Taclets and the KeY Prover

Extended Abstract

Martin Giese

Chalmers University of Technology
Department of Computing Science
S-41296 Gothenburg, Sweden

giese@cs.chalmers.se

Abstract. We give a short overview of the KeY prover, which is the
proof system belonging to the KeY tool [1], from a user interface per-
spective. In particular, we explain the concept of taclets which is the
basic building block for proofs in the KeY prover.

1 Introduction

The goal of the ongoing KeY Project [1] is to make the application of formal
methods possible and effective in a real-world software development setting.
One of the main products of the KeY Project is the KeY Tool, which allows the
specification and verification of JAvA CARD [8] programs. The KeY Prover is an
integrated interactive and automated theorem prover that is used in the KeY
tool to reason about programs and specifications.

The logic employed by the KeY prover is a dynamic logic (DL) for Java
CARD [2]. This can be viewed as a kind of first order multi-modal logic, where
modal operators are indexed by programs. A diamond formula (7) ¢ means that
there is a terminating execution of the program 7 after which ¢ holds, a box
formula [7] ¢ means that ¢ holds after every terminating execution.

Most of the proof rules available in the KeY system symbolically execute
programs in DL formulae. There are also some induction rules to reason about
loops and recursion. The “core” of the calculus is however first-order, in the sense
that there is no quantification over functions or sets, no lambda abstraction,
etc. The prover uses a sequent-style calculus, which is augmented with meta
variables to allow the delayed choice of quantifier instantiations, similarly to the
free variables used in first order tableau calculi.

As program verification cannot be done fully automatically for realistic pro-
grams, it was important to make the interactive user interface of the KeY prover
intuitive and powerful.

The KeY tool can be downloaded free of charge from the KeY project home
page at http://il2www.ira.uka.de/ key.

K = | L R

File View Options Help
— Autoresume
Apply Heuristics [¥] heiviotine Goal Back

[Proof |Goals |User Constraint | irCurrent Goal-

rProof- 1 @n »>= 0,
iniHg bt = fi:=@n}
and _|eft i
while_right : <{

if_eval : : :
eliminate_variable_declaration E while (1>0)
: SR

greater_than_caomparision
assignment .
if_update false }>'I —)
empty_diamond
assignment
if_updare_true
and _right

@[Case l

@ QcCasez
imp _right
not_left
succ_to_plusone
hide_right

ﬁ CPEN GOAL.

==
@n + 1) = 0

K(EY Integrated Deductive Software Design: Ready

Fig. 1. The main window of the KeY prover

2 The Prover Window

In Fig. 1, the main window of the KeY prover is shown. In the left part of the
window, the whole proof tree is displayed, showing the applied rules and the case
distinctions, which correspond to splits in the proof tree. Using the “tabs”, one
can also choose to display only a list of open goals, or the user constraint. The
user constraint allows the user to control the instantiation of meta variables.
The proof steps displayed in the proof view have pop-up menus which allow the
user e.g. to cut off parts of the proof at a certain point.

The right part of the window displays the sequent that is currently being
worked on. A formatting engine in the style of Oppen’s pretty-printer [7] is used
to print sequents with a structured layout. As is visible in the figure, the formula,
sub-formula, term, etc. that is currently under the mouse pointer is highlighted.
Highlighting, in conjunction with layout, helps the user in understanding the
structure of a complex formula.

Clicking on an operator in a formula displays a pop-up menu giving a choice
of rule applications possible for that sub-formula, see Fig. 2. In the KeY prover,
the rules from which proofs are built are combined with the information of how
the user should interact with these rules, to form entities called taclets, see next
section.

We display the proof tree and the current sequent together in one window,
using a split pane, for the following reason. It makes perfect sense to work on
several proofs at a time. For instance, during construction of a new proof, one
might want to consult an older one for reference. It is also conceivable, though
not yet implemented, to cut and paste parts of proofs. In such a setting, having

Ke¥ 4 | AAE]IG

File View Options Help
e Autoresume
Apply Heuristics [¥] heuristics Goal Back
Proof |Goals |{User Constramt | FEdErEnL L onl
Proof— @n »>= 0,

\\\\\\\\\\\\\

eliminate_variable_declaration
greater_than_comparision
assignment
if_update false
empty_diamond
assignment
if_updare_true
and_right

@[case 1

@ Ccasez
imp_right
not_|eft
succ_to_plusone
hide_right
commute_eq

commute_eq
| add_eq
eq_sides
eq_iff_diff_eq_o
equal_add_one
replace,k.noyvn,rig ht
replace_known_left

commute_eq
commute_eq

_ﬁ CPEN GOAL-

1o clipboard

Kg3 Integrat Create abbreviation }ig n: Ready

Fig. 2. Choosing a taclet to apply

separate windows for proof trees and sequents would make it hard for the user
to see which belongs to which.

3 Taclets

Most existing interactive theorem provers are “tactical theorem provers”. The
tactics for which these systems are named are programs which act on the proof
tree, mostly by many applications of primitive rules, of which there is a small,
fixed set. The user constructs the proof by selecting the tactics to run. Writing a
new tactic for a certain purpose, e.g. to support a new data type theory, requires
expert knowledge of the prover.

In the KeY prover, both tactics and primitive rules are replaced by the taclet
concept.! A taclet combines the logical content of a sequent rule with pragmatic
information that indicates how and when it should be used. In contrast to the
usual fixed set of primitive rules, taclets can easily be added to the system.
They are formulated as simple pattern matching and replacement schemas. For
instance, a very simple taclet might read as follows:

find (b —> ¢ ==>) if (b ==>) replacewith(c ==>) heuristics(simplify)

This means that an implication b —> c on the left side of a sequent may be

replaced by c, if the formula b also appears on the left side of that sequent.
Apart from this “logical” content, the keyword find indicates that the taclet

will be attached to the implication and not to the formula b for interactive

! Taclets have been introduced under the name of schematic theory specific rules
(STSR) by Habermalz [6]. The concept of interactive theorem proving through direct
manipulation of formulae was inspired by the theorem prover InterACT [4].

selection, i.e. it will appear in the pop-up menu when the implication is clicked
on.

Taclets can be part of heuristics. The clause heuristics(simplify) indicates that
this rule should be part of the heuristic named simplify, meaning that it should
be applied automatically whenever possible if that heuristic is activated. The
user can interactively change which heuristics should be active at a certain time.

While taclets can be more complex than the typically minimalistic primitive
rules of tactical theorem provers, they do not constitute a tactical programming
language. There are no conditional statements, no procedure calls and no loop
constructs. This makes taclets easier to understand and easier to formulate than
tactics. In conjunction with an appropriate mechanism for heuristic application,
they are nevertheless powerful enough to permit comfortable interactive theorem
proving [6]. For the automated execution of heuristics, the idea is that any pos-
sible taclet application will eventually be executed (fairness), but certain taclets
may preferred by attaching priorities to them.

Also note that taclets are rather lightweight entities. It is for instance abso-
lutely possible to introduce dozens of ad-hoc taclets to reason about some specific
data type in an intuitive way. The set of taclets should and can be designed in
such a way that usual human reasoning about some application domain is re-
flected by the available taclets. An important consequence of attaching taclets to
operators is that the taclets for a certain data type will almost all be attached to
operators of the according type. For instance, taclets for reasoning about num-
bers are attached to operators like + or >=, etc. This means that when the user
clicks on a specific operator, only those taclets will be visible that are relevant
for that operator in that context. This significantly reduces the burden on the
user that is usually associated with a large set of rules.

In principle, nothing prevents the formulation of a taclet that represents
an unsound proof step. It is possible however, to generate a first-order proof
obligation from a taclet, at least for taclets not involving DL. If that formula
can be proved using a restricted set of “primitive” taclets, then the new taclet
is guaranteed to be a correct derived rule.

No provision is currently made in the user interface for the construction
of taclets. They are given in the textual form shown above and read into the
system by a parser. In future versions, a possibility to define taclets within the
user interface might be added to the system.

4 Implementation

The KeY prover is implemented in the JAVA programming language [5], using
the Swing [9] GUI library. The coordination between the displayed proof tree,
the current sequent, etc. and the underlying logical data structures follows the
Model, View, Controller architecture, making intensive use of the Listener design
pattern (see [3]). While this is not the fastest conceivable technique, it has helped
to provide a good modularization of the system.

Highlighting and generation of position-dependent pop-up menus depends on
having a fast mechanism to find the term position corresponding to a certain
character in the displayed sequent. This is achieved using position tables, which
record the start and end of nested formulae and terms in every sub-formula/term
of the sequent. Position tables are built by the pretty-printer during layout, at
a low additional cost, and they are very efficient. There is no perceivable delay
due to highlighting when the mouse is moved over the sequent.

For a pleasant user experience, it is also important that the available taclets
at a certain position are displayed with minimal delay when the user clicks some-
where. This is achieved using a number of indexing data structures. For every
open goal, a taclet application index is kept, that stores all taclet applications
possible in a sequent at any position. It is organized in such a way that quick
access to the applicable taclets is possible based on the position in sequent. Only
taclet applications that are actually possible are stored. Regard for instance the
taclet given in the previous section, which requires the presence of b in the an-
tecedent. If that formula is not present, a corresponding taclet application will
not be put into the taclet application index, and thus will not be displayed to
the user. In the current implementation, the taclet application index is sim-
ply recalculated before each interaction, but it would be possible to cache most
taclet applications between taclet applications, as most of the sequents remain
unchanged.

In order to calculate the taclet application index efficiently, a taclet indezx is
used. This contains the set of all available taclets, and provides an operation to
determine a set of candidates that might be applicable, given some formula and
its position in a sequent. The idea is to go through all sub-formulae of a newly
introduced formula in a sequent and ask the taclet index for a (hopefully small)
set of potentially applicable taclets. It is then checked whether all conditions
of the taclet actually are satisfied, and if so, a corresponding taclet application
is put into the taclet application index. What indexing mechanism is sensible
for the taclet index is of course dependent on the set of taclets in use. Many
of the taclets currently used in the KeY prover serve the symbolic execution
of programs. We use a hash table indexed by the top operator, and in case of
program modalities, by the type of the first executable statement in the program
in question. This gives very acceptable performance for interactive use: the time
required to apply a rule, to build the new taclet application index and to layout
and display the new sequent lies mostly below half a second. The standard set of
taclets usually worked with comprises several hundred taclets for propositional
and predicate logic, integers, sets and above all for JAVvA CARD. When taclets
are applied automatically by the “heuristics”, performance ranges between 10
rule applications per second for the more complicated symbolic execution taclets
to several hundred per second for simple propositional logic.

The performance might become unacceptable in the future, due for instance
to an enlarged taclet base. In that case, our course will be to progressively
optimize the indexing data structures. In fact, this has already been done twice
in the past: originally there was no taclet index at all. As the number of predicate

logic rules grew, hashing on the top function symbol was introduced. Finally, with
the addition of DL rules, indexing on program statements became necessary.

Another conceivable future optimization is to compile taclets: As taclets have
a quite operational semantics, it would be possible to produce Java byte code for
the actions of a taclet, instead of the current interpretive approach. It is not clear
weather this will become necessary, as the system performs quite satisfactorily
so far.

5 Conclusion

We have briefly described the KeY prover from a user interface perspective.
In particular, we have introduced the concept of taclets, which consist of the
logical content of a sequent rule, paired with pragmatic information on how and
when to apply it. We have also given a short overview of some of the non-trivial
implementation issues involved.

Acknowledgments

The author is indebted to Richard Bubel for providing some of the technical
details and to Wolfgang Ahrendt for helpful comments on a draft version of this

paper.

References

1. Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese,
Reiner Héahnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen
Schlager, and Peter H. Schmitt. The KeY tool. Technical report in computing
science no. 2003-5, Department of Computing Science, Chalmers University and
Goteborg University, Goteborg, Sweden, February 2003.

2. Bernhard Beckert. A dynamic logic for the formal verification of Java Card pro-
grams. In Isabelle Attali and Thomas P. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, International Work-
shop, Cannes, France, volume 2041 of LNCS, pages 6—24. Springer-Verlag, 2001.

3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading/MA,
1995.

4. R. Geisler, M. Klar, and F. Cornelius. InterACT: An interactive theorem prover
for algebraic specifications. In Proc. AMAST’96, 5th International Conference on
Algebraic Methodology and Software Technology, volume 1101 of LNCS, pages 563—
566. Springer, July 1996.

5. James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison
Wesley, 1997.

6. Elmar Habermalz. Interactive theorem proving with schematic theory specific rules.
Technical Report 19/00, Fakultét fiir Informatik, Universitat Karlsruhe, 2000.
http://il2www.ira.uka.de/ key/doc/2000/stsr.ps.gz.

7. Derek C. Oppen. Pretty-printing. ACM Transactions on Programming Languages
and Systems, 2(4):465-483, 1980.

8. Sun Microsystems, Inc., Palo Alto/CA. Java Card 2.0 Language Subset and Virtual
Machine Specification, October 1997.
ftp://ftp.javasoft.com/docs/javacard/JC20-Language . pdf.

9. Kathy Walrath and Mary Campione. The JFC Swing Tutorial: A Guide to Con-
structing GUIs. Addison Wesley, 1999.

