInt() <= src->size()
 and
 dest <> null
 and
 destOff.asInt() >= 0
 and
 destOff.asInt()+length.asInt() <= dest->size()
 and
 length.asInt() >= 0
)
 then
 (
 (
2003-05-20

Appendices 71
 not excThrown(java::lang::Exception)
 and
 src@pre->subSequence(srcOff.asInt()+1, sr
cOff.asInt()+length.asInt())
 = dest->subSequence(destOff.asInt()+1, de
stOff.asInt()+length.asInt())
)
 or
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.getRea
son().asInt()
 = TransactionException.BUFFER_FULL
 and
 JCSystem.getTransactionDepth().asInt() = 1
)
)
 endif
)
 and
 (
 if
 true
 then
 (
 not excThrown(java::lang::Exception)
 or
 (
 excThrown(java::lang::NullPointerException)
 and
 (
 src = null
 or
 dest = null
)
)
 or
 (
 excThrown(java::lang::ArrayIndexOutOf
BoundsException)
 and
 (
 srcOff.asInt() < 0
 or
 destOff.asInt() < 0
 or

srcOff.asInt()+length.asInt() > src->size()
 or
 destOff.asInt()+length.asInt() > dest->si
ze()
2003-05-20

72 Appendices
 or
 length.asInt() < 0
)
)
 or
 (
 excThrown(TransactionException)
 and
 TransactionException.systemInstance.getRea
son().asInt()
 = TransactionException.BUFFER_FULL
 and
 JCSystem.getTransactionDepth().asInt() = 1
)
)
 endif
)

-- static final native
context Util::arrayCompare(src: Sequence(JByte),
 srcOff: JShort,
 dest: Sequence(JByte),
 destOff: JShort,
 length: JShort): JByte
 pre : true
 post: (
 if
 (
 src <> null
 and
 srcOff.asInt() >= 0
 and
 srcOff.asInt()+length.asInt() <= src->size()
 and
 dest <> null
 and
 destOff.asInt() >= 0
 and
 destOff.asInt()+length.asInt() <= dest->size()
 and
 length.asInt() >= 0
)
 then
 (
 not excThrown(java::lang::Exception)
 and
 (
 result.asInt() = -1
 or
 result.asInt() = 0
2003-05-20

Appendices 73
 or
 result.asInt() = 1
)
 and
 (
 src->subSequence(srcOff.asInt()+1,
 srcOff.asInt()+length.asInt())

= dest->subSequence(destOff.asInt()+1,
destOff.asInt()+length.asInt())

 implies
 result.asInt() = 0
)
 and
 (
 Sequence{1..length.asInt()}
 ->exists(i: Integer|

 (
 src->at(srcOff.asInt()+i)
 < dest->at(destOff.asInt()+i)

 and
 Sequence{1..i-1}
 ->forAll(j: Integer|

 src->at(srcOff.asInt()+j)
 = dest->at(destOff.asInt()+j))

)
 implies
 result.asInt() = -1
)
 and
 (
 Sequence{1..length.asInt()}
 ->exists(i: Integer|

 (
 src->at(srcOff.asInt()+i)

> dest->at(destOff.asInt()+i)

 and
 Sequence{1..i-1}
 ->forAll(j: Integer|

 src->at(srcOff.asInt()+j)
 = dest->at(destOff.asInt()+j))

)
 implies
 result.asInt() = 1
)
)
 endif
)
2003-05-20

74 Appendices
 and
 (
 if
 true
 then
 (
 not excThrown(java::lang::Exception)
 or
 (
 excThrown(java::lang::NullPointerException)
 and
 (
 src = null
 or
 dest = null
)
)
 or
 (
 excThrown(java::lang::ArrayIndexOutOf
BoundsException)
 and
 (
 srcOff.asInt() < 0
 or
 destOff.asInt() < 0
 or
 length.asInt() < 0
 or

srcOff.asInt()+length.asInt() > src->size()
 or
 destOff.asInt()+length.asInt()
 > dest->size()

)
)
)
 endif
)

...

endpackage
2003-05-20

Appendices 75
javacard.framework.service.BasicService

-- import javacard.framework.*;

package javacard::framework::service

...

context BasicService::processDataIn(apdu: APDU): Boolean
 pre : apdu.getCurrentState().asInt() = APDU.STATE_INITIAL

or
apdu.getCurrentState().asInt() = APDU.STATE_FULL_INCOMING

 post: not excThrown(java::lang::Exception)
and
(
 apdu.getCurrentState().asInt() = AP

DU.STATE_FULL_INCOMING
 or
 apdu.getCurrentState().asInt() = APDU.STATE_OUTGOING
)

context BasicService::processCommand(apdu: APDU): Boolean
 pre : apdu.getCurrentState().asInt() = APDU.STATE_INITIAL

or
apdu.getCurrentState().asInt() = APDU.STATE_FULL_INCOMING
or
apdu.getCurrentState().asInt() = APDU.STATE_OUTGOING

 post: not excThrown(java::lang::Exception)
and
apdu.getCurrentState().asInt() = APDU.STATE_OUTGOING

context BasicService::receiveInData(apdu: APDU): JShort
 pre : true
 post: not excThrown(java::lang::Exception)

or
(
 excThrown(ServiceException)
 and
 (
 (
 ServiceException.systemInstance.getRea

son().asInt()
 = ServiceException.CANNOT_ACCESS_IN_COMMAND
 and
 apdu.getCurrentState().asInt() <> AP

DU::STATE_INITIAL
2003-05-20

76 Appendices
 and
 apdu.getCurrentState().asInt()

 <> APDU::STATE_FULL_INCOMING
)
 or
 ServiceException.systemInstance.getReason().asInt()
 = ServiceException.COMMAND_DATA_TOO_LONG
)
)

...

endpackage
2003-05-20

Appendices 77
javacard.framework.service.Dispatcher

-- import java.lang.*;
-- import javacard.framework.*;

package javacard::framework::service

...

context Dispatcher::addService(service: Service, phase: JBy
te)
 pre : true
 post: not excThrown(java::lang::Exception)

or
(
 excThrown(ServiceException)
 and
 (
 (
 ServiceException.systemInstance.getRea

son().asInt()
 = ServiceException.ILLEGAL_PARAM
 and
 (
 (
 phase.asInt() <> Dispatcher.PROCESS_NONE

 and
 phase.asInt() <> Dispat

cher.PROCESS_INPUT_DATA
 and

 phase.asInt() <> Dispatcher.PROCESS_COMMAND
 and

 phase.asInt() <> Dispat
cher.PROCESS_OUTPUT_DATA

)
 or
 service = null
)
)
 or
 ServiceException.systemInstance.getReason().asInt()
 = ServiceException.DISPATCH_TABLE_FULL
)

)

context Dispatcher::removeService(service: Service, phase:
JByte)
2003-05-20

78 Appendices
 pre : true
 post: not excThrown(java::lang::Exception)

or
(

 excThrown(ServiceException)
 and
 ServiceException.systemInstance.getReason().asInt()
 = ServiceException.ILLEGAL_PARAM
 and
 (
 (
 phase.asInt() <> Dispatcher.PROCESS_NONE

 and
 phase.asInt() <> Dispatcher.PROCESS_INPUT_DATA

 and
 phase.asInt() <> Dispatcher.PROCESS_COMMAND

 and
 phase.asInt() <> Dispatcher.PROCESS_OUTPUT_DATA
)
 or
 service = null
)
)

context Dispatcher::dispatch(command: APDU, phase: JByte):
Exception
 pre : true
 post: not excThrown(java::lang::Exception)

or
(
 excThrown(ServiceException)
 and
 ServiceException.systemInstance.getReason().asInt()
 = ServiceException.ILLEGAL_PARAM
 and
 phase.asInt() <> Dispatcher.PROCESS_INPUT_DATA

 and
 phase.asInt() <> Dispatcher.PROCESS_COMMAND

 and
phase.asInt() <> Dispatcher.PROCESS_OUTPUT_DATA

)

...

endpackage
2003-05-20

Appendices 79
javacard.framework.service.RMIService

-- import java.rmi.*;

package javacard::framework::service

...

context RMIService::processCommand(apdu: APDU): Boolean
 pre : true
 post: (
 not excThrown(java::lang::Exception)
 and
 (
 apdu.getCurrentState().asInt() = AP
DU.STATE_INITIAL
 or
 apdu.getCurrentState().asInt() = AP
DU.STATE_FULL_INCOMING
)
)
 or
 (
 excThrown(ServiceException)
 and
 (
 (
 ServiceException.systemInstance.getRea
son().asInt()

= ServiceException.CANNOT_ACCESS_IN_COMMAND
 and
 apdu.getCurrentState().asInt() <> AP
DU.STATE_INITIAL
 or
 apdu.getCurrentState().asInt() <> AP
DU.STATE_FULL_INCOMING
)
 or
 ServiceException.systemInstance.getRea
son().asInt()

= ServiceException.REMOTE_OBJECT_NOT_EXPORTED
)
)
 or
 excThrown(java::lang::SecurityException)

...

endpackage
2003-05-20

80 Appendices
javacard.framework.service.SecurityService

package javacard::framework::service

...

context SecurityService::isCommandSecure(properties: JByte):
Boolean
 pre : true
 post: not excThrown(java::lang::Exception)
 or
 (
 excThrown(ServiceException)
 and

ServiceException.systemInstance.getReason().asInt()
 = ServiceException.ILLEGAL_PARAM
 and
 properties.asInt()
 <> SecurityServi
ce.PROPERTY_INPUT_CONFIDENTIALITY
 and
 properties.asInt() <> SecurityServi
ce.PROPERTY_INPUT_INTEGRITY
 and
 properties.asInt()
 <> SecurityServi
ce.PROPERTY_OUTPUT_CONFIDENTIALITY
 and
 properties.asInt() <> SecurityServi
ce.PROPERTY_OUTPUT_INTEGRITY
)

...

endpackage
2003-05-20

Appendices 81
javacard.security.KeyBuilder

package javacard::security

-- static
context KeyBuilder::buildKey(keyType: JByte,
 keyLength: JShort,
 keyEncrypt: Boolean): Key
 pre : true
 post: not excThrown(java::lang::Exception)
 or
 (
 excThrown(CryptoException)
 and
 CryptException.systemInstance.getReason().asInt()
 = CryptoException.NO_SUCH_ALGORITHM
)

endpackage
2003-05-20

82 Appendices
javacard.security.MessageDigest

package javacard::security

...

-- abstract
context MessageDigest::doFinal(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort,
 outBuff: Sequence(JByte),
 outOffset: JShort): JShort
 pre : inBuff <> null
 and
 outBuff <> null
 and
 inOffset.asInt() >= 0
 and
 inLength.asInt() >= 0
 and
 inOffset.asInt()+inLength.asInt() <= inBuff->size()
 and
 outOffset.asInt() <= outBuff->size()
 post: true

-- abstract
context MessageDigest::update(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort)
 pre : inBuff <> null
 and
 inOffset.asInt() >= 0
 and
 inLength.asInt() >= 0
 and
 inOffset.asInt()+inLength.asInt() <= inBuff->size()
 post: true

...

endpackage
2003-05-20

Appendices 83
javacard.security.RSAPrivateKey

package javacard::security

-- PRIVATE FIELDS
-- The variables below are not part of the informal specifica
-- tion given by SUN.
-- They are given a name, a type and a meaning that reflects a
-- part of the
-- system state, in order to be able to make a meaningful spe
-- cification. An
-- implementer of this class is naturally free to represent
-- the system state
-- with the help of other class and instance fields.
--
-- private byte[] valueExponent;
-- private byte[] valueModulus;
-- private boolean isInitExponent;
-- private boolean isInitModulus;

context RSAPrivateKey def:
 let valueExponent: Sequence(JByte)
 let valueModulus: Sequence(JByte)
 let isInitExponent: Boolean
 let isInitModulus: Boolean

context RSAPrivateKey inv:
 self.isInitExponent
 and
 self.isInitModulus
 implies
 self.isInitialized()

context RSAPrivateKey::setModulus(buffer: Sequence(JByte),
 offset: JShort,
 length: JShort)
 pre : buffer <> null
 and
 offset.asInt() >= 0
 and
 length.asInt() >= 0
 and
 offset.asInt()+length.asInt() <= buffer->size()
 post: (
 not excThrown(java::lang::Exception)
 and
2003-05-20

84 Appendices
 self.isInitModulus
 and
 (
 not self.oclIsKindOf(javacardx::crypto::Key
Encryption)
 or
 self.getKeyCipher() = null
 implies
 Util.arrayCompare(self.valueModulus, 0, buf
fer,
 offset,
length) = 0
)
)
 or
 (
 excThrown(CryptoException)
 and
 CryptoException.systemInstance.getReason().asInt()
 = CryptoException.ILLEGAL_VALUE
)

context RSAPrivateKey::setExponent(buffer: Sequence(JByte),
 offset: JShort,
 length: JShort)
 pre : buffer <> null
 and
 offset.asInt() >= 0
 and
 length.asInt() >= 0
 and
 offset.asInt()+length.asInt() <= buffer->size()
 post: (
 not excThrown(java::lang::Exception)
 and
 self.isInitExponent
 and
 (
 not self.oclIsKindOf(javacardx::crypto::Key
Encryption)
 or
 self.getKeyCipher() = null
 implies
 Util.arrayCompare(self.valueExponent, 0, buf
fer,

offset, length) = 0
)
)
 or
 (
2003-05-20

Appendices 85
 excThrown(CryptoException)
 and
 CryptoException.systemInstance.getReason().asInt()
 = CryptoException.ILLEGAL_VALUE
)

context RSAPrivateKey::getModulus(buffer: Sequence(JByte),
 offset: JShort): JShort
 pre : buffer <> null
 and
 offset.asInt() >= 0
 and
 offset.asInt() < buffer->size()
 and
 self.isInitialized()
 post: result.asInt() = self.valueModulus->size()
 and
 Util.arrayCompare(self.valueModulus, 0, buffer, off
set,
 self.valueModulus->si
ze()) = 0

context RSAPrivateKey::getExponent(buffer: Sequence(JByte),
 offset: JShort): JShort
 pre : buffer <> null
 and
 offset.asInt() >= 0
 and
 offset.asInt() < buffer->size()
 and
 self.isInitialized()
 post: result.asInt() = self.valueExponent->size()
 and
 Util.arrayCompare(self.valueExponent, 0, buffer, off
set,
 self.valueExponent-
>size()) = 0

endpackage
2003-05-20

86 Appendices
javacard.security.Signature

package javacard::security

...

-- abstract
context Signature::update(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort)
 pre : inBuff <> null
 and
 inOffset.asInt() >= 0
 and
 inLenght.asInt() >= 0
 and
 inOffset.asInt()+inLength.asInt() <= inBuff->size()
 post: not excThrown(java::lang::Exception)
 or
 (
 excThrown(CryptoException)
 and

CryptoException.systemInstance.getReason().asInt()
 = CryptoException.UNINITIALIZED_KEY
)

-- abstract
context Signature::sign(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort,
 sigBuff: Sequence(JByte),
 sigOffset: JShort): JShort
 pre : inBuff <> null
 and
 sigBuff <> null
 and
 inOffset.asInt() >= 0
 and
 inLength.asInt() >= 0
 and
 sigOffset.asInt() >= 0
 and
 inOffset.asInt()+inLength.asInt() <= inBuff->size()
 post: not excThrown(java::lang::Exception)
 or
 (
 excThrown(CryptoException)
 and
 (
2003-05-20

Appendices 87
 CryptoException.systemInstance.getRea
son().asInt()
 = CryptoException.UNINITIALIZED_KEY
 or
 CryptoException.systemInstance.getRea
son().asInt()
 = CryptoException.INVALID_INIT
 or
 CryptoException.systemInstance.getRea
son().asInt()
 = CryptoException.ILLEGAL_USE
)
)

...

endpackage
2003-05-20

88 Appendices
javacardx.crypto.Cipher

package javacardx::crypto

context Cipher def:
 let key: Key
 let mode: JByte
 let algorithm: JByte
 let initialized: Boolean = false

context Cipher::getInstance(algorithm: JByte,
 externalAccess: Boolean): Cipher
 pre : true
 post: (
 not excThrown(java::lang::Exception)
 and
 self.algorithm.asInt() = algorithm.asInt()
)
 or
 (
 excThrown(javacard::security::CryptoException)
 and
 javacard::security::CryptoException.systemInstan
ce.getReason()
 = javacard::security::CryptoExcep
tion.NO_SUCH_ALGORITHM
)

context Cipher::init(theKey: Key, theMode: JByte)
 pre : true
 post: (
 not excThrown(java::lang::Exception)
 and
 self.key = theKey
 and
 self.mode.asInt() = theMode.asInt()
 and
 self.initialized = true
)
 or
 (
 excThrown(javacard::security::CryptoException)
 and
 javacard::security::CryptoException.systemInstan
ce.getReason()
 = javacard::security::CryptoExcep
tion.ILLEGAL_VALUE
2003-05-20

Appendices 89
)

context Cipher::init(theKey: Key,
 theMode: JByte,
 bArray: Sequence(JByte),
 bOff: JShort,
 bLen: JShort)
 pre : true
 post: (
 not excThrown(java::lang::Exception)
 and
 self.key = theKey
 and
 self.mode.asInt() = theMode.asInt()
 and
 self.initialized = true
)
 or
 (
 excThrown(javacard::security::CryptoException)
 and
 javacard::security::CryptoException.systemInstan
ce.getReason()
 = javacard::security::CryptoExcep
tion.ILLEGAL_VALUE
)

context Cipher::getAlgorithm(): JByte
 pre : true
 post: result = self.algorithm

context Cipher::update(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort,
 outBuff: Sequence(JByte),
 outOffset: JShort): JShort
 pre : true
 post: (
 not excThrown(java::lang::Exception)
)
 or
 (
 excThrown(javacard::security::CryptoException)
 and
 (
 (
 javacard::security::CryptoException.systemIn
stance.getReason()
2003-05-20

90 Appendices
 = javacard::security::CryptoExcep
tion.UNINITIALIZED_KEY
 and
 not self.key.isInitialized()
)
 or
 (
 javacard::security::CryptoException.systemIn
stance.getReason()
 = javacard::security::CryptoExcep
tion.INVALID_INIT
 and
 not self.initialized
)
 or
 javacard::security::CryptoException.systemIn
stance.getReason()
 = javacard::security::CryptoExcep
tion.ILLEGAL_USE
)
)

context Cipher::doFinal(inBuff: Sequence(JByte),
 inOffset: JShort,
 inLength: JShort,
 outBuff: Sequence(JByte),
 outOffset: JShort): JShort
 pre : true
 post: (
 not excThrown(java::lang::Exception)
)
 or
 (
 excThrown(javacard::security::CryptoException)
 and
 (
 (
 javacard::security::CryptoException.systemIn
stance.getReason()
 = javacard::security::CryptoExcep
tion.UNINITIALIZED_KEY
 and
 not self.key.isInitialized()
)
 or
 (
 javacard::security::CryptoException.systemIn
stance.getReason()
 = javacard::security::CryptoExcep
tion.INVALID_INIT
2003-05-20

Appendices 91
 and
 not self.initialized
)
 or
 javacard::security::CryptoException.systemIn
stance.getReason()
 = javacard::security::CryptoExcep
tion.ILLEGAL_USE
)
)

endpackage
2003-05-20

	OCL Specifications for the Java Card API
	Daniel Larsson 730527-4651 GU
	Wojciech Mostowski
	Wolfgang Ahrendt
	Abstract
	Sammanfattning
	Preface
	Table of Contents
	1. Introduction
	2. Analysis
	2.1. Formal methods and KeY
	2.2. Java Card
	2.3. Overview of JML and OCL
	2.4. OCL syntax used
	2.5. Comparing JML and OCL
	2.6. Semantics of constraints
	2.7. The null value
	2.8. Exceptions
	2.9. Arithmetic
	2.10. The assignable clause in JML
	2.11. Model fields
	2.12. Method for creating the specifications

	3. Results and conclusions
	3.1. The specifications
	3.2. Verification based on the specifications
	3.3. The strengths of OCL
	3.4. Limitations
	3.5. Conclusions

	4. References

	Appendices
	OCL specifications for the Java Card 2.2 API
	java.lang.Object
	javacard.framework.AID
	javacard.framework.APDU
	javacard.framework.APDUException
	javacard.framework.Applet
	javacard.framework.JCSystem
	javacard.framework.OwnerPIN
	javacard.framework.PIN
	javacard.framework.Util
	javacard.framework.service.BasicService
	javacard.framework.service.Dispatcher
	javacard.framework.service.RMIService
	javacard.framework.service.SecurityService
	javacard.security.KeyBuilder
	javacard.security.MessageDigest
	javacard.security.RSAPrivateKey
	javacard.security.Signature
	javacardx.crypto.Cipher

