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Abstract. Several variants of a first-order simplification rule for non-
normal form tableaux using syntactic constraints are presented. These
can be used as a framework for porting methods like unit resolution or
hyper tableaux to non-normal form free variable tableaux.

1 Introduction

Non-clausal form analytic tableaux have a number of advantages over the proof
procedures for clausal form implemented in most successful automated theorem
provers. For instance, when the logic is enhanced by modal operators, clausal
form cannot be used without previously translating the problems into first-order.
Another case is the integration of automated and interactive theorem proving
[1,8], where normal forms would be counter-intuitive. Unfortunately, standard
non-normal form tableaux tend to be rather inefficient, as many of the refine-
ments available to clausal procedures are hard to adapt. Typical cases in point
are unit resolution, especially for propositional provers like the Davis-Putnam-
Logemann-Loveland (DPLL) procedure [7], the βc rules of the KE calculus [6],
the application of ‘result substitutions’ in St̊almarcks Procedure [17], and hyper
tableaux [2]. The common feature of these techniques is that they involve in-
ferences between several formulae derived from the formula to be proved, either
by using one formula to simplify another one, or—for hyper tableau—making
tableau expansions depend on the presence of certain literals on a branch.

In [14], Massacci presents a simplification rule for propositional and modal
tableau calculi. This rule is of the form

ψ

φ
simp
;

ψ[φ]
φ

where ψ[φ] is the formula that results from first replacing all occurrences of φ
in ψ by true, and if φ = ¬φ′, all occurrences of φ′ by false , and then applying a
set of boolean simplifications of the form

¬true → false , ¬false → true, true ∧ φ→ φ, false ∧ φ→ false , etc.



to eliminate all occurrences of truth constants. Massacci shows that proof proce-
dures using this rule can subsume a number of other theorem proving techniques
for propositional logic, e.g. the unit rule of DPLL [7], the βc rules of KE [6], the
regularity restriction, and hyper-tableaux [2]. This is done mainly by specifying
the strategy of when and where to apply the simp rule.

While DPLL and hyper-tableaux are originally formulated for problems in
clause normal form (CNF), the simplification rule is applicable to arbitrary pred-
icate logic formulae, making it a good framework to generalize CNF techniques
to the non-normal form case. Massacci gives variants of the simplification rule
for various modal logics. In [13], he also gives a variant of the rule for first-order
free-variable tableaux. Unfortunately, this rule does not in general subsume first-
order versions of unit-resolution, hyper-tableaux etc., because it places strong
restrictions on the instantiation of free variables.

This paper presents variants of the simplification rule for first order logic
which overcome this limitation. The rules were first introduced in [9], but the
proofs of most of the theorems were only sketched there.

2 Simplification with Global Instantiation

Consider a free-variable tableau branch with the formulae p(X)∨q(X) and ¬p(a),
where X is a free variable. If X were instantiated with a, the disjunction could
be simplified to q(a). Our task is to find a version of this ground simplification
that works with free variables. The step from a ground version to a free variable
version of a rule or a proof is usually referred to as lifting.

One possibility for lifting the simplification rule consists in applying a sub-
stitution to the whole proof, that unifies certain subformulae, so that a simpli-
fication becomes possible.

Such a rule would be formulated using the most general unifier (mgu) of
the simplifying formula and some subformula of the simplified formula. A little
care must be taken to prevent the instantiation of bound variables by such a
unifier. We call (an occurrence of) a subformula ξ of φ simplifiable, if no variable
occurring free in ξ is bound by φ. So p(x) is simplifiable in ∃y.(q(y)∧ p(x)), but
not in ∃x.(p(y) ∧ p(x)). It is also simplifiable in (∃x.q(x)) ∧ p(x), because the
quantifier does not bind the x occurring free in p(x).

Using this notion, a simplification rule with global instantiation can be
given:1

ψ

φ
simp
;

µ(ψ)[µ(φ)]
µ(φ)

where µ is a mgu of φ and some simplifiable subformula of ψ,
and µ is applied on all open branches.

1 We use a non-standard notation for tableau rules: the formulae on the left are re-
quired to be on the branch and are replaced by the ones on the right. This notation
has the advantage of making clear which formulae need to be retained after the rule
application.



While this approach is sound, it relies on the application of a global instan-
tiation for the free variables. The problem with such a rule is that it introduces
a new backtracking point, because the applied unifier might not lead to a proof.
Not only does this make the rule unsuitable for a backtracking free proof proce-
dure. It is also problematic for a backtracking prover as efficiency will suffer if
more backtracking points than necessary are introduced.

3 Lifting with Constrained Formulae

A universal technique for avoiding the global application of substitutions is to
decorate the formulae on tableau branches with unification constraints. A uni-
fication constraint C is a conjunction of syntactic equalities between terms or
formulae, written as

s1 ≡ t1 & . . .& sk ≡ tk .

We use the symbol ≡ for syntactic equality in the constraint language to avoid
confusion with the meta-level =. Let

Sat(C) = {σ | for all i, σ(si) equals σ(ti) syntactically}

be the set of ground substitutions satisfying a constraint. A constraint is called
satisfiable, if Sat(C) is not empty, which means that there is a simultaneous
unifier for the pairs {si, ti}. A constraint C subsumes a constraintD, iff Sat(D) ⊆
Sat(C). Two constraints C and D are equivalent, iff Sat(C) = Sat(D).

A constrained formula is an ordered pair φ � C of a formula φ and a con-
straint C. The intuition is to consider the formula φ as present, only if the free
variables are instantiated in a way that satisfies the constraint. The empty con-
straint, which is satisfied by all ground substitutions, is usually omitted. Instead
of globally applying a mgu of two formulae φ and ψ to the proof, when a rule
application requires some instantiation of free variables, we can annotate the
formulae resulting from the rule application with a constraint φ ≡ ψ, which
is a local operation that does not lead to a backtracking choicepoint. For in-
stance, simplification of p(X)∨q(X) with ¬p(a) requires instantiation of X with
a leading to false ∨ q(a) � X ≡ a, which is rewritten to q(a) � X ≡ a.

Obviously, if formulae φi � Ci which already carry constraints are involved
in a rule application, the conjunction C0 & C1 . . . has to be passed on to the
resulting formulae. This is referred to as constraint propagation. Constraints are
propagated through rule applications, until a branch is closed. Closure between
two literals L� C and ¬L′ � C ′ is only allowed if the constraint C&C ′&L ≡ L′

is satisfiable.
Using unification constraints, the simplification rule takes the form

ψ � C

φ � D
simp

c0

;

ψ � C

φ � D

µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is a mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable



The simpc0 rule keeps an unsimplified copy of ψ � C on the branch. This will
change in later versions. An immediate consequence of keeping both original for-
mulae is that completeness follows trivially from the completeness of the calculus
without simplification. We only need to ascertain soundness.

Theorem 1. The tableau calculus with constrained formulae using the simpc0

rule is sound, i.e. if a proof exists for a finite set of formulae, then that set is

unsatisfiable.

Proof. Let σ be a closing substitution for the tableau. This means that σ assigns
a ground term to each free variable that occurs on the tableau, so that under
σ, every branch contains a complementary pair of literals with constraints sat-
isfied by σ. Consider the ground proof-tree obtained by replacing each formula
φ on the tableau by σ(φ). In particular, this implies omitting any formulae with
constraints that are not satisfied by σ. Tableau expansions for formulae with
unsatisfied constraints are left out. For a β-expansion this means that only one
of the branches needs to be kept, it doesn’t matter which.

There is then a complementary pair on each branch of the resulting ground
proof. Furthermore, as constraints can only be strengthened by rule applications,
all proof steps needed to derive the complementary pair are still present in the
reduced proof. Simplification steps are transformed into instances of the ground
simplification rule

ψ

φ ;

ψ

φ

ψ[φ]

It remains to show that this ground version of the rule is sound. For this, it is
sufficient to show that in any model where ψ and φ hold, ψ[φ] also holds, which
immediately follows from the definition of ψ[φ]. ut

It is a little misleading to call simpc0 a simplification rule, because the orig-
inal formula ψ � C has to be retained for completeness. Indeed, one cannot
simply delete the original formula, because there is no guarantee that the clos-
ing instantiation of the proof will be such that the simplification is possible.

There is however an important special case: if the ‘new’ part of the constraint
D & φ ≡ ξ subsumes the ‘old’ part C, the original formula ψ � C may be
discarded, because this means that the simplification step is valid in all ground
instances of ψ allowed by the constraint C. Let simpc1 be the rule obtained with
this modification.

Theorem 2. The simpc1 rule is sound. It is also complete, in the sense that a

branch that can be closed under some σ after applying a sequence R of expansion

steps, can still be closed under σ by a modified sequence R′ after an application

of the simpc1 rule. Moreover, there is such an R′ that is at most as long as the

original R.2

2 Note that the simpc1 application is not counted in R′. So the overall proof size may
increase by 1.



Proof. Soundness may be shown as for simpc0, see Theorem 1.

Completeness would be difficult to show by a Hintikka-style argument, be-
cause of the destructive nature of simpc1. Apart from that, such a proof would
not yield the statement about the proof sizes. We shall construct R′ from R by a
proof transformation, in which rule applications on (descendants of) a discarded
original formula ψ � C can either be applied to (descendants of) the simplified
or simplifying formula, or be discarded altogether.

In case the simpc1 application does not discard the original formula, we can
simply take R′ = R. Assume that the original formula ψ is discarded. In that
case the new constraint C & D & φ ≡ ξ is equivalent to C. We also assume
that the closing substitution σ satisfies C, because otherwise, the simplification
step could not be useful to close the branch, and R′ could be constructed by
simply leaving it away. In particular, we thus have σ ∈ Sat(D) and σ(φ) = σ(ξ).
We now ‘factor’ the replacement of ψ by µ(ψ)[µ(φ)] into a sequence of simpler
replacements and show for each of these how R is transformed.

Firstly, as σ satisfies C, σ(µ(ψ)) = σ(ψ). This implies that ψ can be replaced
by µ(ψ) in the original branch, and the derivation R still closes it under σ.

After this, the calculation µ(ψ)[µ(φ)] from µ(ψ) consists in replacing occur-
rences of a sub-formula of µ(ψ) by true or false , and performing a number of
boolean simplifications in the result.

With the formula φ � D on the branch, let us replace an occurrence of µ(φ)
in µ(ψ) by true. Let R′ mimic all the proof steps in R except those which concern
the sub-formula which has been replaced by true. If the replaced occurrence in
ψ has positive polarity, i.e. it is in the scope of an even number of negations,
then R produces the formula µ(φ) � C, while R′ produces true � C. The proof
steps of R on µ(φ) � C are transformed to R′ by applying them on the formula
φ � D, which is also on the branch. The applicability of tableau rules depends
only on the top level junctors and quantifiers, so all rules that are applied on
µ(φ) can also be applied on φ. The constraint D on φ is also no problem, as the
closing substitution σ satisfies D. If the occurrence is of negative polarity, R′

produces the formula false � C, which immediately closes the branch under σ.
The dual case, where ¬φ � D is on the branch, and a sub-formula is replaced
by false is exactly symmetric.

It remains to show how that boolean simplification steps don’t affect com-
pleteness. We will look only at some representative cases. Assume that an occur-
rence of A∧ true is replaced by A in ψ. Again, we let R′ mimic the original proof
steps until a rule must be applied on the simplified sub-formula. Depending on
polarity, we now have only A instead of A∧true , resp. ¬A instead of ¬(A∧true).
In the first case, an α rule application in R only leads to an additional literal
true, which is useless for the proof, so all later proof steps in R can be applied
in R′. In the second case, the β rule application in R leads to one branch with
¬A and one with ¬true. We can use the proof steps of the former to finish R′.

We now consider the case where an occurrence of A ∧ false is replaced by
false in ψ. Again depending on polarity, the proof steps of R now produce false

instead of A∧ false , resp. true instead of ¬(A∧ false). In the first case, the false



literal can be used to close the derivation R′ immediately. In the second case,
the β split in R produces one branch with ¬A and one with ¬false . As the latter
formula cannot be used to close the branch, we can take the rule applications of
R on that branch to complete R′.

Other boolean simplification steps for quantifiers and negation can be han-
dled similarly. ut

The simpc rules enjoy an interesting relative termination property, which it
shares with the α and β rules, namely that only a finite number of simplification
steps can be performed without intervening γ-expansions, under certain side
conditions. Call two constrained formulae φ � C, ψ � D variants, if C and D

are equivalent and for all σ ∈ Sat(C), σ(φ) = σ(ψ). E.g. p(X) � X ≡ a and
p(a) � X ≡ a are variants.

Theorem 3. Starting from a given tableau branch, only a finite number of α,

β, and simpc0 rule applications without intervening applications of the γ rule

are possible, if simpc0 is never applied twice to the same pair of constrained

formulae, and any formula which is a variant of a formula already present on a

branch is discarded. The same is true for the simpc1 rule.

Proof. A formula φ can only be simplified by setting one of its subterms to
true or false , and the resulting simplified formulae are all smaller than φ. So
the number of distinct formulae that can be generated is finite. On the other
hand, all constraints that could be generated are conjunctive combinations of
existing constraints and syntactic equations between subformulae of formulae
on a branch, so there can be only finitely many non-equivalent constraints. Ac-
cordingly, the number of non-variant constrained formulae must be finite. For
simpc1, formulae are occasionally discarded from a branch. This implies that
even less rule applications are possible, so the same argument holds. ut

As a practical consequence of this finiteness property, there is no need to
interleave γ and simpc applications in a proof procedure to guarantee fairness. It
is possible to apply all possible simplifications before considering an application
of the γ rule.

4 Dis-Unification constraints

Although the simpc1 rule permits the original formula ψ � C to be deleted
from the branch in some cases, it will usually have to be kept. This can lead
to redundancies as exemplified by the following tableau branch for the set of
formulae {p(a), q(a),¬p(X) ∨ ¬q(X) ∨ r(X)}:

1 : p(a)
2 : q(a)

3 : ¬p(X) ∨ ¬q(X) ∨ r(X)
4 = simp(3, 1) : ¬q(a) ∨ r(a) � X ≡ a

5 = simp(3, 2) : ¬p(a) ∨ r(a) � X ≡ a



After generation of 4, formula 5 is redundant, because if X is actually instan-
tiated with a as the constraint of 5 demands, formula 3 could have been dis-
carded after generating 4. q(a) only needs to be used to simplify 4, leading to
r(a) � X ≡ a. In the presence of a large formula and many simplifying literals,
a large number of such redundant formulae may be generated.

One way of overcoming this problem is to record instantiations under which
a formula could have been discarded in the constraint. To do this, we have
to require the constraint language to be closed under negation (denoted ‘!’) as
well as conjunction. The resulting constraint satisfiability problems are known
as dis-unification problems, see e.g. [5], so I will talk of dis-unification or DU
constraints.

A little care has to be taken with the semantics of DU constraints: Some
DU constraints that are not satisfiable in the current signature might become
satisfiable when the signature is extended. E.g., !X ≡ a, is not satisfiable in
a signature consisting only of the constant symbol a, but it is satisfiable in
any extended signature. In our context, satisfiability should be considered with
respect to a possibly extended signature, because new skolem symbols might be
introduced at a later point. In practice, it turns out that the satisfiability and
subsumption checks actually get simpler with this definition. The same effect for
term ordering constraints was noted in [15].

Using DU constraints, the simplification rule can be reformulated as follows:

ψ � C

φ � D
simp

c2

;

ψ � C & !(D & φ ≡ ξ)
φ � D

µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable subformula of ψ,
µ is a mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable

This rule differs from simpc0 in that the constraint of the original formulae ψ
is changed by adding !(D & φ ≡ ξ). What this means is that the formula is no
longer available for simplification steps requiring an instantiation under which
this simplification would have been possible.

We now allow formulae with unsatisfiable constraints to be discarded, as they
cannot contribute to tableau closure anyway. One easily checks, that this makes
it possible to discard ψ at least in all those cases, where simpc1 allows it.

The example above now becomes

1 : p(a)
2 : q(a)

3 : ¬p(X) ∨ ¬q(X) ∨ r(X)
;

1 : p(a)
2 : q(a)

3 : ¬p(X) ∨ ¬q(X) ∨ r(X) � !X ≡ a

4 : ¬q(a) ∨ r(a) � X ≡ a

The constraint !X ≡ a now prevents the simplification of 3 with 2. But we can
perform a second simplification step by simplifying 4 with 2, which changes the
constraint of 4 to X ≡ a& !X ≡ a, which is unsatisfiable, so 4 can be discarded
after adding the literal r(a) � X ≡ a.



The simpc2 rule enjoys similar properties as simpc1, as the following theorem
shows.

Theorem 4. The simpc2 rule is sound. It is also complete in the sense of The-

orem 2.

Proof. Soundness follows from Theorem 1, as strictly less rule applications are
possible than with simpc0. Completeness is shown using the same technique
as for Theorem 2. We take the addition of the DU constraint into account by
considering three cases, depending on which of the constraints involved in the
simpc2 application are satisfied by the closing substitution σ. If σ does not satisfy
C, any proof steps on ψ � C can be left out anyway, as they do not contribute
to the closure of the subtableau. If σ ∈ Sat(C), but σ 6∈ Sat(D & φ ≡ ξ), we
can perform all extensions as in R, because σ satisfies the changed constraint
C & !(D & φ ≡ ξ). Finally, if σ ∈ Sat(C) and σ ∈ Sat(D & φ ≡ ξ), we perform
the proof transformation as in the proof of Theorem 2, considering the original
formula to be deleted, because its constraint and the constraints of any formulae
derived from it is not satisfied by σ. ut

The principal drawback of the simpc2 version of our simplification rule is
the high complexity of dis-unification. As a compromise, it is possible to keep
unification (U) and dis-unification (DU) parts of constraints separate and to
weaken the DU part of constraints if convenient. The unification part has to be
left alone, as it is relevant for soundness. The DU part only serves to reduce the
necessary proof search, so it may be thrown away without losing correctness.

One possible approach consists in restricting oneself to conjunctive dis-uni-

fication constraints [11], which are constraints of the form C0 & !C1 & !C2 . . .,
where the Ci are conjunctive unification constraints as in Sec. 3. Here, C0 is the
U part and !C1 & !C2 . . . the DU part of the constraint. The DU part of the
constraint of a formula is discarded before it is used to simplify another one, in
order to maintain this form for all constraints. Satisfiability and subsumption
(for possibly extended signatures) are fairly easy to check for these constraints.
In fact, it is shown in [11], that the conjunctive DU-constraint is satisfiable in a
possibly extended signature, exactly if C0 is satisfiable and C0 is not subsumed
by any of the Ci.

5 Using Universal Variables

In practice, the simplification rules as outlined above tend to require a lot of in-
stances of γ-formulae. E.g., given the formulae {p(a), p(b), p(c), ∀x.¬p(x)∨q(x)},
one can produce after one γ expansion the literals q(a) � X ≡ a, q(b) � X ≡ b,
and q(c) � X ≡ c. But these literals have mutually contradictory constraints,
so any further rule application or closure can involve at most one of these lit-
erals. One needs three instances of the γ formula to produce the compatible
literals q(a) � X1 ≡ a, q(b) � X2 ≡ b, and q(c) � X3 ≡ c. But with three
instances, not only these three useful literals are deducible, but a total of nine



q-literals coming from the simplification of each instance ¬p(Xi) ∨ q(Xi) with
each of the three p-literals. As all of these will subsequently be used to simplify
any q-subformula on the branch, this can quickly lead to a huge (though finite)
number of rule applications.

One way to reduce the number of distinct instances of γ formulae is to use
universal variables, see e.g. [4]. A free variable x is called universal with respect
to a formula φ on a tableau branch, if ∀x.φ is a logical consequence of the
formulae on a branch. All other free variables are called rigid. This property is
of course undecidable. In practice, one uses simple sufficient criteria to detect
universality of free variables, the most common one being to flag all free variables
introduced in a γ extension as universal, and to preserve universality through
all non-splitting rule applications. After a β rule application, those free variables
which occur on more than one of the subformulae become rigid. The benefit
of universal variables is that they may be instantiated independently for all
formulae and may also be renamed as needed, whereas rigid variables have to
be instantiated identically on all branches.

I shall write [X̄ ]φ� C for a constrained formula with universal variables X̄.
Using universal variables, the following derivation is possible:

p(a)
p(b)
p(c)

∀x.¬p(x) ∨ q(x)
[X ]¬p(X) ∨ q(X)

3×simp
;

p(a)
p(b)
p(c)

∀x.¬p(x) ∨ q(x)
[X ]¬p(X) ∨ q(X) � !X ≡ a& !X ≡ b& !X ≡ c

[X ]q(a) � X ≡ a

[X ]q(b) � X ≡ b

[X ]q(c) � X ≡ c

The resulting literals are no longer incompatible, because X may be instantiated
differently for each of them. It is of course possible to eliminate the universal
variable and constraint altogether in these literals, but that is a technical opti-
mization which is not strictly necessary.

Formally, in a simplification, all free variables in the result that were universal
in one of the original formulae may be flagged as universal in the result [11]:

[X̄]ψ � C

[Ȳ ]φ � D
simp

c2u

;

[X̄]ψ � C & !(D & φ ≡ ξ)
[Ȳ ]φ� D

[X̄ ∪ Ȳ ]µ(ψ)[µ(φ)] � (C &D & φ ≡ ξ)

where ξ is a simplifiable 3 subformula of ψ,
µ is a mgu of ξ and φ,

and C &D & φ ≡ ξ is satisfiable

3 The ‘simplifiable subformula’ condition could be relaxed to permit, e.g. the simpli-
fication of ∃y.p(y) with [X].p(X), but this becomes rather technical, so we won’t do
it in this paper.



This rule is sound and complete for the free-variable tableau calculus with
universal variables. Completeness can be shown by a combination of the tech-
nique used in [8], Sect. 7.4, for showing completeness of tableaux with universal
variables, and the proof transformation technique of Theorems 2 and 4. By
contrast, the termination property does not hold anymore, if universal vari-
ables are used. To apply the simpc2u rule, it is necessary in general to re-
name universal variables in the original formulae to make them disjoint. But
this renaming destroys termination. Consider for instance the formulae p(a) and
[X ]¬p(X)∨p(f(X)). With simplification and renaming of universal variables, it
is possible to consecutively deduce

[X1]p(f(a)) � X1 ≡ a

[X1, X2]p(f(f(a))) � X1 ≡ a&X2 ≡ f(a)
[X1, X2, X3]p(f(f(f(a)))) � X1 ≡ a&X2 ≡ f(a) &X3 ≡ f(f(a))

etc.

This means, that in general simplification and γ instantiation need to be in-
terleaved to retain fairness. As the simpc2u rule without renaming obviously
enjoys the finiteness property, one might alternatively interleave renaming and
γ instantiation, but that would amount to ignoring universality for most of the
time.

It is interesting to note that there are many problems, Schubert’s ‘Steam-
roller’ [18] being a particularly prominent example, in which simplification with
universal variables actually does terminate. This is true, in particular, when
some simplification strategy, like the hyper strategy discussed in the next section
is used, which does not apply arbitrary simplification steps. To handle such cases
efficiently, it is advisable to equip a proof procedure with some sort of cycle de-
tection that only interleaves simplifier applications with γ rules, if they threaten
to lead to infinite simplification sequences. One possibility is to set a limit to the
size of inferred formulae, which can be incrementally increased as the tableau
is expanded. This would always allow rule applications which really simplify a
formula in the sense of making it smaller.

6 Simplification Strategies

Although we have identified cases in which we can discard the original formula
in a simplification step, we should not forget that this is not possible in general.
With the simpc2 and simpc2u rules, we can at least strengthen the constraint
of the original formula, but this does not change the fact that our so-called
simplification rule actually makes branches larger in most cases. The reason of
using the name simplification is the analogy to the ground and propositional
simplification rules which our first-order version subsumes.

In order for the simplification rules to be useful in a prover, one needs a
simplification strategy, that is a strategy that prescribes when to apply which
kinds of simplification steps.



We claimed in the introduction that our simplification rules are capable of
simulating first-order versions of various refinements, including hyper tableaux,
and regularity. We have yet to show that this has been achieved. In this section,
we shall describe a simplification strategy that implements a non-clausal ana-
logue of hyper tableaux. The details of this strategy and corresponding proofs
can be found in [11]. In that work, there is also a description of how the sim-
plification rules may be used to introduce a first order, non-clausal version of
regularity.

Hyper tableaux are defined for problems stated in clause normal form (CNF),
see [12,2]. For clause tableaux, it is customary not to include the clauses in the
tableau itself. Instead, one only uses the literals which result from expanding the
tableau with a clause. Hyper tableaux permit an expansion with a clause only if
all new branches which receive negative4 literals of the clause are immediately
closed. All inner leaves are thus positive literals.

Alternatively, one can take the view of interpreting the clauses as tableau
expansion rules themselves. In this view, a clause is ‘fired’ if there is a positive
literal on a branch for every negative literal of the clause. The tableau is then
extended by one new branch for each of the positive literals of the clause. One
usually writes clauses as implications to support this view.

In the first-order case, one has to apply a substitution to unify the negative
literals of the clause with corresponding positive literals on the branch. The
way variables are handled differs between the various presentations of hyper
tableaux. While [2] uses universal variables in branch literals where possible,
that version of hyper tableaux does not use rigid variables. Instead, it uses
‘purifying substitutions’ which generate ground instances of clauses if necessary.
This happens whenever a variable is shared between two positive literals of a
clause without occurring in any of the negative literals. A version described
in [12] uses rigid variables in such situations, using copies of clauses to avoid
destructive instantiation. In [20], a variant with rigid variables and constraints
is proposed, but constraints are attached to branches instead of formulae as is
done in our calculi.

We can define a version of first-order hyper tableaux using constrained formu-
lae. As usual, we use rigid variables when necessary, and constraints to capture
necessary instantiations. Here is an example of this approach:

Clause Set:
p(a, b)

p(x, z) → p(x, y) ∨ p(y, z)
p(x, f(x)) → q(x)

∅

p(a, b)

p(a, Y ) p(Y, b)

q(a) � Y ≡ f(a)

After putting the literal p(a, b) on the branch using the first clause, we expand the
tableau using the second clause, where p(x, z) is instantiated with p(a, b). As the

4 We consider positive hyper tableaux here. It is possible to exchange the roles of
positive and negative literals, which leads to negative hyper tableaux.



two branches share the new variable Y , this has to be rigid. Subsequent expansion
of the left branch with the third clause is possible only if Y is instantiated to
f(a). This restriction is captured in the constraint of the generated literal.

These rigid variable, constrained formula hyper tableaux can be emulated
using our simplification rule with universal variables and a suitable simplification
strategy. From now on, we shall consider normal analytic tableaux again. The
set of clauses is given as a set of universally quantified disjunctions of literals.
The following simplification strategy then emulates hyper tableaux:

Use simplification only to simplify any leftmost negative literals in-
side disjunctions with positive literals occurring on the branch. Use β-
expansion only for disjunctions which contain no negative literals.

With this strategy, the emulation of a hyper tableau expansion will require
exactly one intermediate simplification step for every negative literal in the
clause/disjunction in question.

There is obviously not much merit in using this emulation of hyper tableaux
in an actual implementation, if problems are given as clause sets. It would be
simpler and more efficient to implement a rigid variable constrained formula
hyper tableau calculus directly, instead of implementing non-clausal tableaux
and simplification, and then restricting it to clauses. The interesting point about
the emulation is that it suggests a way of generalizing hyper tableaux to non-
clausal problems. We show how this works for negation normal form (NNF).

The idea is to look at disjunctive paths (d-paths) through formulae instead of
clauses. The set of d-paths of a formula φ, denoted dp(φ) is defined by induction
over the structure of φ as follows.

– If φ is a literal or a universally quantified formula, then dp(φ) := {〈φ〉}.
– If φ = α1 ∧ α2 is a conjunction, then dp(φ) := dp(α1) ∪ dp(α2).

– If φ = β1 ∨ β2 is a disjunction, then dp(φ) := {pq | p ∈ dp(β1), q ∈ dp(β2)}.

For instance, for the formula φ = (p ∧ ¬p) ∨ (q ∧ ¬q), this definition gives:

dp(p ∧ ¬p) = {〈p〉 , 〈¬p〉}
dp(q ∧ ¬q) = {〈q〉 , 〈¬q〉}

dp(φ) = {〈p, q〉 , 〈p,¬q〉 , 〈¬p, q〉 , 〈¬p,¬q〉}

As d-paths correspond closely to clauses, it is not surprising that the correct
generalization of our simplification strategy may be formulated like this:

Use simplification only to simplify any leftmost negative literal of some
d-path of a formula on the branch. Use β-expansion only for disjunctions
which have at least one d-path that does not contain a negative literal.

For our formula φ, β-expansion will thus be applied because of the d-path 〈p, q〉.
Let us call this strategy the NNF hyper tableau strategy.



Theorem 5. The constrained variable tableau calculus with universal variables

and the simpc2u rule is complete if restricted according to the NNF hyper tableau

strategy.

Proof. See [11]. ut

Sometimes, a simplification step permits discarding the original formula ψ.
In such cases, a prover using the NNF hyper tableaux strategy has an advantage
over usual clausal hyper tableaux, even if the problem is given in clausal form:
it can simplify the clause set while proof search is under way. Essentially, unit
resolution between a universal branch literal and a clause is performed. For
instance, given a literal [X ]p(X) and a universal disjunction [Y ]¬pY ∨ rY , the
latter can be destructively simplified to [Y ]rY for that branch. This can not
be done in normal hyper tableaux, as these do not keep separate clause sets
per branch. Note that these separate clause sets do not imply higher memory
consumption, because the representation of clauses can easily be shared between
branches in an implementation.

The NNF hyper tableau strategy was implemented in the prototypical non-
backtracking tableau prover PrInS [10,11]. We are not going to list statistics
here, as the power of hyper tableaux has previously been asserted, e.g. in [12].
We shall only state two results on problems found in the TPTP problem library.
[19].

With the given strategy, PrInS is able to solve the Steamroller problem in
the full first order formalization PUZ031+1 in less than 150 ms. This used to
be considered a hard problem for a long time, although today, no state-of-the-
art theorem prover has difficulties with it. In particular, hyper tableaux are
a good way of quickly finding a proof. The interesting aspect of PrInS solving
PUZ031+1 is that it does not use CNF transformation. To our knowledge, PrInS
is the first non clausal theorem prover to have solved the Steamroller problem.

The problem known as Andrews Challenge is an example for the advantage of
not needing a clause normal form. The full first order formalization SYN036+2
of that problem had a rating of 0.33 up till version 2.4.0 of the TPTP library,
meaning that one third of the provers considered state-of-the-art were not able
to solve it. The reason for this is that the clause normal form for this problem, if
computed in the standard way, consists of 128 clauses of length 8. The full first
order version in SYN036+2 is built from the equivalence junctor and quantifiers
only, and is very small. The NNF PrInS works on is of course significantly larger,
because p ↔ q has to be translated to (p ∨ ¬q) ∧ (¬p ∨ q). But the NNF still
helps in keeping large parts of the formula nested below the top level operators
which are handled first. With the NNF hyper tableaux strategy, PrInS solves
SYN036+2 in less than 200 ms. The prover performs 488 α, β and γ expansions
and 322 simplification steps. By contrast, a simple version of PrInS without
simplification needs 3938 rule applications and about 11 seconds for SYN036+2.



7 Related Work

The idea of using formulae on a branch to simplify other formulae independently
been developed by Peltier [16]. The problem of dealing with the instantiation of
rigid variables is solved differently however. While we use ordinary first order for-
mulae and attach a syntactic constraint to them, Peltier intertwines constraints
and formulae. The possibility of attaching different constraints to different parts
of a larger formula might be an advantage of Peltier’s approach, but we have
not investigated this. Keeping formulae and constraints apart, as we do certainly
makes the calculus easier to understand, and easier to reason about.

Recent work by Baumgartner and Tinelli [3] attempts to lift the unit propa-
gation of the Davis Putnam procedure to first order logic. Their model evolution

calculus does not use rigid variables however, and accordingly does not need
constraints.

8 Conclusion

Several possibilities for a first-order version of the simplification rule of Mas-
sacci [13,14] were presented. Instead of globally applying unifying substitutions,
syntactic constraints are used. Besides soundness and completeness, a finiteness
property is discussed, which is important for the design of fair proof procedures.
Experimental results are quoted, which show that an efficient proof procedure
can be implemented using non-clausal tableaux with a simplification rule. We
refer the reader to [11] for a more precise discussion of some of the issues we
could only mention briefly here.

Future work includes the refinement of cyclicity tests and development of
more goal-oriented simplification strategies than the described hyper-tableaux
variant.

Acknowledgments: I am grateful to Reiner Hähnle, Bernhard Beckert, Wolf-
gang Ahrendt, Magnus Björk and the anonymous referees for their many useful
comments.
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