
Tableaux + Constraints

Martin Giese and Reiner Hähnle

Chalmers University of Technology
Department of Computing Science

S-41296 Gothenburg, Sweden
{giese|reiner}@cs.chalmers.se

Abstract. There is an increasing number of publications in which the
analytic tableaux calculus is combined with technology based on con-
straint solving. Although the details, as well as the purpose of these
combinations vary widely, the results are invariably referred to as “con-
straint tableaux” or sometimes “constrained tableaux”. We review some
of the combinations and propose a more differentiated nomenclature.

1 Classification of Approaches

In this paper, we present an overview of previous work which in some way uses
constraints in an analytic tableau framework. We shall list all the approaches we
are currently aware of. If anybody knows of relevant publications not mentioned
here, the authors would be happy to include them.

We classify the various approaches according to the location where con-
straints are used in the tableau, in a quite syntactical way. Semantically of
course, this corresponds to what is being constrained in each particular case, so
it is not too surprising that approaches in the same categories seem to use con-
straints for related purposes. Note that we use the word “constrained” as past
participle of the verb “to constrain”, while a “constraint” is a noun, denoting
an entity used to constrain a thing.

We understand our nomenclature as a first proposal and a basis for further
discussion.

2 Constrained Tableaux

The most obvious entity that might be constrained is, of course, the whole
tableau. We propose to call such combinations simply constrained tableau calculi.

Constrained tableaux are used by Degtyarev and Voronkov [1, 2] in their
calculi for ordered superposition based equality handling. The constraints are
mainly used to record ordering restrictions between the ground instantiations of
free variables. But one also sees another interesting use of constraints, namely
that unification constraints for branch closure are added to the global con-
straint instead of applying substitutions globally. For instance, given two lit-
erals p(X), ¬p(a) on the same branch, a constraint X ≡ a would be generated



separately from the formulae on the tableau. In a system using unification, the
substitution [X/a] would be applied globally. This might enable rewriting steps
on other branches, which can shown to be redundant.

Another approach that uses a global constraint on free variable instantiations
is employed in the theorem prover SETHEO [12]. Here, the idea is to check reg-
ularity of tableaux by gathering constraints which ensure that the free variables
are not instantiated in a way that renders two formulae on the same branch
identical. Accordingly, this approach uses ‘dis-unification’ constraints.

3 Constrained Formula Tableaux

Instead of accumulating constraints globally, it is possible to add them to the for-
mulae or signed formulae on a tableau branch. We will then speak of constrained

formula tableaux.
For instance, if a rule application calls for some substitution [X/a], a con-

strained tableau method would typically add the constraint X ≡ a to the global
constraint. In a constrained formula tableau, the constraint X ≡ a is instead
added to every new formula produced by the rule application. One also usually
has constraint propagation, which means that the constraints of the formulae in
the premisses of a rule application accumulated in the constraint of the conclu-
sion.

This approach was used in several papers by Giese for equality handling [7, 6]
and simplification rules [4, 8, 3] in a non-backtracking context. The property of
constrained formula tableaux exploited in this context is that a rule which merely
adds a constrained formula to a tableau branch never introduces a backtracking
point, while a rule which modifies a global constraint usually does.

4 Constrained Branch Tableaux

In between constrained tableau and constrained formula tableaux one has the
possibility to attach constraints to the branches of a tableau. We call this ap-
proach constrained branch tableaux.

This was done by van Eijck [19] for constraints on free variable instantiations
with a similar intention as described above for constrained formulae. A branch
containing a constraint C that is not satisfied by the instantiation for the free
variables may be regarded as closed. As formulae within branches are conjunc-
tively connected, and most constraint languages are closed under intersection,
this does usually not result in greater expressivity, but gives more succinct cal-
culi, when branch closure rules are more complicated than a simple test for a
complementary pair. Note that these constraints on branches could be simulated
by attaching their negations to “false” literals in a constrained formula approach.

To illustrate the constrained branch approach, assume again that a certain
tableau expansion requires a substitution [X/a]. Van Eijck handles this with
constrained branch tableaux by splitting the branch on which the rule would



be applied. On the first branch, the rule is actually applied, performing the
necessary substitution X/a on the result. On the second branch, the constraint
X 6≡ a is added. The effect is that if the final closing substitution substitutes a for
X , the constraint on the second branch becomes false and closes it, so the proof
on the (probably simpler) first branch is sufficient. Otherwise, a proof has to be
found on the second branch, which does not profit from the rule application.

Note that there are probably efficiency problems with this approach. Take
n possible, unrelated rule applications, each requiring a different instantiation.
While these can be applied consecutively in any order in a constrained formula
tableau, the constrained branch approach generates 2n branches to account for
all combinations of constraint satisfaction.

A very different kind of constrained branch tableau was proposed by Hähnle
and Ibens [10], and later refined by Goubault and Schmitt [9]. These contribu-
tions deal with labeled tableau systems for linear temporal logic. Integer order-
ing constraints are used to keep track of the required ordering of points in time.
Branches can be closed exactly if they contain unsatisfiable constraints. In other
words the question of branch closure is delegated to the constraint system. This
reinforces the point made above that constrained branch tableaux are best used
in situations, where branch closure is very complicated.

5 Constrained Subformula Tableaux

To our knowledge, the smallest syntactic entities that have had constraints at-
tached to them are subformulae of the formulae in tableaux. Such constrained

subformula tableaux have been proposed by Peltier [15, 16]. Instead of just jux-
taposing formulae and constraints, Peltier intertwines them. For instance, in a
formula

∀x.∀y.(x = y ∨ p(x, y)) ,

x = y plays the role of a constraint, which makes the formula p(x, y) available
only if x and y are instantiated by different ground terms. The symbol = de-
notes syntactic equality, and not an equality predicate in the usual sense. On
the other hand, quantification over the variables x, y used in the syntactic equal-
ity constraint is possible. This means that the semantics of such a mixture of
formulae and constraints can only be defined with respect to models, in which
the elements of the carrier set are ground terms (such as Herbrand models). The
possibility of attaching different constraints to different parts of a larger formula
is a potential advantage of Peltier’s approach.

6 Constraint Merging Tableaux

There is also a family of approaches which don’t necessarily add constraints to
the tableaux at all. The constraints are used as an intermediate representation
to find out whether a tableau is closed. This invariably requires some kind of
merging operation on sets of closing instantiations for different sub-tableaux. As



these sets are of course represented by some form of constraints, one might as
well talk about constraint merging tableaux.

Constraint merging tableaux have been introduced in the incremental clo-
sure technique of Giese [5, 8]. Van Eijck attempted an implementation in a lazy
functional programming language [17, 18], but the resulting provers were unfor-
tunately incomplete. A successful functional implementation was recently given
by Sörensson and Hähnle [11].

Constraint merging tableaux can be combined very nicely with constrained
formulae. First, constraint merging tableaux are used to avoiding backtracking,
and constrained formula calculi don’t require backtracking, as we noted ear-
lier. And second, as tableau closure is formulated and checked using constraints
anyway, having constraints on the formulae hardly means any extra complexity.

7 Constraint Tableaux

There is finally one approach[14] in which the whole tableau is actually replaced
by a potentially infinite but lazily computed constraint. Here, the constraint is

the tableau, so we can finally talk about a constraint tableau.
There are certain difficulties in finding a correct definition for constraint

semantics and satisfiability testing for lazily computed infinite constraints. On
the other hand, once correct definitions are found, it might turn out that one can
reason algebraically on constraints in a way that is not obvious from a tableau
representation.

Note that the satisfiability check as presented by Ó Nualláin corresponds
quite closely to the ones described under “Constraint Merging Tableaux”. Still,
this might not necessarily be implied by the constraint tableau idea. That’s why
we propose keeping them in a separate section.

8 As Yet Unclassified Approaches

We have come across one more line of work where the term “constraint propaga-
tion” is used in a tableau context, namely that of Massacci [13]. What Massacci
means by that term seems to be essentially unit propagation, using simplifi-
cation rules. There are certainly no separate syntactical entities referred to as
constraints in this work, so we chose to keep it separate from the other techniques
presented in this paper.

9 Conclusion

We attempted to give an overview of the existing literature on combinations
of tableaux and constraint systems. We proposed a systematic, differentiated
nomenclature, which might be used in the future to distinguish between the
different ideas and methods.

We hope to receive comments from the community, both on work we failed
to mentioned here, and on the proposed nomenclature.



References

1. Anatoli Degtyarev and Andrei Voronkov. The undecidability of simultaneous rigid
E-unification. Theoretical Computer Science, 166(1-2):291–300, October 1996.

2. Anatoli Degtyarev and Andrei Voronkov. What you always wanted to know about
rigid E-unification. Technical Report 143, Comp. Science Dept., Uppsala Univer-
sity, 1997.

3. Martin Giese. Simplification rules for constrained formula tableaux. Submitted to
TABLEAUX 2003.

4. Martin Giese. A first-order simplification rule with constraints. In Peter Baum-
gartner and Hantao Zhang, editors, 3rd Int. Workshop on First-Order Theorem
Proving (FTP), St. Andrews, Scotland, TR 5/2000 Univ. of Koblenz, pages 113–
121, 2000.

5. Martin Giese. Incremental closure of free variable tableaux. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proc. Intl. Joint Conf. on Auto-
mated Reasoning, Siena, Italy, volume 2083 of LNCS, pages 545–560. Springer-
Verlag, 2001.

6. Martin Giese. Model generation style completeness proofs for constraint tableaux
with superposition. Technical Report 2001-20, Universität Karlsruhe TH, Ger-
many, 2001. URL: http://www.cs.chalmers.se/~giese/tr01-20.ps.gz.

7. Martin Giese. A model generation style completeness proof for constraint tableaux
with superposition. In Uwe Egly and Christian G. Fermüller, editors, Proc.
Intl. Conf. on Automated Reasoning with Analytic Tableaux and Related Methods,
Copenhagen, Denmark, volume 2381 of LNCS, pages 130–144. Springer, 2002.

8. Martin Giese. Proof Search without Backtracking for Free Variable Tableaux. PhD
thesis, Fakultät für Informatik, Universität Karlsruhe, July 2002.

9. Jean Goubault-Larrecq and Peter H. Schmitt. A tableau system for linear-time
temporal logic. In Ed Brinksma, editor, Proceedings of the Third International
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’97, Enschede, the Netherlands April 02-04, volume 1217 of Lecture Notes
in Computer Science, pages 130–144. Springer, 1997.

10. Reiner Hähnle and Ortrun Ibens. Improving temporal logic tableaux using integer
constraints. In Dov M. Gabbay and Hans Jürgen Ohlbach, editors, Proc. Inter-
national Conference on Temporal Logic, Bonn, Germany, volume 827 of LNCS,
pages 535–539. Springer-Verlag, 1994.

11. Reiner Hähnle and Niklas Sörensson. Fair constraint merging tableaux in lazy
functional programming style. Submitted to TABLEAUX 2003.

12. Reinhold Letz, Johann Schumann, Stephan Bayerl, and Wolfgang Bibel. SETHEO:
A high-perfomance theorem prover. Journal of Automated Reasoning, 8(2):183–
212, 1992.

13. Fabio Massacci. Simplification: A general constraint propagation technique for
propositional and modal tableaux. In Harrie de Swart, editor, Proc. International
Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, Oosterwijk, The Netherlands, volume 1397 of LNCS, pages 217–232. Springer-
Verlag, 1998.

14. Breanndán Ó Nualláin. Constraint tableaux. In Position Papers presented at
International Conference on Analytic Tableaux and Related Methods, Copenhagen,
Denmark, 2002.

15. Nicolas Peltier. Simplifying and generalizing formulae in tableaux: pruning the
search space and building models. In Didier Galmiche, editor, Proc. International



Conference on Automated Reasoning with Analytic Tableaux and Related Methods,
Pont-à-Mousson, France, volume 1227 of LNCS, pages 313–327. Springer-Verlag,
1997.

16. Nicolas Peltier. Pruning the search space and extracting more models in
tableaux. Logic Journal of the IGPL, 7(2):217–251, 1999. Available online at
http://www3.oup.co.uk/igpl/Volume 07/Issue 02/.

17. Jan van Eijck. LazyTAP — a lazy tableau theorem prover for FOL. Manuscript,
Available online at: http://www.cwi.nl/~jve/dynamo/
papers/lazyTAP.ps.gz, December 2000.

18. Jan van Eijck. CHT—a theorem prover for constrained hyper tableaux, version
0.3. http://www.cwi.nl/~jve/lazytab/CHT0-3.ps, October 2001.

19. Jan van Eijck. Constrained hyper tableaux. In Laurent Fribourg, editor, Proc.
Computer Science Logic, Paris, France, volume 2142 of LNCS, pages 232–246.
Springer-Verlag, September 2001.


