OCL Specifications for
the Java Card API

By:
Daniel Larsson 730527-4651 GU

Supervisor

Wojciech Mostowski

Examiner

Wolfgang Ahrendt

Department of Computing Science
School of Computer Science and Engineering
Goteborg University
2003

Abstract

This Master’s thesis discusses the development of OCL specifications for Java Card API,
and is part of the KeY project. OCL is a specification language, i.e. it is used to express for-
mally the requirements on a system. The KeY tool is a CASE tool, in which formal methods
(formal specification and formal verification) are integrated with contemporary software de-
velopment techniques. The main purpose of the OCL specifications is to simplify the verifi-
cation of Java Card programs within the KeY tool. Verification means that one through
mathematical and logical methods proves that the implementation fulfils the requirements in
the specification. Already existing specifications written in JML, a specification language
specially suited for Java, has been used as a starting point for the development of the OCL
specifications. OCL is a more general language. Problems that have to be solved are, for in-
stance, how to express in OCL the throwing of exceptions, how to test if a reference variable
contains a null value, and how to handle the risk of overflow in the context of arithmetic in-
teger operations. It has been shown that OCL lacks some important properties when it co-
mes to specifying Java programs, but in other aspects is superior to JML.

2003-05-20

Sammanfattning

Det har examensarbetet behandlar utvecklingen av OCL-specifikationer till Java Card API,
och ar en del av KeY-projektet. OCL &r ett specifikationssprak, d v s det anvands for att pa
ett formellt satt uttrycka de krav man har pa ett visst system. KeY ar ett utvecklingsverktyg

i vilket formella metoder (formell specifikation och formell verifiering) har integrerats med
moderna objektorienterade utvecklingsmetoder. Syftet med OCL-specifikationerna ar i for-
sta hand att underléatta verifieringen av Java Card-program i KeY. Verifiering innebar att
man m h a matematiska och logiska metoder bevisar att implementeringen uppfyller kraven
i specifikationen. Som utgangspunkt for OCL-specifikationerna har anvants redan fardiga
specifikationer skrivna i JML, ett specifikationssprak specialanpassat till Java. OCL ar ett
mer generellt sprak. De problem som varit tvungna att [6sas ar bl a hur man i OCL ska kun-
na uttrycka kastandet av exceptions, hur man kan testa om en referensvariabel innehaller ett
null-varde och hur man hanterar risken for overflow i samband med aritmetiska heltalsope-
rationer. Det har visat sig att OCL saknar en del viktiga egenskaper nar det galler att specifi-
cera Java program men i andra avseenden ar overlagset JML.

2003-05-20

Preface

This report is the result of a Master’s thesis in Computing Science at the Department of
Computing Science, Goteborg University. Supervisor of this thesis is Wojciech Mostowski,
PhD student. Wolfgang Ahrendt, assistant professor, is the examiner. They are both residing
at Department of Computing Science, Géteborg University.

This work is part of the KeY project |+ a joint project of the University of Karlsruhe and
Chalmers University of Technology / Géteborg University, Gothenburg. The KeY project
aims to integrate formal methods with object-oriented software development techniques

The JML specifications for the Java Card 2.1.1 API, which has been used as a starting point
for this thesis, are written by Engelbert Hubbers and Erik Poll at University of Nijmegen in
the Netherlands [14]. The reference implementation used [8] comes from Sun Microsys-
tems, Inc.

2003-05-20

Table of Contents

ADSIIACT ... e r 2.

SAMMEANTATINING .. e e e e e e e e e e e e e e e e e e aee s 3

e (=] = T = PSSP S

I 1 o o [T 1 0] o PRSPPI 6

2. ANAIYSIS ..t a e e e e e e 8.
2.1. Formal methods and KEYiiiiiiiii e 8
p A - V- W O - 1 { o [PPSR 9
2.3. 0Overview Of IML @nd OCLccooieiieieiiiieeeeeere e 11
2.4, OCL SYNEAX USEA......uuuuiiiiiiiii e e e ee ettt s s e e s e e e e e e e e e e e e e e e e e e s e e e e eaaaaes 13
2.5. Comparing JML @nd OCLcooiiiiiiiiiiieiieeeeee e 14
2.6. SeMaNtiCS Of CONSIIAINTSuuuuiiiiiiie e e e e e e e e es 17
2.7. TRENUIL VAIUE ...t e e e e e e e e eeees 18
P S T (ol = 1 0] o PSSR 20
P2 TR N 111] 41 £ o 22
2.10. Theassignable clause iN IML.........ccoooiiiiiiiiiiice e 25
P22 I |V o o [=] o PSSO RRRRPP 26
2.12. Method for creating the SpecifiCationS............ccvieiieiie 27

3. ReSUItS and CONCIUSIONS........ouiiiiiiiee e as 32
3.1. The SPECITICALIONSccoeiiiieieeeee e e e e e e e e e e e eeeeeeeannas 32
3.2. Verification based on the specificationscccccuiiiiiiiiiiii e 35
3.3. The strengths Of OCL......cccoo i e e 38
I J0 S I 01 7= 14 o] 1RSSR 40
G 38 T o o (1553 o £ 40

LS (=] (= g o7 = PSP 2. 4

F Y o] o1=] Lo [[o 3PP bC 4
OCL specifications for Java Card 2.2 APL..........uuuiiiiiiiiiiiiiiiee e 43

2003-05-20

6 Introduction

1. Introduction

This Master’s thesis is about writing OCL [12] specifications for the Java Card API [6]. The
programming language Java Card is a subset of Java, and is used to write programs for
smart cards and other resource constrained devices. Smart cards are cards with an integrated
circuit incorporated in the credit card-sized plastic substrate. This integrated circuit contains
elements used for data transmission, storage, and processing. To communicate with the out-
side world, a smart card is placed in or near a card acceptance device, which is connected to
a computer. Smart cards are widely used for access control, banking applications, retail loy-
alty applications, wireless telecommunication, and so on, where data security and privacy
are major concerns [6]. OCL (Object Constraint Language) is a specification language, i.e.
it is used to express requirements on software systems. One might say that a specification
describesvhatthe system should do, while the implementation in a programming language
describedowit is done.

This task is part of the KeY project [1], a project that aims to integi@t@al methodsvith
contemporary software development techniques. Formal methods include formal specifica-
tion and formal verification. “Formal” here approximately stands for “mathematically preci-
se”. In the KeY tool, which is a result of the KeY project, one can - besides doing modelling
in UML (Unified Modelling Language) and implementing in Java - specify a model with
OCL constraints. (OCL is in fact part of the UML standard.) Furthermore, there are facili-
ties in the KeY tool that enable verification of the implementation w.r.t. the specification,
i.e. one is able to prove that the requirements on the system, in form of OCL constraints, are
satisfied when the program is run.

The whole idea of the OCL specifications for Java Card API is - in the context of KeY - to
substantially simplify the verification of Java Card programs within the KeY tool. Virtually

any useful Java Card program - which are called applets - uses the API. If we are able to
specify the API classes and to verify a reference implementation of the API w.r.t. these spe-
cifications, then we can save a lot of time and effort at the verification of applets. We do not
have to verify the APl methods over and over again. They also serve as a useful documenta-
tion of the API, as they are in many aspects more clear than the informal specification. In
other words, these specifications are of great interest for developers of Java Card programs.

The main purpose of this thesis is therefore to produce these useful specifications. Another
purpose is - when trying to write these specifications - to evaluate the suitability of OCL as
the specification language used in the KeY tool.

There do already exist specifications [14] of the Java Card API, written in JML (Java Mo-
delling Language) [9, 10] - a specification language specially designed to specify Java pro-
grams. Therefore, the JML specifications will be used as a starting point when developing
the OCL specifications. One problem, however, is that OCL has different characteristics
than JML. For example, null values and the throwing of exceptions cannot be expressed in a
straightforward way in OCL. Furthermore, arithmetic becomes a problem, since the built-in
integer types in Java Cardyte andshort - are finite, i.e. one can get an overflow when
applying arithmetic operations to them, while the OCL tyyieger is infinite. This the-

sis will therefore also contribute with an useful comparison between OCL and JML.

Another part of the task is to test the specifications by using a reference implementation for
parts of the API [8], and then verify this implementation w. r. t. the specification, within the
KeY tool.

The structure of this report is as follows. Chapter 2 contains an analysis of the problem,
which leads to a method to solve it. This analysis starts with a description of the subject for-

2003-05-20

Introduction 7

mal methods, and how the KeY project fits in this context. Next is a short description of
Java Card, and especially its APIl. The major part of the analysis is then concerned with an
introduction of, and a comparison between, JML and OCL. How OCL and JML treat null
values, exceptions, integer arithmetic and other things is considered. The analysis ends with
a description of the approach used in this thesis to create the specifications. Chapter 3 con-
tains the results of the thesis. The strengths and weaknesses of the OCL specifications - both
as they are and compared to the JML specifications - are described. Here is also a descrip-
tion of the pro and cons of OCL as a specification language for Java. Finally, some conclu-
sions are drawn. A selection of the produced specifications is found in appendix. All
specifications produced in this thesis are available at:

http://www.mdstud.chalmers.se/~md0Odala/exjob.html

2003-05-20

8 Analysis

2. Analysis

2.1. Formal methods and KeY

What are formal methods and what are they good for? Formal methods are techniques that
are mathematically precise and are applied to improve quality or increase productivity of
developments of systems that perform computations in some sense. These techniques inclu-
de formal formulations of requirements, formal descriptions of constructions, and formal
proofs of properties of the construction and the requirementstdrhreal specificatiorgives

an exact description of the requirements of the construction. It is the starting point for use of
formal methods. Just as the formal specification constitutes a mathematical description of
what the systenshould do one also needs a mathematical description of what the system
actually doesThis description is called thgystem modeFormal verificationmeans that

one, through a mathematical proof, can be sure that the system (as it is described in the sys-
tem model) fulfils the requirements of the system (as they are expressed in the formal speci-
fication). A proof ca be performed

* manually
¢ semi-automatic, with the help of computer tools
« automatic, with a computer

Automatic construction of proofs is sometimes possible, but mostly a human needs to take
part in the construction by interacting with a computer tool. [16]

The KeY project [1] is about integrating formal methods with object-oriented software de-
velopment. The target language of KeY-driven software development is Java. However, the
verification facilities of KeY cannot handle all constructs in Java. For instance, only sequen-
tial Java can be used, i.e. not threads. Java Card, however, can be handled by the KeY tool,
as it does not contain any of the “forbidden” constructs. When developing a system in the
KeY tool, one may walk through the following steps:

» model the system with UML constructs
» extend this model with OCL constraints
* implement/construct the system with Java

The UML model and OCL constraints describe what the systkould do The Java code
describes what the systeastually doesBut in this form one will not be able to verify that

the implementation (Java) fulfils the requirements (UML + OCL). It has to be translated
into logical formulas, and in KeY the logic used is an instance of Dynamic Logic. The result
of this translation igproof obligations If one is able to construct proofs of these proof obli-
gations with the help of KeY’s interactive theorem prover, one has in fact proved that the
implementation fulfils the requirements in the specification. In other words, the implemen-
tation has been verified w.r.t. the specification.

Java Card is a good target for the application of formal methods, for a number of reasons:

» Applications that run on smart cards and similar devices - and therefore can be written in
Java Card - are often safety critical, security critical (e.g. access control, electronic ban-
king), cost critical (e.g. if they run on a large number of non-administrated devices, such
as phone cards), and legally critical (e.g. falling under digital signature laws). This means
that the extra time and effort that the application of formal methods in these cases will
lead to are highly motivated. It is extremely important that the applications behave like
they should.

2003-05-20

Analysis 9

» The language Java Card is relatively simple, with a relatively small API, which makes
the application of formal methods to it manageable.

Well, how does one specify a program? Since we are talking about object-oriented develop-
ment, the units that should be specified al@&ssesA class consists of fields and methods,

and when objects of this class are created, the values of the fields constitstatdos the

object, and the methods constitute tiehaviourof the object. Because of this, one way to
specify a class is to describe what states are acceptable for the objects in this class. For in-
stance, if there is a clas®rson with an instance fieldhge, one probably does not see a
negative value oage as something reasonable. So we might want to assert, in our specifi-
cation ofPerson , thatage must not be negative. Such an assertion is calleidhariant

A class invariant is a proposition that has to be true for all instances (objects) of the class at
any time. Another way to specify a class is to describe what the methods of the class should
do, e.g. how they should alter the objects state. This can be expressed in a spastited-

dition of the method, in which an assertion of the system state at the end of the method invo-
cation is made. But often one needs to assume something about the objects state and the
values of the arguments that are passed to the method, to be able to make such an assertion.
This assumption can be expressed ipraconditionof the method. So the meaning of a
method specification is that if the precondition is true at the beginning of the method invo-
cation, then the postcondition will be true at the end of the method invocation. OCL sup-
ports precisely these two ways of specification - invariants and pre-/postconditions.

2.2. Java Card

Java Card provides means of programming smart cards with (a subset of) the Java program-
ming language. Smart cards communicate with the rest of the world through application
protocol data units (APDUs, ISO 7816-4 standard). The communication is done in master-
slave mode - it is always the master/terminal application that initialises the communication
by sending the command APDU to the card and then the card replies by sending a response
APDU (possibly with empty contents). In case of Java powered smart cards (Java Cards)
besides the operating system the card’s ROM contains a Java Card virtual machine that im-
plements a subset of the Java programming language and allows running Java Card applets
on the card. The following are the features not supported by the Java Card language compa-
red to full Java: large primitive data typeast(, long , double , float), characters and
strings, multidimensional arrays, dynamic class loading, threads and garbage collection.
Some of the actual Java Card devices go beyond those limitations and support for example
theint data type and garbage collection. Most of the remaining Java features, in particular
object-oriented ones like interfaces, inheritance, virtual methods, overloading, dynamic ob-
ject creation, are supported by the Java Card language. The card also contains the standard
Java Card API, which provides support for handling APDUSs, Application IDentifiers
(AIDs), Java Card specific system routines, PIN codes, etc. [11]

Java Card 2.2 API [7] consists of the following packages:

java.io - Thejava.io.IOException class is included in the Java Card API to
maintain a hierarchy of exceptions identical to the standard Java programming language.

java.lang - Provides classes that are fundamental to the design of the Java Card techno-
logy subset of the Java programming language. The classes in this package are derived from
java.lang in the standard Java programming language and represent the core functiona-
lity required by the Java Card Virtual Machine.

2003-05-20

10 Analysis

java.rmi - Thejava.rmi package defines thRemote interface which identifies in-
terfaces whose methods can be invoked from card acceptance device (CAD) client applica-
tions. It also defines emoteException that can be thrown to indicate an exception
occurred during execution of a remote method call.

javacard.framework - Provides a framework of classes and interfaces for building,
communicating with and working with Java Card applets. These classes and interfaces
provide the minimum required functionality for a Java Card environment. The key classes
and interfaces in this package are:

* AID - encapsulates the Application Identifier (AID) associated with an applet.
» APDU- provides methods for controlling card input and output.

* Applet - the base class for all Java Card applets on the card. It provides methods for
working with applets to be loaded onto, installed into and executed on a Java Card-com-
pliant smart card.

o CardException , CardRuntimeException - provide functionality similar to
java.lang.Exception andjava.lang.RuntimeException in the standard
Java programming language, but specialized for the card environment.

« JCSystem - provides methods for controlling system functions such as transaction ma-
nagement, transient objects, object deletion mechanism, resource management, and in-
ter-applet object sharing.

o Util - provides convenient methods for working with arrays and array data.

javacard.framework.service - Provides a service framework of classes and inter-
faces that allow a Java Card applet to be designed as an aggregation of service components.
The package contains an aggregator class cBlispatcher , which includes methods to

add services to its registry, dispatch APDU commands to registered services, and remove
services from its registry. The package also containsSSévwice interface that contains
methods to process APDU commands, and allow the dispatcher to be aware of multiple ser-
vices.

javacard.security - Provides classes and interfaces that contain publicly-available
functionality for implementing a security and cryptography framework on Java Card. Clas-
ses in thgavacard.security package provide the definitions of algorithms that per-
form these security and cryptography functions:

* implementations for a variety of different cryptographic keys

« factory for building keys

 data hashing

« random data generation

* signing using cryptographic keys

» session key exchanges

javacardx.crypto - Extension package that contains functionality, which may be sub-
ject to export controls, for implementing a security and cryptography framework on Java
Card. The package contains tG@her class and thi&KeyEncryption interface.Cip-

her provides methods for encrypting and decrypting messda¢@g=ncryption prov-
ides functionality that allows keys to be updated in a secure end-to-end fashion.

Here is an UML diagram with the packaggssacard.framework andjava-
card.security

2003-05-20

Analysis 11

framework security
service +REAPrivateCRiey
+UzerException +Mfessageligest
+CardException +PubiicKey
+Apnfet +CryptoException
+SysternException +*DSARey
+IC Sy stemn + D5 APrivalekey
+AID +DEAPURITCKay
+ LIl +Sacretkay
+ P +RandomData
+PINException +REAPrivataley
+SOExceptinn +Privatekey
+Shareabie +DESKay
+CardRuntimeException +KeyBuilder
+OwnerPIN +KeyPair
+TransactionException +REAPUBICKeY
+APDUException +hey
+APDL +ECFPrivateKeay
+lIuiSeiectabio +ECPublicKey
+hacksum
+5lghatlne
+Kaydgrearmant
+AESKey
+ECEeY

2.3. Overview of JIML and OCL

As has already been mentioned, the specifications used as a starting point for this project are
written in JML [9, 10], while this project will result in specifications written in OCL [12]. It

would therefore be rewarding to get a quick overview of these two specification languages.

In both JML and OCL the most important things that can be expressed are class invariants
and pre-/postconditions of methods. Class invariants are assertions that should be true for all
instances of the class at any time. Pre- and postconditions can be seen as a contract between
the provider and the user of the method. The user has to fulfil the precondition when he calls
the method - usually by what arguments he attaches in the method call. The provider gua-
rantees that if the precondition holds at the beginning of the method call, then the cor-
responding postcondition will hold after the method call.

An example of a class definition and how it could be specified with IML and OCL respecti-
vely, is the following:

2003-05-20

12 Analysis

public class OwnerPIN implements PIN {
private bytel[] pin;
private byte maxTries;
private byte triesRemaining;

public boolean check(byte[] thePin,
short offset, byte length)
throws ArraylndexOutOfBoundsException,
NullPointerException {

}

This class is actually a class in the Java Card API, and it represents a pin (personal identifi-
cation number). Thein array contains the actual numbearaxTries is the maximal
number of tries of the user to present the correct number before the card is locked, and
triesRemaining has the obvious meaning.

A JML invariant for this class might look like this:

[*@ invariant triesRemaining >= 0 &&
triesRemaining <= maxTries;
@*/
This invariant states that the instance figldsRemaining must be larger than or equal
to 0, and less than or equaln@xTries , for all objects of this class at all times.

A JML method specification of the methokeck might look like this:

[*@ public normal_behavior
@ requires triesRemaining > 0 &&
@ Util.arrayCompare(this.pin, (short)0,

Q@ thePin, offset, length)== 0;
@ ensures result == true && triesRemaining == maxTries;
@*/

The boolean expression in thequires clause is the precondition, and the expression in
theensures clause is the postcondition. So this clause states thiae#Remaining

> 0 and ifthePin that is passed to the method is equal to the real pin number, than the
method will returntrue and the value ofriesRemaining will be equal tomax-

Tries [9, 10]. JML specifications actually are embedded in the source code in the form of
Java comments. They cannot stand alone, as there is no way to express in JML the context
in which the specification occurs. The class or method declaration is a part of the specifica-
tion. OCL, on the other hand, has means to express the context of the specification and can
stand alone. By using the OCL keywardntext , one is able to express which class/inter-

face is specified, and - in the case of pre-/postconditions - the method name, the names and
types of the method parameters, and the return type of the method. The corresponding OCL
invariant is therefore:

context OwnerPIN inv:
self.triesRemaining >= 0 and
self.triesRemaining <= self.maxTries

OCL pre- and postconditions for the mettubdck , look like this:

2003-05-20

Analysis 13

context OwnerPIN::check(thePin: Sequence(JByte),
offset: JShort,
length: JByte): Boolean
pre : self.triesRemaining > 0 and
Util.arrayCompare(self.pin,0,thePin,offset,length) = 0
post: result = 0 and self.triesRemaining = self.maxTries

OCL has in fact just one integer typdnteger . The use of the type3Byte andJS-
hort will be further explained later in this report, but it is a way to specify what the cor-
responding Java types should be in an implementation.

There is also the possibility to use OCL in the same way as JML - embedded in the source
code as Java comments. That is how it is done in the Key tool. Using the OCL syntax used
in the KeY tool, we would get the following specifications:

/**

* @invariants

* self.triesRemaining >= 0 and

* self.triesRemaining <= self.maxTries
*/

/**

* @preconditions
* self.triesRemaining > 0 and
* Util.arrayCompare(self.pin, 0, thePin,
* offset, length) =0
* @postconditions
* result = 0 and self.triesRemaining = self.maxTries
*/

For more information about OCL and JML, see [12] (for OCL) and [9] (for JIML).

2.4. OCL syntax used

When trying to specify Java programs with OCL, it soon becomes evident that OCL lacks
properties that are necessary to produce efficient specifications in a convenient way. One is
therefore forced to extend OCL with some constructs, and that is what has been done in the
KeY project.

One issue is thexcThrown construct that will be used in this report and in the resulting
specifications. It is not part of the actual OCL definition, but is an extension of OCL used in
the KeY tool [15]. It will be discussed later in this report. The ideal semantiexot h-
rown(SomeException) is that an instance of the claSemeException has been th-

rown in the method. This is also the semantics assumed in this projectaxb@hrown is

used. The implementation ekcThrown in the current version of KeY however, can just
state that some kind of exception has been thrown. One may not specify the exact type of
exception.

It is also possible in KeY to check if a reference variable containsla value [15], so-
mething that cannot be done in the standard OCL. This construct will also occur in the spe-
cifications, and will be touched upon later in this report.

2003-05-20

14 Analysis

2.5. Comparing JML and OCL

In JIML there are three different constructs to specify a methdaklavior clause, a
normal_behavior clause or a&exceptional_behavior clause. Thébsehavior

clause is the most general one, and the other two can in fact be considered to be just syntac-
tical sugar. Abehavior clause looks like:

I*@ behavior

@ requires <precondition>;

@ ensures <postcondition>;

@ signals(Exception_1) <condition_1>;

@ ..
@ signals(Exception_n) <condition_n>;

@*/

This specification states that if the precondition holds at the beginning of a method invoca-
tion, then the method either terminates normally or terminates abruptly by throwing one of
the listed exceptions; if the method terminates normally, then the postcondition will hold; if
the method throws an exception, then the corresponding condition will hold. How could this
construct be expressed in OCL? Well, a first naive try could be something like this:

context SomeClass::someMethod()
pre: true
post: if <precondition>
then <postcondition>
else
if <condition_1>
then excThrown(Exception_1)
else
if

if <condition_n>
then excThrown(Exception_n)
endif

endif
endif
endif

But this constraint does not have the same semantics as the JML clause. If one looks care-
fully at the definition of the behaviour clause, one sees that it states that if the precondition
holds at the beginning of a method invocation, then the method either terminates normally
or terminates abruptly.. In our naive OCL constraint we assumed that if the precondition
held at the beginning of the method invocation, then the method terminates normally. An-
other attempt:

context SomeClass::someMethod()
pre: <precondition>
post: <postcondition>
or
(excThrown(Exception_1) and <condition_1>)
or

2003-05-20

Analysis 15

or
(excThrown(Exception_n) and <condition_n>)

This is definitely a better attempt. This specification states that if the precondition holds at
the beginning of a method invocation, then the method either terminates normally or ter-
minates abruptly by throwing one of the listed exceptions. But if the method throws an ex-
ception, then we do not know that the corresponding condition will hold. Why not? It is
possible that the method throws an exception, that the corresponding conditionatoes
hold, but that<postcondition> holds. A method that behaves like that could still be
verified w.r.t. this specification, which would not be the intention.

Still another attempt is necessary:

context SomeClass::someMethod()
pre: <precondition>
post:(
not excThrown(java::lang::Exception)
and
<postcondition>
)
or
(excThrown(Exception_1) and <condition_1>)
or
or
(excThrown(Exception_n) and <condition_n>)
Since the clasg&xception in the packaggava.lang (is writtenjava::lang in
OCL syntax) is the superclass of all exceptions, this specification states the following: if the
precondition holds at the beginning of a method invocation, then either the method termina-
tes normally anckpostcondition> holds, or otherwise one of the listed exceptions is
thrown and the corresponding condition holds. Exactly what we want it to state.

Next we have the normal_behavior clause:

[*@ normal_behavior
@ requires <precondition>;
@ ensures <postcondition>;
@*/
This one states that if the precondition holds at the beginning of a method invocation, then
the method terminates normally (i.e. without throwing an exception) and the postcondition
will hold at the end of the method invocation. This we can express in OCL like:

context SomeClass::someMethod()
pre: <precondition>
post: not excThrown(java::lang::Exception)
and
<postcondition>

Finally the exceptional_behavior clause:

[*@ exceptional_behavior
@ requires <precondition>;
@ signals(SomeException)

@/

2003-05-20

16 Analysis

The semantics of this specification is that if the precondition holds at the beginning of a
method invocation, then the method terminates abruptly by throwlBgnaeException
The corresponding OCL constraint becomes:

context SomeClass::someMethod()
pre : <precondition>
post: excThrown(SomeException)

There is also the possibility in JML to put multiple clauses in one method specification,
with the help of the reserved woadso . This can be seen as a kind of case analysis. For in-
stance it can look like this:

[*@ normal_behavior
@ ..
@ als
@ behavior
@ ..
@*/
This simply means that both clauses must be obeyed by the method implementation, i.e. one
can put a logicadnd between the clauses. So the translation to OCL is straightforward:

context SomeClass::someMethod()
pre:true
post:(

)

and

(

<translation of behavior clause>

Below is a table with a number of features in OCL and their counterparts in JML.:

<translation of normal_behavior clause>

Comments OCL JML
a, b and. c are boolean| not a la
expressions. 2 and b 2 && b
aorb allb
axorb @al|b) && !(a &&b)
a implies b a==>b
a=b a<==>Db
if a then b else c endif if (a) {b} else {c}
aandb are arbitrary |a=»b a==
expressions. 2 <> b =D

2003-05-20

Analysis

17

Comments

OCL

JML

a is an expression that

a.oclIsKindOf(T)

a instanceof T

evaluates to a variable

T is a class or interfacg. 2-0C!ISNew() \fresh(a)
a@pre \old(a)
When one wants to arr->size() arr.length
handle a collection of :)
objects in Java Card/ arr->at(i) arri-1]
JML, one usually uses| arrl = arr2 arrl.equals(arr2)

an array (boolean(],
byte[], short[] or

arr->subSequence(low, high

Object[]). The counter-
part in OCL is the

arrl->union(arr2)

Sequence type. One

arr->count(obj)

important difference is
that Java arrays are

arr->select(expr)

indexed from 0 and up

arr->collect(expr)

while a Sequence is
indexed from 1 and up

arr->includ

es(object)

arr->includesAll(collection)

arr->isempty()

arr.length ==

arr->iterate(elem: T,
acc: T = <expr> |
expression-with-elem-
and-acc)

The variable elem is the
iterator. acc is the accd
mulator, which gets an
initial value <expr>

arr->iterate(expr)

The general syntax of
the exists and forall

arr->exists(x:T | P(x))

\exists T x; x>=0 &&
x < arr.length ==> P(x)

clauses in JML is:
\exists T x;
R(X) ==> P(x)

range of x.

174

where R(X) specifies the

arr->forAll(x:T | P(x))

\forall T x; x>=0 &&
x < arr.length ==> P(x)

2.6.

One subject that needs to be decided upon, before writing a specification with invariants and

Semantics of constraints

pre-/postconditions, is what they really mean. For instance:

» At which point in the execution of the program is the validity of an invariant enforced?

* What happens if the precondition of an operation is violated?

2003-05-20

18 Analysis

Let us start with the invariants. In the OCL specification of UML v1.4 we can read:

"The OCL expression can be part of an Invariant which is a Constraint stereotyped as an
<<invariant>>. When the invariant is associated with a Classifier, the latter is referred to as
a 'type’ in this chapter. An OCL expression is an invariant of the type and must be true for
all instances of that type at any time."

An interesting question is: does this mean that invariants must not even be violated during a
method invocation, i.e. during intermediate computation steps? Not necessarily. The most
common way to interpret an invariant seems to be that it must be trueagyopletionof

the constructor and every public method. This is also how the KeY tool handles invariants.

When it comes to pre-/postcondition pairs, there are several possible semantics, which is
shown in [4].

Partial Correctness- if the precondition holds at the beginning of a method invocation and

if the method terminates normally, then the postcondition holds in the terminating state.

Total Correctness- if the precondition holds at the beginning of a method invocation, then
the method terminates normally and the postcondition holds in the terminating state.

Partial Exception Correctness- if the precondition holds at the beginning of a method in-
vocation and if the method terminates normally, then the postcondition holds in the termina-
ting state; if the precondition does not hold at the beginning of a method invocation then the
method does not terminate normally.

Total Exception Correctness- if the precondition holds at the beginning of a method invo-
cation, then the method terminates normally and the postcondition holds in the terminating
state; if the precondition does not hold at the beginning of a method invocation, then the
method does not terminate normally.

There are still other possibilities. We have already seen the semantics of thizeldli-

our clause:

If the precondition holds at the beginning of a method invocation, then the method either
terminates normally or terminates abruptly by throwing one of the listed exceptions; if the
method terminates normally, then the postcondition will hold; if the method throws an ex-
ception, then the corresponding condition will hold.

The semantics of OCL pre- and postconditions is not clear from the UML v1.4 definition,
but the theorem prover in KeY however interprets a pre-/postcondition pair according to the
total correctness semantics. (The subject of abruptly terminating programs is solved by the
use ofexcThrown , and will be discussed later in the report.) Let us imagine we have a
proof obligation as a result of a pre-/postcondition pair and an implementation that looks li-
ke:

¢-><p> Y
For deterministic programs - and Java programs are deterministic - the semantics of this
proof obligation is:

For every stats satisfying preconditiorp, a run of the prograrmp starting ins terminates,
and in the terminating state the postconditjoholds [1].

2.7. Thenull value

One problem with OCL is that there is nothing corresponding tantle value in Java

(and JML). This is a problem that often occurs, as there is often a reason to check if a para-
meter reference isaull value, and in that case specifying the throwing dfdiPoin-
terException

2003-05-20

Analysis 19

Let us see how this can be handled in different situations.

public class MyClass {
/@ invariant otherl != null;
private OtherClassl otherl;

[*@ public behavior
@ requires <precondition>;
@ ensures <postcondition>;
@ signals (java.lang.NullPointerException)
@ other2 == null;
@*/
public void someMethod(OtherClass2 other2);
}

The invariant can be fairly accurate expressed in OCL, as an association-end can always be
interpreted as an OCg&et . The situation above interpreted as a UML diagram would, the-
refore, have an association betwddyClass andOtherClassl , and the association-

end atOtherClassl would be calledbtherl . If, in the context oMyClass , the OCL
expressiorself.otherl was evaluated, and the association multiplicity wag, then it

would result in an OCICollection (Set , Bag or Sequence). But even if the multipli-

city is<= 1, then - according to the OCL definition - one has the freedom to use the result
as aSet . This means that the invariant above, eveutliferl is a reference to just a single
Object and not an array @bject s, can be expressed like this:

context MyClass inv:
self.otherl->notEmpty()

The pre- and postcondition pair is a bit harder. The paranmber2 can be treated as a
OCL Collection only if OtherClass2 is of typebyte[] ,short[] or some kind
of Java Collection type. In that case we can use the same technique as above:

context MyClass::someMethod(other2: OtherClass2)
pre : <precondition>
post: (
not excThrown(java::lang::NullPointerException)
and
<postcondition>

)

or
(
excThrown(java::lang::NullPointerException)
and
other2->isempty()

)

Otherwise there is no way to test foull in a straightforward way. However, in the KeY
tool, an extension of OCL is used, that permit us to checkitdr values in a Java-like
manner [15]. For instance the method specification above would then look like this:

context MyClass::someMethod(other2: OtherClass?2)
pre : <precondition>
post: ...
or

(

2003-05-20

20 Analysis

excThrown(java::lang::NullPointerException)
and
other2 = null

)

2.8. Exceptions

There is no construct in OCL that is letting us express the throwing of an exception in a di-
rect manner. How could we solve this? Let us assume that we in our UML diagram include
the exception clasSomeException , and that we have an association frgClass to
SomeException calledthrownExceptions . Then we might do something like this:

public class MyClass {

public SomeResultType aMethod() throws SomeException {
if (<someCondition>)
throw new SomeException();

}

context MyClass::aMethod(): SomeResultType
pre : true
post: let e: SomeException
in
<someCondition>
implies
self.thrownExceptions->includes(e)
and
e.oclisNew()

But this would not work within the KeY tool. The problem lies in how Key handles the code
fragment

throw new SomeException();

The fact is that a method that terminates abruptly - e.g. if an exception is thrown and not
caught - is handled as a non-terminating method. Let us see how a proof obligation is crea-
ted and what it means. If we have a program (method bpdg)preconditiorp and a post-
conditiony, then we will get the following proof obligation:

@-><p> Y
This formula is valid if for every state satisfying preconditiorp, a run of the progranp
starting ins terminates, and in the terminating state the postcondiiblolds. So ifp con-
tains a throw-statement then the KeY tool would consider it as a non-terminating program,
and the proof obligation would be unsatisfiable for all postconditipriBhis in turn means
that there is no way to specify - with normal OCL constructs - that a method throws an ex-
ception, and then - within the KeY tool - verify an implementation of this method w.r.t. this
specification. The way to handle this in KeY is the extra consgxcThrown [15], which

is an extension of the OCL standard and has been used earlier in this report. The idea of this
construct is to get around the problem by placing the whole method bodyyjfcatch -

2003-05-20

Analysis 21

construct (program transformation). In the example above we would get this constraint ins-
tead:

context MyClass::aMethod(): SomeResultType
pre : <<someCondition>>
post: excThrown(SomeException)

And when this is translated to Dynamic Logic we would - ideally - get the proof obligation

==>
<<someCondition>>
>

boolean thrownException = false;

try {
self.aMethod();

} catch(Exception thrownExc) {
thrownException

= thrownExc instanceof SomeException;
}

}> thrownException = TRUE

This works, because a thrown exception that is caught is not considered to result in a non-
terminating program.

However, the waexcThrown is implemented in the current version of KeY, it just states
that the method does throw &xception , i.e. one cannot specify what particular sub-
class ofException that is thrown. For instance, one cannot check if the exception thrown
is aNullPointerException or anArraylndexOutOfBoundsException . So

the proof obligation above would actually look like this:

thrownException
= thrownExc instanceof Exception;

But even ifexcThrown was implemented in the “ideal” way, it still would not have the
same expressive power as the Jslgnals clause. In thesignals clause you may use

an actual instance of the thrown exception and, for instance, call the mg#iBaa-

son() defined in theCardException andCardRuntimeException classes. In

other words, it works similar to theatch clause in the Java language. However, there is
fortunately a way to get around this problem in the context of Java Card. The whole idea de-
pends on the fact that, when programming Java Card, one is not supposed to create a new
Exception every time one wants to throw one. Inste@dydException , CardRun-
timeException and all their descendants have a static field - let us calfstemin-

stance - which holds an instance of the class itself. If a programmer wants to throw an
Exception in his applet code, he invokes the static metllodwlIt - in the specific ex-
ception class he wants to throw - with a special reason code as argumenhrdivé

method sets theeason field in the class instance held Bysteminstance , and then
throws this instance. This all has to do with the limited memory space in a smart card. Let
us look at an example to clarify this:

public void aMethod() throws APDUEXxception {

APDUEXxception.throwlt(APDUException.IO_ERROR);
}

2003-05-20

22 Analysis

The JML specification:

r@
@ behavior
@ requires ...
@ ensures ...
@ signals(APDUException e)
@ e.getReason() == APDUEXxception.|IO_ERROR
@*/

The OCL specification:

context SomeClass::aMethod()
pre: ...
post: ...
or
(
excThrown(APDUEXxception)
and
APDUEXxception.systeminstance.getReason()
= APDUEXxception.[O_ERROR
)

However, this would not work in the ordinary Java language, because then there would be
no way to access the actual object that is thrown. This is a severe weaknessxaThe
rown construct, the way it is implemented today in the KeY tool.

2.9. Arithmetic

Still another difference between OCL and JML/Java is the semantics of arithmetic opera-
tions on integers. The problem is that when one applies arithmetic operations to a primitive
Java integer typejyte or short , then there is a possibility that the resolterflows At

the same time, the OClnteger type behaves like a real mathematical object, i.e. it never
overflows. An example will make this fact clear:

public byte add(byte bl, byte b2) {
return (byte)(bl + b2);

context SomeClass::add(bl: Integer, b2: Integer): Integer
post: result = bl + b2

A method invocation add(Byte.MAX_VALUE, 1) - would return the valudy-
te.MIN_VALUE (-128) . Atthe same time the result of an evaluation of the OCL ex-
pressiorbl + b2 isByte. MAX_VALUE + 1 (128) . Consequently the semantics of
byte + and thelnteger + is not the same. How is this solved in KeY when the imple-
mentation is to be verified w.r.t. the specification? The integers in the specification are to be
treated according to the OCL semantics, when translating the specification into Dynamic
Logic. But how should we handle the integers in the implementation? How ateythes
andshort s treated when the implementation is translated into Dynamic Logic? That de-
pends on what semantics we use. This issue and how it is solved in KeY is discussed in [2].
We could choose to ignore the fact thtte s are finite, i.e. that overflow is a possibility,

and treabyte s as real mathematical objects. In that case the implementation above could
be verified w.r.t. the specification, although the program would not fulfil the specification

2003-05-20

Analysis 23

under certain conditions. In other words, we might verify incorrect programs - clearly not
what we want. Another alternative is to treat thge s exactly as the Java Virtual Machine,

i.e. to use the Java semantics. This is clearly a better choice since then we cannot verify in-
correct programs. With this semantics, the implementation above cannot be verified w.r.t.
the specification. This however means that the semantics of the specification integers and
implementation integers are different, and this leads to other problems. For instance, form-
ulas that are intuitively true, likefor all x, there i s ay such that y > x

- are no longer true ik andy are Java built-in types likbyte andshort . This problem is

very obvious in the example above. Another problem is that it is easy to overlook the pos-
siblity of overflow. This can lead to programs that are merely “incidentally” correct. This
means that “a program fulfills its specification although overflow may occur, but the fact
that overflow occurs was not intended neither by the modeller nor the programmer” [2]. For
example, the formula

i >0 -><i=i+l; i=i-1;>(i > 0)
is valid although in case the value iofis Byte. MAX_VALUE, an overflow occurs and the

value ofi is (surprisingly) negative in the intermediate state after the first assignment. A
more realistic example can be found in [2].

In KeY, a third alternative is used that elegantly solves the problems mentioned above. The
Java syntax is extended with additional primitive data tyg@hByte |, arithShort

arithint ~ , andarithLong , which are called arithmetical types in contrast to the built-

in typesbyte , short ,int , andlong . In the semantics used in KeY, the additional arith-
metical types basically have an infinite range. Here is a quotation from the paper [2]: “The
operators acting on them have the same semanticg@s[the semantics in which we treat

the integer types as real mathematical objects] with the following restriction: If the values of
the arguments of an operator are in valid range (this means, they are possible to represent in
the corresponding built-in types) but the result would not (this means, overflow occurs re-
placing the arithmetical types with the corresponding built-in types), then the result is calcu-
lated by an invocation of the implicitly defined methoderflow(x, y, op) whose
behaviour remains unspecified. This means in case of overflow, the result is unspecified and
the execution of the methamerflow does not have to terminate. (...) If a JavaDL formu-

la @is derivable in our calculus based oRe$ [the semantics used in KeY] (i.e. overflow is
unspecified), themis valid in Sy for all implementations obverflow (this follows

from the soundness of the calculus). Thus (...) one knows that no overflow occurs during the
execution ofp [p is the program in the formulap>¢q].” So the problem of “incidentally
correct” programs can with this semantics be avoided. An implementation that uses the
arithmetical types can never be verified, using this semantics, if the execution of the pro-
gram may lead to overflow. If the possibility of overflow in the program is desirable, one
simply uses the built-in types instead. The problem with intuitively true formulas is also sol-
ved with this approach. Arithmetical types are not allowed to occur in a program that should
be compiled and executed, so - before this - they have to be replaced with the corresponding
built-in types.

In the name of justice, it should be pointed out that the JML approach is not free of pro-
blems either, as shown in [5]. In JML, the semantics of integer arithmetic operations are the
same as in Java, i.e. there is the possibility of overflow. Notice the difference to the situation
with OCL. The problem with OCL is that thimteger type has an infinite range, while

the Java types are finite. In JML, both the specification integer types and the implementation
types have a finite range, but problems arises anyway as we shall see. Let us say we want to
specify a methodhtSqrt , which should return the integer square root of its argument. A
JML specification of this method could look like this:

2003-05-20

24 Analysis

/*@ public normal_behavior
@ requiresy>=0
@ ensures Math.abs(\result) <=y

@ && \result * \result <=y

@ && y < (Math.abs(\result) + 1)
@ * (Math.abs(\result) + 1);
@/

public static int intSqrt(int y)
Let us say that we implement this method in the following strange way:
public static int intSqrt(int y) {

if (y ==0)
return Integer.MIN_VALUE;

-

This implementation would be possible to verify w.r.t. the specification (if the remaining
values is treated in a correct way). This unexpected situation arises because operators over
theint type in Java/JML obey the rules of modular arithmetic - thugge-
ger.MIN_VALUE = IntegerMAX VALUE + 1 , etc. The problem is that specifiers

think in terms of infinite precision arithmetic when they read and write specifications.

It would be nice to have a way to express in the OCL specification, what integer types
should be used in the implementation. This is solved in this thesis by the use of the wrapper
classeslByte andJShort (J stands for Java), which are used for specification purposes
only. This means that instead of just writing

context AClass::aMethod(a: Integer): Integer
pre: ...
post: ...

one is able to specify the actual Java types to be used:

context AClass::aMethod(a: JByte): JShort
pre : ...
post: ...

The disadvantage of this is that one cannot apply the normal arithmetic operators, like +, -,
* and /, directly on objects of these types. This is due to the fact that these operators just are
applicable to the OCL typdsteger andReal . The solution to this problem is to have a
methodasInt() in the wrapper classes, which converts iBgte/JShort objectto an
ordinarylnteger . Animplementation oByte would have an instance field callgd-

lue or something similar. The OCL specification of the metlastht() would then look
something like this:

context JByte::aslInt(): Integer
pre : true
post: result = self.value

Since the calls to this method become very frequent in the specifications, and make them
less clear, they have been left out in this report. That is)JBye andJShort types are

used, but we “cheat” and treat themlageger s without any calls tasint() . All for

the sake of clarity. The methakInt() is however used in the original specifications.
Note that the wrapper class@Byte andJShort do not solve the problems mentioned
above. There is still the possibility of overflow. In the KeY tool we do not have this pro-

2003-05-20

Analysis 25

blem. As shown earlier in this report, the specification of a method in KeY is integrated in
the source code in form of Java comments. The method declaration in Java actually beco-
mes a part of the specification, and we therefore do not need to worry about the OCL type
Integer when we write the specification.

2.10. Theassignable clause in JML

There is a construct in JML, which we have not touched upon yet and that is not very easy
to express in OCL - thassignable clause. The semantics of thgsignable clause
is that only the fields mentioned in the clause can be assigned to. Let us look at an example:

public class AClass {
private byte a;
private byte b;

[*@ normal_behaviour

@ requires
@ assignable a
@ ensures
@*/
public void aMethod(...) {
a=_0;
b=1;
}

}

This implementation cannot be verified w.r.t. the specificatioy, esnot mentioned in the
assignable clause but is assigned a value in the method body. There is no corresponding
construct in OCL. The best one could do is to state - in the postcondition - that every field
that is not mentioned in the JML assignable clause should have the same value as they did
before the method invocation. The example above would look like this:

context AClass::aMethod(...)
pre: ...
post: ...
and
b=b@pre

This can, however, lead to specifications that are very hard to read. Let us, for instance, say
that a class has 10 fields, and that all the methods of the class just assign a value to 1 field.
This would lead to postconditions that all contain a list similar to:

and

fieldl = fieldl@pre
and

field2 = field2@pre
and

and

field10 = field10@pre

2003-05-20

26 Analysis

Furthermore, a method may also assign values to non-private fields in other classes. So the
list above should in fact contain all fields accessible from the context in question. To avoid
these problems, the OCL specifications produced by this project do not always express the
information in the assignable clauses. In cases where there seems to be a minimal risk of
problems to leave it out, that has been done. There is an ongoing work to extend the OCL
used in the KeY tool with a construct similar to the assignable clause in JML. More infor-
mation about this can be found in [3].

2.11. Model fields

Very often in a specification one has to refer to the object state, i.e. the values of the instance
fields. How do we specify an interface or a class where we do not have access to an imple-
mentation, that is, we do not have any (private) instance fields to refer to? One solution
would be if we had access method®{ -methods) to all the relevant parts of the state, sin-

ce we are allowed in our OCL constraints to use methods of the class that do not alter the
object state (so-calledQuery -methods). But what if there are no such methods in the
class, or at least not all the methods we need? (And how do we specify the get-methods?) In
JML there is a way to solve this problem. One may declare so-called model fields [10],
which are specification-only variables - they are used in the specification constraints to refer
to the object state, but do not need to appear in an implementation of the class/interface. Ul-
timately, there should be a relation between the model variables used in the specification
and variables actually used in the implementation, and this relation can again be stated as a
JML annotation. Let us look at a real example from the JML specifications for Java Card
2.1.1 API. The specification of PIN contains a model field calledaxTries . It is decla-

red like this:

//@public model byte _maxTries ;

In the reference implementation of Java Card 2.1.1 API from Sun, another variable name is
used to refer to this part of the object state:

private byte tryLimit;

Therefore, in order to verify the implementation w.r.t to the specification, one has to relate
these variables to each other in some way. In this case it is very simple. All that is needed is
an invariant like this:

//@ invariant _maxTries == tryLimit;

This means that when we refer tmmaxTries in our specification, we also implicitly refer
totryLimit . Of course, the implementer of a class might want to implement the object
state in a different manner than the specifier. In that case, the relations between the model
fields and the variables used in the implementation would be more complicated.

Can this be expressed in OCL? Yes, this can be expressed in standard OCL, with the help of
the <<definition>> constraint. This constraint must be attached to a class or interface and
may only contain let definitions. The example above would look like this in OCL.:

context PIN def:
let _maxTries: JByte

And we would need a similar invariant to relateaxTries to tryLimit

context PIN inv:

self._maxTries = self.tryLimit

2003-05-20

Analysis 27

However, this cannot be done in the current version of KeY. The KeY tool does not support
the <<definition>> constraint.

2.12. Method for creating the specifications

What approach has been used when writing the OCL specifications for Java Card API?
What are the guidelines that have been followed? Well, to start with, the informal specifica-
tion has been read through and considered. Second, the JML specifications have been ex-
amined. Based on these sources, an effort has been made to write reasonable OCL
specifications for the Java Card API. Using a formal language such as OCL, one still has to
decide how detailed the specifications should be. At one end of the spectrum there are the
very complete and detailed specifications, as for instance the reference implementation of
the Java Card API. At the other end of the spectrum there are very incomplete or light-
weight specifications that concentrate on specifying the preconditions of methods that ensu-
re normal behaviour of the method, i.e. preconditions that rule out some - or all - unwanted
run-time exceptions. Such specifications are relatively easy to write and to check, and can
be used to guarantee the absence of most run-time exceptions. This is important, as omitting
the proper handling of such exceptions is a common source of failures [13]. The specifica-
tions produced in this project will be somewhere in the middle. Some of the classes/interfa-
ces will be specified in a rather lightweight manner, while others will be shown feasible to
specify in more detail.

Let us look at an example that can clarify the process. In the inteRfderesiding in the
packaggavacard.framework , there is a methodheck that checks if the pin value
given by the card user agrees with the correct pin value. The informal specification [6] of
this method is like follows:

public boolean check(byte[] pin, short offset, byte length)

Comparepin against thePIN value. If they match and tHeIN is not blocked, it sets the
validated flag and resets the try counter to its maximum. If it does not match, it decrements
the try counter and, if the counter has reached zero, block®PtNe Even if a transaction

is in progress, internal state such as the try counter, the validated flag and the blocking
state must not be conditionally updated.

Notes:

* |f NullPointerException or ArraylndexOutOfBoundsException is th
rown, the validated flag must be seftdse |, the try counter must be decremented, and
thePIN blocked if the counter reaches zero.

* |f offset orlength parameter is negative alrraylndexOutOfBoundsEx
ception is thrown.

* |f offset+length is greater tharpin.length |, the length of thein array, an

ArraylndexOutOfBoundsException is thrown.

* If pin parameter iswll aNullPointerException is thrown.
Parameters:

pin -thebyte array containing thd’IN value being checked
offset - the starting offset in thein array

length - the length opin
Returns: true if thePIN value matchedalse otherwise

2003-05-20

28 Analysis

Throws: ArraylndexOutOfBoundsException - if thecheck operation would
cause access of data outside array bounds.
NullPointerException -if pin is null

The JML specification [14] of this method looks like this:

[*@ public normal_behavior
@ requires _triesRemaining == 0;
@ assignable \nothing;
@ ensures result == false;
@ also
@ public normal_behavior

@ requires _triesRemaining > 0 && pin != null
@ && offset >=0 && length>=0

@ && offset+length == pin.length &&

@ Util.arrayCompare(_pin,(short)0,pin,
@ offset,length) == 0;

@ assignable _isValidated, _triesRemaining;
@ ensures result == true && _isValidated &&
@ _triesRemaining == _maxTries;

@ also

@ public behavior
requires _triesRemaining > 0 &&
I'(pin !'= null && offset >= 0 &&
length >= 0 &&
offset+length == pin.length &&
Util.arrayCompare(_pin,(short)0,pin,
offset,length) == 0) ;
assignable _isValidated, _triesRemaining;
ensures result == false &&
I isValidated && _triesRemaining ==
\old(_triesRemaining)-1,;
signals (NullPointerException)
I isValidated &&
_triesRemaining == \old(_triesRemaining)-1;
signals (ArraylndexOutOfBoundsException)
I isValidated &&
_triesRemaining == \old(_triesRemaining)-1;

OISISIGIGISIOIGIGIOISIGIGIOIOIONS)

*/
/Il Some (all?) applets do not check ifpire & offset they pass on

/I/ to this method are ok, hence the need for the second "also behavior"
Il to say what happengah==null or the array bounds are violated.

public boolean check(byte[] pin, short offset, byte length)
throws ArraylndexOutOfBoundsException,
NullPointerException;

The firstnormal_behavior clause takes care of the case when the try counter (the name
_triesRemaining in the JML spec is definitely a better name choice) has reached zero.
It states that the state cannot be altered in any way, and that the method fasens The

2003-05-20

Analysis 29

secondhormal_behavior clause specifies what will happen if tipgn array passed as

an argument is notaull value, theoffset andlength arguments are non-negative,
thelength added to theffset is equal to the size of the passaid array, and the pin
value given by the user matches the correct pin value. It states that the method will then re-
turntrue , the_isValidated field will be set totrue and the_triesRemaining

field will be reset, i.e. set tomaxTries . (The variables mentioned here starting with an
underscore - _<fieldname> - are all model fields, i.e. specification-only variablesbefhe
havior clause, finally, specifies the exceptions that can be thrown and under which cir-
cumstances. AlullPointerException will be thrown if pin is anull reference,

and anArraylndexOutOfBoundsException will be thrown if the array bounds are
violated. It also states that, if an exception is thrown, thesValidated will be set to

false and_triesRemaining will be decremented.

It seems like the JML specification mainly agrees with the informal specification. One sub-
ject that is not touched upon in the JML specification is the following sentence from the in-
formal specification: Even if a transaction is in progress, internal state such as the try
counter, the validated flag and the blocking state must not be conditionally updates i's

not very easy to specify, as it has to do with atomicity aspects of the Java Card Runtime En-
vironment, and furthermore - as has already been mentioned - the purpose of these specifi-
cations (neither the JML or the OCL specifications) is not to specify every detail of the
classes. Consequently, this is not touched upon in the OCL specification either. Another
thing that one might notice is the fact that the informal specification and the JML specifica-
tion disagree on the subject of whetlodfset+length must be equal tpin.length

or if offset+length might be less than or equal fon.length . It seems like a
mistake has been made in the JML specifications, since it clearly disagrees with the infor-
mal specification and since there seems to be no good reasons to demand that there must be
no free elements in thein array, following the actual pin value. The OCL specification
therefore agrees with the informal specification in this case. Here is the resulting OCL spe-
cification:

context PIN::check(pin: Sequence(JByte),
offset: JShort,
length: JByte): Boolean
pre : true
post: if
self.triesRemaining = 0
then
result = false
endif
and
if
(
self.triesRemaining > 0
and
pin <> null
and
offset >=0
and
length >=0
and
offset+length <= pin->size()
and

2003-05-20

30

Analysis

Util.arrayCompare(self.pin, 0,
pin, offset, length) =0

)

then

(
result = true
and
self.isValidated
and

self.triesRemaining
= self.maxTries
)
endif
and
if
(
self.triesRemaining > 0
and
not
(
pin <> null
and
offset >=0
and
length >=0
and
offset+length <= pin->size()
and
Util.arrayCompare(self.pin, O,
pin, offset, length) =0
)

)

then
(
not self.isValidated
and
self.triesRemaining
= self.triesRemaining@pre-1

and
(
(
not excThrown(java::lang::Exception)
and
result = false
)
or
excThrown(NullPointerException)
or

excThrown(ArraylndexOutOfBoundsException)

2003-05-20

Analysis

31

endif

2003-05-20

32 Results and conclusions

3. Results and conclusions

3.1. The specifications

This project has resulted in OCL specifications for all classes and interfaces in Java Card
2.2 API. These specifications express, with a few exceptionssftmals andassig-

nable clauses in JML have not always been possible to express fully in OCL), as much as
the JML specifications for Java Card 2.1.1 API that has been used as a starting point. With
some methods, the OCL specifications express even more than the JML specifications. For
instance, in the numerous interfaces and classes that extends/impleméfay tinécrface

in the packaggavacard.security , the specifications of thget andset methods

have been somewhat extended compared to the JML specifications. Let us, as an example,
look at the methodetKey in the interfaceDESKey This method copies the data (an array

of byte s) that is passed as an argument and that constitutes the actual key, to the internal
representation. Under certain circumstances, these data are not passed to the method in
plaintext but as a cipher and the method must then decrypt the data before it is copied into
the internal representation. Here is the JML specification [14] for this method:

/*@ public behavior
@ requires keyData !'= null && kOff >= 0 &&
@ kOff < keyData.length;
@ assignable CryptoException.systeminstance. reason;
@ ensures islnitialized();
@ signals (CryptoException €)
@ e.getReason() == CryptoException.ILLEGAL_VALUE;
@*/
void setKey(byte[] keyData, short kOff)
throws CryptoException;

As can be seen, this specification does not give much information about what this method
actually accomplishes. In the OCL specification though, there is an attempt to give an idea
of this:

context DESKey::setKey(keyData: Sequence(JByte),
kOff: JShort)
pre : not (keyData = null)
and
kOff >=0
and
kOff < keyData->size()
post: (
not excThrown(java::lang::Exception)
and
self.isInitialized()
and
(
not self.oclisKindOf(
javacardx::crypto::KeyEncryption)
or
self.getKeyCipher() = null
implies

2003-05-20

Results and conclusions 33

Util.arrayCompare(self.data, O,
keyData, kOff, self.getSize()/8) =0

excThrown(CryptoException)
and
CryptoException.systeminstance.reason
= CryptoException.ILLEGAL_ VALUE
and
(
not self.oclIsKindOf(
javacardx::crypto::KeyEncryption)
or
self.getkeyCipher() = null
implies
kOff+self.getSize()/8 >
keyData->size()

)
)
We see that if it is not the case that this particular instande&$Keyis also an instance of
javacardx.crypto.KeyEncryption or, if it is, that this instance is not associated

with a Cipher object (the circumstances under which the in-data have to be decrypted
[6]), then the in-data is to be copied directly into the internal representation.

Let us also look at the methagetKey in DESKey This method returns the key-data in

plain text. It does not, however, return it as the return value of the method, but instead one
has to pass a reference to a byte array as an argument to the method. The key-data in the in-
ternal representation is then copied into this array. The return value of the method is instead
the byte length of the key-data. Here is the JML specification for this method:

/*@ public behavior
@ requires keyData != null && kOff >= 0 &&

@ kOff < keyData.length && islnitialized();
@ ensures true;
@*/

byte getKey(byte[] keyData, short kOff);

We see that this specification says nothing about what the method accomplishes or what it
returns. The OCL specification expresses some more:

context DESKey::getKey(keyData: Sequence(JByte),
kOff: JShort): JByte
pre : keyData <> null
and
kOff >=0
and
kOff < keyData->size()
and
self.isInitialized()
post: result = self.getSize()/8
and

2003-05-20

34 Results and conclusions

Util.arrayCompare(self.data, 0, keyData,
kOff,self.getSize()/8) = 0

There are a lot of similaset andget methods in the interfaces javacard.securi-
ty , and they are all treated in the same way as above.

Another example where the OCL specifications differ from the JML specifications is the
classOwnerPIN in javacard.framework . The invariants and method specification of
the constructor, in the JML specification of this class, look like this:

//@ invariant 0 < _maxPINSize && 0 < _maxTries;
//@ invariant 0 <= _triesRemaining &&

@ _triesRemaining <= _maxTries;
/@ invariant (_triesRemaining == 0) <==>
@ (* the PIN is blocked *);

[/@ invariant _pin != null && _pin.length <= _maxPINSize;

[*@ public normal_behavior
@ requires maxPINSize > 0 && tryLimit > 0O;
@ assignable _maxPINSize, maxTries, _triesRemaining,

@ _isValidated;

@ ensures _maxPINSize == maxPINSize &&
@ _maxTries == tryLimit &&

@ _triesRemaining == tryLimit &&

@ I _isValidated;

@*/

public OwnerPIN(byte tryLimit, byte maxPINSize)
throws PINException;

There are a number of problems here. To start with, the model f@td is not in theas-
signable clause of the constructor, and at the same time there is an invariant stating that
_pin must not be aull -reference at any time. These conditions are obviously not pos-
sible to satisfy. We must be allowed to assign a valuggioa in the constructor, otherwise

_pin will be anull -reference upon completion of the constructor, and the invariant will
not be satisfied. Another problem is that according to this specification, the constructor is
not allowed to throw any exceptions, although the informal specification says it should be.
The informal specification states that if trexPINSize argument is less than 1, then the
constructor should throw INException with reason coddPINExcep-
tion.ILLEGAL_VALUE . Depending on how one chooses to implement this class the
constructor might also throw @&ystemException with reason cod&ystemExcep-
tion.NO_TRANSIENT_SPACE . This has to do with the special requirements on this
class mentioned in the informal specification: Even if a transaction is in progress, internal
state such as the try counter, the validated flag and the blocking state must not be conditio-
nally updated. This leads to the OCL specification ofQtnmerPIN constructor:

context OwnerPIN::OwnerPIN(tryLimit: JByte,
maxPINSize: JByte)
pre : maxPINSize > 0
and
tryLimit > 0
post: (
not excThrown(java::lang::Exception)
and
self.maxPINSize = maxPINSize
and

2003-05-20

Results and conclusions 35

self.maxTries = tryLimit

and

self.triesRemaining = tryLimit
and

not self.isValidated

or

excThrown(PINEXxception)

and

PINException.systeminstance.getReason()
= PINException.ILLEGAL_VALUE

and

maxPINSize < 1

)

or
(
excThrown(SystemException)
and
SystemException.systeminstance.getReason()
= SystemException.NO_TRANSIENT_SPACE
)

A final little example. The JML specification of th@bject class in java.lang looks like
this:

[*@ public normal_behavior
requires true;
assignable \nothing;
ensures true;
@*/
public boolean equals(Object obj){}

There is a rather obvious way to improve this specification. The OCL specification looks li-
ke:

context Object::equals(obj: Object): Boolean
pre : true
post: result = (self = obj)

There are a number of packaggava.io , java.rmi andjavacard.frame-
work.service), interfaces, classes and methods that have been added in Java Card 2.2
API [7], that were not part of Java Card 2.1.1. Furthermore, the extension pgekage
cardx.crypto has not been specified in the JML specification. In these cases it has not
been possible to use the JML specifications as a reference, but just the informal specifica-
tions.

3.2. Verification based on the specifications

Because of the current state of the KeY tool, the specifications have not been tested to the
extent one would like. There are in the KeY tool still some severe limitations that have done
this impossible. For instance, the current version of KeY cannot handle methods that have

2003-05-20

36 Results and conclusions

arrays as either parameter value or return value. Some method implementations have been
verified w.r.t. their specification, though.

In the packaggavacard.framework there is a number of exception classes. The simp-
le set and get methods in these classes have been verified. Let us see an example - the speci-
fication and implementation of tlf@@ardException methods.

/**

* @invariants not (systeminstance = null)

*/

public class CardException extends Exception {
private static CardException systeminstance;
private short reason;

/**

* @preconditions true

* @postconditions
not excThrown("Exception”)
and
result = self.reason

*/

public short getReason() {

return reason;

}

/**

* @preconditions true
* @postconditions
not excThrown("Exception™)
and
self.reason = theReason
*/
public void setReason(short theReason) {
this.reason = theReason;

}
-

When the KeY tool is asked to generate a proof obligation of the specification and imple-
mentation ogetReason() , the following is the result.

==>
Iself.systemInstance = null
>
boolean thrownException = false;
try {

result=self.getReason();
} catch (Exception thrownExc) {
thrownException
=thrownExc instanceof Exception;
}

}> (('thrownException = TRUE

2003-05-20

Results and conclusions 37

& result = self.reason)
& !self.systeminstance = null)

The KeY tool is able to prove this proof obligation automatically, when one applies the heu-
ristics. This means that we have proved that the implementatiget®feason() is veri-
fied w.r.t. the specification. The proof obligatiorsefReason() is similar.

==>
Iself.systemInstance = null
> <
boolean thrownException = false;
try {

self.setReason(theReason);
} catch (Exception thrownExc) {
thrownException
=thrownExc instanceof Exception;
}

}> (('thrownException = TRUE
& self.reason = theReason)
& !self.systeminstance = null)

This proof obligation is also proved automatically in KeY.

An example that is a little more complicated is the metksdt in classOwnerPIN .
Here is the specification and implementation (both the specification and implementation
have gone through minor changes to work around the limitations in the KeY tool):

/**

* @invariants
self.maxPINSize > 0
and
self.maxTries > 0
and
self.triesRemaining >= 0
and
self.triesRemaining <= self.maxTries
*/
public class OwnerPIN implements PIN {
private byte maxPINSize;
private byte maxTries;
private boolean isValidated;
private byte triesRemaining;
private byte[] pin;
ik
* @preconditionsnot self.isValidated
* @postconditions
not excThrown("Exception")
and
not self.isValidated
and
self.triesRemaining = self.triesRemaining@pre
*/
public void reset() {

2003-05-20

38 Results and conclusions

if (isValidated())
resetAndUnblock();

}
}

The KeY generated proof obligation looks like this:

==>
(((('self.isvalidated = TRUE

& self.maxPINSize > 0)

& self.maxTries > 0)

& self.triesRemaining >= 0)

& self.triesRemaining <= self.maxTries)

& all 0:0OwnerPIN.OwnerPIN::triesRemaining@pre(0)
= o.triesRemaining

>

boolean thrownException = false;

try {
self.reset();

} catch(Exception thrownExc) {
thrownException

= thrownExc instanceof Exception;

}
> ((((("thrownException = TRUE

& !self.isValidated = TRUE)
& self.triesRemaining
= OwnerPIN::triesRemaining@pre(self))
& self.maxPINSize > 0)
& self.maxTries > 0)
& self.triesRemaining >= 0)
& self.triesRemaining <= self.maxTries)

KeY is not able to construct a proof of this automatically, but simplifies the proof obligation
to this:

0 < self.maxPINSize,

0 < self.maxTries,

all o:OwnerPIN.OwnerPIN::triesRemaining@pre(0)
= o.triesRemaining

==>

self.maxTries < self.triesRemaining,

self.triesRemaining < O,

self.isValidated = TRUE,

self.triesRemaining
= OwnerPIN::triesRemaining@pre(self)

After five more rule applications (manually applied) the proof obligation is proved.

3.3. The strengths of OCL

OCL is in some respects a more powerful language than JML. For instance, it is easier to
compare a part of one array with a part of another array in OCL than in JML, because the
built-in array methodkquals is only applicable to whole arrays. Say that we have two ar-

2003-05-20

Results and conclusions 39

raysarrl andarr2 . We want to check if all elements arrl , from the indexoffl to
indexoffl+length , are equal to the elementsanr2 , from off2 to off2+length
In IML we would have to do like this:

\forall short i; i >= 0 && i < length
==> arrl[off1+i] == arr2[off2+i]

In OCL it is easier to express. (Remember that the first index in a Java array is 0 while in an
OCL Sequence itis 1):

arrl->subSequence(offl+1, offl+length)
= arr2->subSequence(off2+1, off2+length)

Though it may not be particularly shorter, it is a more intuitive way to express the same
thing. We can see an example of this in the specificatioddDf The JML specification of
the constructor il\ID looks like this:

/*@ public behavior
@ requires ...
@ assignable ...
@ ensures length == theAlD.length &&

@ (\forall shorti; 0<=1i&&i<length
@ ==> theAlID [i] == bArray [offset+i]);
@ signals (TransactionException €) ...;

@*/

public AID(byte[] bArray, short offset, byte length)
The counterpart in OCL looks like this:

context AID::AID(bArray: Sequence(JByte),
offset: JShort,
length: JByte)
pre: ...
post: (
not excThrown(java::lang::Exception)
and
self.theAID
= bArray->subSequence(offset+1, offset+length)

)

or
(
excThrown(TransactionException)
and

-

Another example is OCL’s owexists andforAll operations, which in many aspects
are more intuitive and easier to use than their counterparts in JML. An example from the
specifications olCSystem will illustrate this. Here first is the JML specification of the
methodmakeTransientBooleanArray

[*@ public normal_behavior
@ requires ...
@ assignable ...
@ ensures (\forall byte i; 0 <=1 &&
@ i < result.length ==> result[i]==false)

2003-05-20

40 Results and conclusions

@ &&
@
@ also
@ ...
public static native boolean[] makeTransientBooleanArray(
short length, byte event) throws SystemException;

Here is the OCL counterpart, which looks much nicer:

context JCSystem::makeTransientBooleanArray(
length: JShort,event: JByte): Sequence(Boolean)
pre : ...
post: if ...
then
(
not excThrown(java::lang::Exception)
and
result->forAll(b: Boolean|b = false)
and

)

endif
and

OCL is equipped with a lot of other operations on the diffei@atlection types Get ,
Bag andSequence) [12]. Some of these operations have already been mentioned in the
table earlier in the report.

3.4. Limitations

The specifications produced in this project are limited in a number of ways. As already
mentioned, they have not been tested to the desirable extent, because of “technical” pro-
blems. One also has to have in mind that some of these specifications are not trying to des-
cribe the behaviour of the methods in every detail but more concentrate on specifying the
conditions of methods that ensure normal behaviour, i.e. no throwing of exceptions.

Other limitations of these specifications have to do with limitations of OCL itself. For in-
stance, the construekcThrown used is not part of standard OCL, but is almost indispen-
sable when specifying Java programs. Under certain condiégcishrown can however

be expressed in standard OCL, but that depends on - for instance - the semantics used for
abruptly terminating programs. Tineilll value is also not part of standard OCL, but can be
expressed to some extent with ordinary OCL constructs.

3.5. Conclusions

What are the contributions of this work?

» The specifications themselves.
When the KeY project has made further progress, the specifications can be used within
the KeY tool and substantially simplify the verification of Java Card programs. They can
serve as a documentation of Java Card API that in many aspects is clearer than the infor-

2003-05-20

Results and conclusions 41

mal specification from Sun. They can also work as a foundation to build on for future de-
velopment towards more complete specifications for the Java Card API.

» The comparison between OCL and JML.
The pro and cons of these languages have been made clearer. The comparison is useful if
one wants to use existing JML specifications as a starting point when writing OCL speci-
fications, and vice versa.

» Evaluation of OCL as a specification language for Java programs. Constructs that are
missing in OCL when specifying Java programs has been pointed out.

Let us look at an example to illustrate the point that the specifications simplify the verifica-
tion of Java Card programs. Say we have a metdeéthod that we have specified and
want to verify. This method invokes a method in the API, which has already been specified
and verified.

/**

* @preconditions <pre>
* @postconditions <post>
*/

public void aMethod(...) {

APIClass.apiMethod(...);

}

This is translated into a proof obligation. When trying to construct a proof to this proof obli-
gation, we sooner or later have to apply a rule that takes care of the invocation of the API
method. If there is no specification for this method we have to replace the method call with
the actual method body. But if there is a specification, and the precondition of this method is
satisfied in the current state, then one may actually replace the method call with its postcon-
dition. This means that we do not have to do the same work over and over again. The API
methods are verified once and for all.

What about the evaluation of OCL as a specification language for Java programs? This work
clearly shows that the OCL standard definition needs to be extended if one should be able to
specify important aspects of a program written in Java or a similar object-oriented language.
First and foremost, a construct that allow us to specify the throwing of exceptions in a simp-
le but powerful way - similar to theignals clause in JML - needs to be added. This is
very fundamental. Second, we need to be able to check if a reference variable contains a
null value. This is also very important when specifying a Java program. There is also the
problem with integer arithmetic and this might be difficult to solve in a generic way in OCL.
Finally a construct similar to thassignable clause in JIML would be very useful in

OCL.

Otherwise, OCL has shown to be an expressive and elegant specification language in the
context of Java Card. OCL contains a great number of operations @ollextion ty-

pes Set , Bag andSequence), which makes it powerful and easy to use in many situa-
tions.

2003-05-20

42 References

4. References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel, W.
Mostowski, A. Roth, S. Schlager, P. H. Schrilitte KeY ToolDepartment of Compu
ting Science, Chalmers University of Technology, Gothenburg and Department of Com
puter Science, University of Karlsruhe, Karlsruhe.

2. B. Beckert, S. Schlagénteger Arithmetic in the Specification and Verification of Java
ProgramsUniversity of Karlsruhe, Institute for Logic, Complexity and Deduction Sys
tems, Karlsruhe.

3. B. Beckert, P. H. SchmitProgram Verification Using Change Informatiomstitute for
Logic, Complexity, and Deduction Systems, Universitat Karlsruhe, Germany. 2003.

4. M. Bidoit, R. Hennicker, H. Hussmar®@n the Precise Meaning of OCL Constrairits
stitut fur Informatik, Ludvig-Maximilians-Universitadt Munchen, Germany and Fakultat
Informatik, Technische Universitat Dresden, Germany and Laboratoire Specification et
Verification, CNRS & ENS de Cachan, France. 2002.

5. P. ChalinBack to Basics: Language Support and Semantics of Basic Infinite Integer Ty
pes in JML and LarctfComputer Science Department, Concordia University. CU-CS
2002.003.1. 2002.

6. Z. ChenJava Card Technology for Smart Cardsldison-Wesley. 2000.

7. Java Card 2.2 Application Programming InterfaGun Microsystems, Inc. September,
2002.

8. Java Card 2.1.1 Development Kitttp://java.sun.com/products/javacard/
dev_kit.html#212. 2003-05-16

9. G.T. Leavens, A. L. Baker, C. RubjL: A Notation for Detailed Desigrkluwer Aca
demic Publishers. 1999.

10. H. Meijer, E. PollTowards a full formal specification of the Java Card ABbmputing
Science Institute, University of Nijmegen, The Netherlands.

11. W. MostowskiTowards Development of Safe and Secure Java Card Appkgiart-
ment of Computing Science, Chalmers University of Technology/Gdéteborg University.
2002.

12. Object Management Groupnified Modelling Language Specification, version 1.4
Sept. 2001.

13. E. Poll, J. van den Burg, B. JacdBsmal specification of the JavaCard API in JML:
the APDU classComputing Science Institute, University of Nijmegen, The Nether
lands. 2001.

14. E. PollFormal interface Java specifications for the Java Card API 2tittf://
www.cs.kun.nl/~erikpoll/publications/jc211_specs.html. 2003-05-16.

15. Andreas RotiDeduktiver Softwareentwurf am Beispiel des Java Collections Frame
work - Verfeinerungsbeziehungen in UML/OBiploma thesis, University of Karlsru
he, Department of Computer Science. 2002.

16. Vad ar formella metoderhttp://www.l4i.se/S_form.htm. 2003-03-06.

2003-05-20

Appendices 43

Appendices

OCL specifications for the Java Card 2.2 API

Java Card 2.2 API consists of the following packagasgcardx.crypto is actually
an extension package):

J'ava\ },@ javTcardx
i0 ﬁé rmi framework sgcurity crypto
service

These packages are given a short description under the section 2.2, “Java Card”. The OCL
specifications of these packages, which this thesis has resulted in, are available both as
stand-alone OCL specifications (only OCL code) and as Java class skeletons (class and met-
hod declarations) with the specifications integrated as comments in the Java code. They can
be found on the following web page:

http://www.mdstud.chalmers.se/~md0Odala/exjob.html

Available on this web page is also some classes with the reference implementation given by
Sun Microsystems (to Java Card 2.1.1) and OCL specifications integrated as comments.
These files have been used when trying to verify some methods w.r.t. the specifications. The
OCL syntax used in these files is tailored to the syntax accepted by the KeY tool.

Due to the volume of the specifications and the recurrence of similar specifications for sim-

ilar methods, only a selection of the stand-alone specifications is reproduced in this appen-
dix. Simply put, the specifications that are most interesting have been chosen -

specifications that are not to trivial and that have been a challenge to specify.

java.io andjava.rmi are very small and simple packages, and not very interesting in
this context.

2003-05-20

44 Appendices

java.lang.Object

package java::lang

context Object::Object()
pre : true
post: true

context Object::equals(obj: Object): Boolean
pre : true
post: result = (self = obj)

endpackage

2003-05-20

Appendices 45

javacard.framework.AlID

package javacard::.framework

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe-
-- cification. An

-- implementer of this class is naturally free to represent -

-- the system state

-- with the help of other class and instance fields.

-- byte[] theAlD;

context AID def:
let theAID: Sequence(JByte)

context AID inv:
self.theAlD <> null
and
self.theAID->size() >= 5
and
self.theAID->size() <= 16

context AID::getBytes(dest: Sequence(JByte), offset: JShort):
JByte
pre : true
post: if
(
dest <> null
and
dest <> self.theAlD
-- <> is defined on OclAny. Means ’is a different
-- object than’
and
offset.asInt() >=0
and
offset.asInt()+self.theAID->size() <= dest->size()
)
then
(
(

2003-05-20

46

Appendices

not excThrown(java::lang::Exception)
and
result.asint() = self.theAlD->size()
and
Util.arrayCompare(self.theAID, 0O, dest, offset,
self.theAID->size()) =0
)

or
(
excThrown(TransactionException)
and
TransactionException.systeminstance.
getReason().aslInt()
= TransactionException.BUFFER_FULL

and
JCSystem.getTransactionDepth() = 1

)
)

endif
and
(
not excThrown(java::lang::Exception)
or
(
excThrown(java::lang::NullPointerException)
and
dest = null

)

or
(
excThrown(java::lang::ArraylndexOutOfBounds)
and
dest <> null
and
(
offset.asInt() <0
or
offset.asInt()+self.theAlID->size()
> dest->size()

or
(
excThrown(TransactionException)
and
TransactionException.systeminstance
.getReason().aslint()

= TransactionException.BUFFER_FULL
and
JCSystem.getTransactionDepth() = 1

2003-05-20

Appendices

47

endpackage

2003-05-20

48 Appendices

javacard.framework.APDU

package javacard::.framework

-- PUBLIC FIELDS:

-- public static final byte STATE_INITIAL;

-- public static final byte STATE_PARTIAL_INCOMING;

-- public static final byte STATE_FULL_INCOMING;

-- public static final byte STATE_OUTGOING;

-- public static final byte STATE_OUTGOING_LENGTH_KNOWN;
-- public static final byte STATE_PARTIAL_OUTGOING;

-- public static final byte STATE_FULL_OUTGOING;

-- public static final byte STATE_ERROR_NO_TO0_GETRESPONSE;
-- public static final byte STATE_ERROR_T1_IFD_ABORT;
-- public static final byte STATE_ERROR_I0O;

-- public static final byte STATE_ERROR_NO_TO_REISSUE;
-- public static final byte PROTOCOL_MEDIA_MASK;

-- public static final byte PROTOCOL_TYPE_MASK;

-- public static final byte PROTOCOL_TO;

-- public static final byte PROTOCOL_T1,;

-- public static final byte PROTOCOL_MEDIA_ DEFAULT;

-- public static final byte

- PROTOCOL_MEDIA_CONTACTLESS _TYPE_A

-- public static final byte

- PROTOCOL_MEDIA_CONTACTLESS_TYPE_B;

-- public static final byte PROTOCOL_MEDIA_USB;

-- PRIVATE FIELDS:

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe

-- cification. An

-- implementer of this class is naturally free to represent

-- the system state

-- with the help of other class and instance fields.

-- /Imodel fields in the JML spec

-- private short Lc; // incoming command length
-- private short Lr; // response length

-- private short Le; // terminal expected length
I

-- private static final short BUFFERSIZE = 37,
-- private byte[] buffer;
-- private byte APDU_ state;

2003-05-20

Appendices

49

context APDU def:
let Lc: JShort
let Lr: JShort
let Le: JShort
let BUFFERSIZE: JShort -- static final
let buffer: Sequence(JByte)
let APDU_state: JByte

context APDU inv:
self.buffer <> null
and
APDU.BUFFER_SIZE.asInt() >= 37
and
self.buffer->size() = APDU.BUFFER_SIZE.asInt()
and
APDU.PROTOCOL_T0 =0
and
APDU.PROTOCOL _T1=1
and
self.getCurrentState().asInt() >= APDU.STATE_INITIAL
and
self.getCurrentState().asInt() <= APDU.STATE_FULL_OUTGOING
and
self.Lc.asInt() >=0
and
self.Lc.asInt() < 256
and
self.Lr.asInt() >=0
and
self.Lr.asInt() <= 256
and
self.Le.asInt() >=0
and
self.Le.asInt() <= 256

context APDU::setincomingAndReceive(): JShort
pre : self. APDU_state = 1
-- and
-- 'self.Lc bytes still to be received’
post: (
not excThrown(java::lang::Exception)
and
self. APDU_state = 2
and
result.asint() >= 0
and

2003-05-20

50 Appendices

result.asint() <= self.L.c@pre
and
self.Lc = self.L.c@pre - result.asInt()
and
result.asint()+5 <= APDU.BUFFERSIZE
-- and
-- 'self.Lc bytes still to be received’
--and
-- 'data received in self.buffer->subSequence(6,
-- 6+result.asint()-

excThrown(APDUEXxception)
and
(
APDUEXxception.systeminstance.getReason().aslint()
= APDUEXxception.|IO_ERROR
or
APDUEXxception.systemInstance.getReason().aslInt()
= APDUException.T1_IFD_ABORT

context APDU::receiveBytes(bOff: JShort): JShort
pre : self.getCurrentState().asInt()
= APDU.STATE_PARTIAL_INCOMING

and
bOff.asInt() >= 0
and
bOff.asInt()+self.getinBlockSize().asInt()
<= APDU.BUFFERSIZE.asInt()
-- and
-- 'self.Lc.asInt() bytes still to be received’
post: (
not excThrown(java::lang::Exception)
and
(
self.getCurrentState().aslint()
= APDU.STATE_PARTIAL_INCOMING

or
self.getCurrentState().aslInt()
= APDU.STATE_FULL_INCOMING

)

and
result.asint() >= 0
and

2003-05-20

Appendices

51

result.asint() <= self.Lc@pre.asint()
and
self.Lc.aslInt()
= self.Lc@pre.asint() - result.asInt()

and
result.asint()+bOff.asInt()
<= APDU.BUFFERSIZE.asInt()

-- and
-- 'self.Lc.asInt() bytes still to be received’
-- and
-- 'data received in self.buffer->subSequence(
-- bOff.asInt()+1, bOff.asInt()+1+result.asint()-1)’

)

or

(
excThrown(APDUEXxception)

(
APDUEXxception.systeminstance.getReason().aslInt()
= APDUEXxception.|IO_ERROR
or
APDUEXxception.systeminstance.getReason().aslint()
= APDUException.T1_IFD_ABORT

context APDU::setOutgoing(): JShort
pre : self.getCurrentState().asInt() = APDU::STATE_INITIAL
or
(
self.getCurrentState().asint()
= APDU::STATE_FULL_INCOMING

and
self.Lc.asInt() =0
)
post: (
not excThrown(java::lang::Exception)
and
self.getCurrentState().aslnt()
= APDU::STATE_OUTGOING

and

result.asint() = self.Le.asInt()

-- and

-- 'self.Le.aslInt() is the terminal expected
-- response length’

or

2003-05-20

52 Appendices

excThrown(APDUEXception)

and

APDUEXxception.systeminstance.getReason().aslInt()
= APDUEXxception.|IO_ERROR

context APDU::sendBytes(bOff: JShort, len: JShort)
pre : (
self.getCurrentState().asint()
= APDU::STATE_OUTGOING_LENGTH_KNOWN
or
self.getCurrentState().asint()
= APDU.STATE_PARTIAL_OUTGOING

)

and
len.asint() >= 0
and
len.aslInt() <= self.Lr.asInt()
and
bOff.asInt()+len.asInt() <= APDU.BUFFERSIZE.asInt()
post: (
not excThrown(java::lang::Exception)
and
(
self.getCurrentState().aslInt()
= APDU.STATE_PARTIAL_OUTGOING
or
self.getCurrentState().aslInt()
= APDU.STATE_FULL_OUTGOING

)

and
self.Lr.asInt() = self.Lr@pre.asInt()-len.asint()
-- and
- (
-- self.Lr.asInt() >=0
-- implies
- 'self.buffer->subSequence(bOff.asInt()+1,
-- bOff.asInt()+1+len.asint()-1) sent’
-)
-- and
- (
-- self.Lr.asInt() =0
- implies
-- 'self.buffer->subSequence(bOff.asInt()+1,
-- bOff.asInt()+1+len.asInt()-1) will
-- be sent later! Namely at end of current
-- process invocation.
-- so self.buffer->subSequence(

2003-05-20

Appendices

53

bOff.asInt()+1,

-- bOff.asInt()+1+len.asiInt()-1) shouldn’t
be altered.’

-)
-- and
-- 'self.Lr.asInt() bytes still to be sent’

)

or

(

excThrown(APDUEXxception)
and

(

APDUEXxception.systeminstance.getReason().asInt()
= APDUEXxception.ILLEGAL_USE
or
APDUEXxception.systeminstance.getReason().asInt()
= APDUEXxception.IO_ERROR
or
APDUEXxception.systeminstance.getReason().asInt()
= APDUException.NO_TO0_GETRESPONSE
or
APDUEXxception.systeminstance.getReason().asInt()
= APDUException.T1_IFD_ABORT
or
APDUEXxception.systeminstance.getReason().asInt()
= APDUException.NO_TO0_REISSUE
or
APDUEXxception.systeminstance.getReason().asInt()
= APDUEXxception.BUFFER_BOUNDS

endpackage

2003-05-20

54 Appendices

javacard.framework.APDUEXxception

package javacard::.framework

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica
-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe
-- cification. An

-- implementer of this class is naturally free to represent

-- the system state

-- with the help of other class and instance fields.

-- private static APDUEXxception systeminstance;

-- private short reason;

context APDUEXxception def:
let systeminstance: APDUEXxception -- static
let reason: JShort

context APDUEXxception
inv: APDUEXxception.systeminstance <> null

context APDUEXxception::APDUEXxception(reason: JShort)

pre : true
post: (
not excThrown(java::lang::Exception)
and
self.getReason().asInt() = reason.aslint()
)
or

(

excThrown(SystemException)

and

SystemException.systemlinstance.getReason().asint()
= SystemException.NO_TRANSIENT_SPACE

context APDUEXception::getReason(): JShort
pre : true
post: not excThrown(java::lang::Exception)
and
result.asint() = self.reason.asint()

2003-05-20

Appendices

55

context APDUEXception::setReason(reason: JShort)
pre : true
post: not excThrown(java::lang::Exception)
and
self.getReason().asInt() = reason.asint()

-- Static
context APDUEXxception::throwlt(reason: JShort)
pre : true
post: excThrown(APDUEXxception)
and
APDUEXxception.systeminstance.getReason().asint() =
reason.asint()

endpackage

2003-05-20

56 Appendices

javacard.framework.Applet

package javacard::.framework

-- protected final
context Applet::register(bArray: Sequence(JByte),
bOffset: JShort,
bLength: JByte)
pre : true
post: if
(
bLength.asInt() >= 5
and
bLength.asInt() <= 16
and
bOffset.asInt() >=0
and
bArray->notEmpty()
and
bOffset.asInt()+bLength.asInt() <= bArray->size()
)

then

(
not excThrown(java::lang::Exception)
or
excThrown(TransactionException)

)

endif

and

(

not excThrown(java::lang::Exception)

or
(
excThrown(java::lang::NullPointerException)
and
bArray = null
)
or
(
excThrown(java::lang::ArraylndexOutOfBoundsEx
ception)
and
(
bOffset.asInt() < 0
or
bLength.asInt() <0
or

2003-05-20

Appendices

57

bOffset.asInt()+bLength.asInt()
> bArray->size()

or

(
excThrown(SystemException)
and

(
(

SystemException.systeminstance.
getReason().asInt()= SystemException.ILLEGAL_AID

and

(
bLength.asInt() <5
or
bLength.asInt() > 16

)

or

(

SystemException.systeminstance.
getReason().asInt()= SystemException.ILLEGAL_VALUE

-- and
~

-- the AID bytes in bArray are already in
-- use
- or

-- the RID portion of the AID bytes does
-- not match

-- the RID portion of the Java Card name
-- of the applet
-- or
-- a JCRE initiated install() method ex
-- ecution is not
-- in progress

endpackage

2003-05-20

58 Appendices

javacard.framework.JCSystem

package javacard::.framework

-- PUBLIC FIELDS

-- public static final byte CLEAR_ON_DESELECT;

-- public static final byte CLEAR_ON_RESET;

-- public static final byte NOT_A TRANSIENT_OBJECT;

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe

-- cification. An

-- implementer of this class is naturally free to represent

-- the system state

-- with the help of other class and instance fields.

-- In the context of JCSystem, there are further complica

-- tions. JCSystem does

-- not provide a piece of functionality that provides an addi

-- tion to the bare

-- JCVM and that can be understood in isolation. The parts of
-- the system state

-- that are represented by the variables below, can be changed
-- by normal Java

-- Card statements, i.e. as ’'side effects’ of certain virtual

-- machine instructions.

-- For instance, the variable activeContext may need to be

-- changed at every method

-- invocation. All this means that ultimately a specification

-- of the Java Card API

-- cannot be considered on its own, but has to be considered

-- together with a

-- formalisation of the Java Card language itself.

-- /[The amount of free (i.e. unallocated) transient memory
-- private static int freeTransient;

-- private static byte previousContext;
-- private static byte selectedContext;
-- private static byte activeContext;

-- private static byte transactionDepth;

-- IlregisteredAlDs is the domain of appletTable

2003-05-20

Appendices 59

-- Illthe objects in registeredAlIDs are of type AID

-- [lappletTable is a partial function from AIDs to applets
-- private static Set registeredAIDs;

-- private static Map appletTable;

-- private static byte JCRE_CONTEXT,;

context JCSystem def:
let freeTransient: Integer
let previousContext: JByte
let selectedContext: JByte
let activeContext: JByte
let transactionDepth: JByte
let registeredAlDs: Set
let appletTable: (Map)
let JCRE_CONTEXT: JByte

context JCSystem inv:
JCSystem.NOT_A_TRANSIENT_OBJECT =0
and
JCSystem.CLEAR_ON_RESET =1
and
JCSystem.CLEAR_ON_DESELECT =2
and
(
JCSystem.transactionDepth.asInt() = 0
or
JCSystem.transactionDepth.asInt() = 1

)

-- static

context JCSystem::makeTransientBooleanArray(length: JShort,

Sequence(Boolean) event: JByte):

pre : true
post: if
(
length.asInt() >= 0
and
length.asInt() <= JCSystem.freeTransient@pre
and
(
event.asint() = JCSystem.CLEAR_ON_RESET
or

2003-05-20

60 Appendices

event.asint() = JCSystem.CLEAR_ON_DESELECT

and
(
event.asint() = JCSystem.CLEAR_ON_DESELECT
implies
JCSystem.selectedContext.asInt()
= JCSystem.activeContext.asInt()

)
)
then
(
not excThrown(java::lang::Exception)
and
not (result = null)
and
result->size() = length.aslInt()
and
result.oclisNew()
and
JCSystem.isTransient(result).asint()
= event.asint()

and
JCSystem.freeTransient
= JCSystem.freeTransient@pre-length.asint()
and
result->forAll(b: Boolean|b = false)
)
endif
and
if
true
then
(
not excThrown(java::lang::Exception)
or
(
excThrown(java::lang::NegativeArraySizeExcep
tion)
and
length.asInt() <0
)

or
(
excThrown(SystemException)
and
(
(

SystemException.systemlinstance.getRea
son().asInt()

2003-05-20

Appendices

61

= SystemException.ILLEGAL_VALUE

and
event.asint() <> JCSystem.CLEAR_ON_RESET
and
event.asint() <> JCSystem.CLEAR_ON_DESELECT
)
or
(

SystemException.systeminstance.getRea
son().aslint()
= SystemException.NO_TRANSIENT_SPACE
and
JCSystem.freeTransient < length.aslInt()

)

or
(

SystemException.systeminstance.getRea

son().asInt()
= SystemException.ILLEGAL_TRANSIENT
and
event.asint() = JCSystem.CLEAR_ON_DESELECT

and

JCSystem.selectedContext.asInt() <> JCSys
tem.activeContext.asInt()

)
)
)
)

endif

-- static
context JCSystem::beginTransaction()
pre : true
post: if
JCSystem.transactionDepth.asInt@pre() =0
then
(
not excThrown(java::lang::Exception)
and
JCSystem.transactionDepth.asint() = 1
)
endif
and
if
JCSystem.transactionDepth.asInt@pre() = 1
then
(
excThrown(TransactionException)
and
TransactionException.systeminstance.getRea
son().asInt()

2003-05-20

62 Appendices

= TransactionException.IN_ PROGRESS

)
endif

-- Static
context JCSystem::abortTransaction()
pre : true
post: if
JCSystem.transactionDepth.asInt@pre() = 1
then
(
not excThrown(java::lang::Exception)
and
JCSystem.transactionDepth.asInt() = 0
)
endif
and
if
JCSystem.transactionDepth.asint@pre() =0
then
(
excThrown(TransactionException)
and
TransactionException.systeminstance.getRea
son().asInt()
= TransactionException.NOT_IN_PROGRESS
)

endif

-- Static
context JCSystem::commitTransaction()
pre : true
post: if
JCSystem.transactionDepth.asInt@pre() = 1
then
(
not excThrown(java::lang::Exception)
and
JCSystem.transactionDepth.asInt() = 0
)
endif
and
if
JCSystem.transactionDepth.asint@pre() =0
then

(

excThrown(TransactionException)

2003-05-20

Appendices

63

and
TransactionException.systeminstance.getRea
son().asInt()
= TransactionException.NOT_IN_PROGRESS
)

endif

-- static
context JCSystem::getAppletShareableinterfaceObject(serve
rAID: AID,

Shareable parameter: JByte):

pre : true
post: if
not (serverAlD = null)
then
not excThrown(java::lang::Exception)
endif
and
if
(
not (serverAlD = null)
and
JCSystem.previousContext.asInt()
= JCSystem.JCRE_CONTEXT.aslInt()

and
JCSystem.registeredAlDs.has(serverAID)
)

then
(
not excThrown(java::lang::Exception)
and
result =
JCSystem.appletTable.apply(serverAlD).
oclAsType(Applet).

getShareablelnterfaceObject(null, parameter)

)

endif

and

if

(
JCSystem.previousContext.asInt() <> JCSys

tem.JCRE_CONTEXT.asInt()

and
JCSystem.registeredAlDs.has(serverAlD)

)
then

(

not excThrown(java::lang::Exception)
and

2003-05-20

64 Appendices

result =
JCSystem.appletTable.apply(serverAlD).oclAsTy
pe(Applet).
getShareablelnterfaceObject(
JCSystem.getPreviousContextAID(), parame
ter)
)
endif
and
if
(
not (serverAlD = null)
and
not JCSystem.registeredAlDs.has(serverAlD)
)

then

(

not excThrown(java::lang::Exception)
and
result = null

)

endif

endpackage

2003-05-20

Appendices 65

javacard.framework.OwnerPIN

package javacard::.framework

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe

-- cification. An

-- implementer of this class is naturally free to represent

-- the system state

-- with the help of other class and instance fields.

-- private byte maxPINSize;

-- private byte maxTries;

-- private boolean isValidated,;
-- private byte triesRemaining;
-- private byte[] pin;

context OwnerPIN def:
let maxPINSize: JByte
let maxTries: JByte
let isValidated: Boolean
let triesRemaining: JByte
let pin: Sequence(JByte)

context OwnerPIN inv:
self. maxPINSize.asInt() > 0
and
self.maxTries.asInt() > 0
and
self.triesRemaining.asint() >= 0
and
self.triesRemaining.asint() <= self.maxTries.aslInt()
and
self.pin <> null
and
self.pin->size() <= self.maxPINSize.asInt()

2003-05-20

66 Appendices

context OwnerPIN::update(pin: Sequence(JByte),
offset: JShort,
length: JByte)
pre : pin <> null

and
offset.asInt() >= 0
and
offset.asInt()+length.asInt() <= pin->size()
and
length.asint() >= 0
post: (
not excThrown(java::lang::Exception)
and
Util.arrayCompare(self.pin, 0, pin,
offset, length) =0
)
or
(
excThrown(PINException)
and
length.aslint() > self.maxPINSize
)
or
(
excThrown(TransactionException)
and

TransactionException.systeminstance.reason
= TransactionException.BUFFER_FULL

endpackage

2003-05-20

Appendices 67

javacard.framework.PIN

package javacard::.framework

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe

-- cification. An

-- implementer of this interface is naturally free to repre

-- sent the system state

-- with the help of other class and instance fields.

-- private byte maxPINSize;

-- private byte maxTries;

-- private boolean isValidated:;
-- private byte triesRemaining;
-- private byte[] pin;

context PIN def:
let maxPINSize: JByte
let maxTries: JByte
let isValidated: Boolean
let triesRemaining: JByte
let pin: Sequence(JByte)

context PIN inv:
self.maxPINSize.asInt() > 0
and
self.maxTries.asInt() > 0
and
self.triesRemaining.asint() >= 0
and
self.triesRemaining.asint() <= self.maxTries.aslInt()
and
self.pin <> null
and
self.pin->size() <= self.maxPINSize.asInt()

context PIN::check(pin: Sequence(JByte),
offset: JShort,
length: JByte): Boolean

2003-05-20

68 Appendices

pre : true
post: (
if
self.triesRemaining.asint() = 0
then
result = false
endif

)

and
(

if

(
self.triesRemaining.asint() > 0
and
pin <> null
and
offset.asInt() >=0
and
length.asInt() >=0
and
offset.asInt()+length.asInt() <= pin->size()
and
Util.arrayCompare(self.pin, O, pin, offset,

length) =0

)

then

(
result = true
and
self.isValidated
and
self.triesRemaining.asint() = self.max

Tries.aslInt()

)

endif

)

and
(
if
(
self.triesRemaining.asint() > 0
and
not
(
pin <> null
and
offset.asInt() >=0
and
length.asint() >= 0
and
offset.asInt()+length.asint() <= pin->size()

2003-05-20

Appendices 69

and
Util.arrayCompare(self.pin, O, pin, offset,
length) =0
)
)
then
(
not self.isValidated
and
self.triesRemaining.asint() = self.triesRemain
ing@pre.asint()-1
and
(
(

not excThrown(java::lang::Exception)

and

result = false
)
or
excThrown(java::lang::NullPointerException)
or

excThrown(java::lang::ArraylndexOutOf
BoundsException)

)
)

endif

)

endpackage

2003-05-20

70 Appendices

javacard.framework. Util

package javacard::.framework

-- static final native
context Util::arrayCopy(src: Sequence(JByte),
srcOff: JShort,
dest: Sequence(JByte),
destOff: JShort,
length: JShort): JShort
pre : true
post: -- not assignable

(
destOff.asInt() >= 1
implies
dest->subSequence(1, destOff.asInt())
= dest@pre->subSequence(1, destOff.asInt())
)

and

(
destOff.asInt()+length.asInt()+1 <= dest->size()
implies
dest->subSequence(de
stOff.asInt()+length.asInt()+1, dest->size())
= dest@pre->subSequence(de
stOff.asInt()+length.asInt()+1, dest->size())

)

and
(

if

(
src <> null
and
srcOff.asInt() >=0
and
srcOff.asInt()+length.asInt() <= src->size()
and
dest <> null
and
destOff.asInt() >= 0
and
destOff.asInt()+length.asint() <= dest->size()
and
length.asInt() >=0

)

then

(
(

2003-05-20

Appendices

71

not excThrown(java::lang::Exception)
and
src@pre->subSequence(srcOff.asInt()+1, sr
cOff.asInt()+length.asint())
= dest->subSequence(destOff.asInt()+1, de
stOff.asInt()+length.asint())
)

or
(
excThrown(TransactionException)
and
TransactionException.systeminstance.getRea
son().aslint()
= TransactionException.BUFFER_FULL
and
JCSystem.getTransactionDepth().asInt() = 1

)
)

endif

and
(
if
true
then

(

not excThrown(java::lang::Exception)

or
(
excThrown(java::lang::NullPointerException)
and
(
src = null
or
dest = null
)
)
or
(
excThrown(java::lang::ArraylndexOutOf
BoundsException)
and
(
srcOff.asint() < 0
or
destOff.asInt() < 0
or
srcOff.asInt()+length.asInt() > src->size()
or

destOff.asInt()+length.asInt() > dest->si
ze()

2003-05-20

72 Appendices

or
length.asint() <0

or
(
excThrown(TransactionException)
and
TransactionException.systeminstance.getRea
son().aslint()
= TransactionException.BUFFER_FULL
and
JCSystem.getTransactionDepth().asInt() = 1

)
)

endif

)

-- static final native
context Util::arrayCompare(src: Sequence(JByte),
srcOff: JShort,
dest: Sequence(JByte),
destOff: JShort,
length: JShort): JByte
pre : true
post: (
if
(
src <> null
and
srcOff.asInt() >=0
and
srcOff.asInt()+length.asInt() <= src->size()
and
dest <> null
and
destOff.asInt() >= 0
and
destOff.asInt()+length.asint() <= dest->size()
and
length.asInt() >=0
)

then
(
not excThrown(java::lang::Exception)
and
(
result.asint() = -1
or
result.asint() =0

2003-05-20

Appendices

73

or
result.asint() = 1

)

and
(
src->subSequence(srcOff.asInt()+1,
srcOff.asInt()+length.asint())

= dest->subSequence(destOff.asInt()+1,
destOff.asInt()+length.aslint())
implies
result.asint() =0

)

and
(
Sequence{l..length.asInt()}
->exists(i: Integer|

(

src->at(srcOff.asInt()+i)
< dest->at(destOff.asInt()+i)

and
Sequence{l..i-1}
->forAll(j: Integer|

src->at(srcOff.asInt()+j)
= dest->at(destOff.asInt()+j))

)
implies
result.asint() = -1

)

and

(
Sequence{l..length.asint()}

->exists(i: Integer|

(

src->at(srcOff.asInt()+i)
> dest->at(destOff.asInt()+i)

and
Sequence{l..i-1}
->forAll(j: Integer|

src->at(srcOff.asInt()+)
= dest->at(destOff.asInt()+j))

)
implies
result.asint() = 1

endif

2003-05-20

74 Appendices

and
(
if
true
then
(
not excThrown(java::lang::Exception)
or
(
excThrown(java::lang::NullPointerException)
and
(
src = null
or
dest = null

or
(
excThrown(java::lang::ArraylndexOutOf
BoundsException)
and
(
srcOff.asInt() < 0
or
destOff.asInt() <0
or
length.asInt() <0
or
srcOff.asInt()+length.asInt() > src->size()
or
destOff.asInt()+length.asint()
> dest->size()

endpackage

2003-05-20

Appendices 75

javacard.framework.service.BasicService

-- import javacard.framework.*;

package javacard::.framework::service

context BasicService::processDataln(apdu: APDU): Boolean
pre : apdu.getCurrentState().asInt() = APDU.STATE_INITIAL
or
apdu.getCurrentState().asInt() = APDU.STATE_FULL_INCOMING
post: not excThrown(java::lang::Exception)
and
(
apdu.getCurrentState().asiInt() = AP
DU.STATE_FULL_INCOMING
or
apdu.getCurrentState().asInt() = APDU.STATE_OUTGOING
)

context BasicService::processCommand(apdu: APDU): Boolean
pre : apdu.getCurrentState().asInt() = APDU.STATE_INITIAL
or

apdu.getCurrentState().asiInt() = APDU.STATE_FULL_INCOMING
or
apdu.getCurrentState().asiInt() = APDU.STATE_OUTGOING
post: not excThrown(java::lang::Exception)
and

apdu.getCurrentState().asInt() = APDU.STATE_OUTGOING

context BasicService::receivelnData(apdu: APDU): JShort
pre : true
post: not excThrown(java::lang::Exception)
or
(
excThrown(ServiceException)
and

(
(

ServiceException.systeminstance.getRea
son().asInt()
= ServiceException.CANNOT_ACCESS_IN_COMMAND
and
apdu.getCurrentState().asInt() <> AP
DU::STATE_INITIAL

2003-05-20

76 Appendices

and
apdu.getCurrentState().aslInt()
<> APDU::STATE_FULL_INCOMING
)

or

ServiceException.systeminstance.getReason().asInt()
= ServiceException.COMMAND_DATA_TOO_LONG

endpackage

2003-05-20

Appendices

77

javacard.framework.service.Dispatcher

-- import java.lang.*;
-- import javacard.framework.*;

package javacard::.framework::service

context Dispatcher::addService(service: Service, phase: JBy
te)
pre : true
post: not excThrown(java::lang::Exception)
or
(
excThrown(ServiceException)
and
(
(
ServiceException.systeminstance.getRea
son().asInt()
= ServiceException.ILLEGAL_PARAM
and
(
(
phase.asint() <> Dispatcher.PROCESS_NONE
and
phase.aslInt() <> Dispat
cher.PROCESS_INPUT_DATA
and
phase.asInt() <> Dispatcher.PROCESS COMMAND
and
phase.aslint() <> Dispat
cher.PROCESS_OUTPUT_DATA
)
or
service = null
)
)

or
ServiceException.systeminstance.getReason().asInt()
= ServiceException.DISPATCH_TABLE_FULL

context Dispatcher::removeService(service: Service, phase:
JByte)

2003-05-20

78 Appendices

pre : true
post: not excThrown(java::lang::Exception)
or
(
excThrown(ServiceException)
and
ServiceException.systeminstance.getReason().aslint()
= ServiceException.ILLEGAL_PARAM
and
(

(
phase.asint() <> Dispatcher.PROCESS_NONE
and

phase.asint() <> Dispatcher.PROCESS_INPUT_DATA
and

phase.aslInt() <> Dispatcher. PROCESS COMMAND
and

phase.asint() <> Dispatcher.PROCESS_OUTPUT_DATA
)

or
service = null

context Dispatcher::dispatch(command: APDU, phase: JByte):
Exception

pre : true

post: not excThrown(java::lang::Exception)
or
(
excThrown(ServiceException)
and
ServiceException.systemlinstance.getReason().asInt()
= ServiceException.ILLEGAL_PARAM
and
phase.asint() <> Dispatcher.PROCESS_INPUT_DATA
and
phase.aslInt() <> Dispatcher.PROCESS COMMAND
and

phase.asint() <> Dispatcher.PROCESS_ OUTPUT_DATA

endpackage

2003-05-20

Appendices

79

javacard.framework.service.RMIService

-- import java.rmi.*;

package javacard:.framework::service

context RMIService::processCommand(apdu: APDU): Boolean
pre : true
post: (
not excThrown(java::lang::Exception)
and
(
apdu.getCurrentState().asInt() = AP
DU.STATE_INITIAL
or
apdu.getCurrentState().asint() = AP
DU.STATE_FULL_INCOMING
)
)
or
(
excThrown(ServiceException)
and

(
(

ServiceException.systeminstance.getRea
son().asInt()
= ServiceException.CANNOT_ACCESS_IN_COMMAND
and
apdu.getCurrentState().asInt() <> AP
DU.STATE_INITIAL
or
apdu.getCurrentState().asInt() <> AP
DU.STATE_FULL_INCOMING
)
or
ServiceException.systeminstance.getRea
son().asInt()

)
)

or
excThrown(java::lang::SecurityException)

= ServiceException.REMOTE_OBJECT_NOT_EXPORTED

endpackage

2003-05-20

80 Appendices

javacard.framework.service.SecurityService

package javacard::framework::service

context SecurityService::isCommandSecure(properties: JByte):
Boolean
pre : true
post: not excThrown(java::lang::Exception)
or
(
excThrown(ServiceException)
and
ServiceException.systemlinstance.getReason().asInt()
= ServiceException.ILLEGAL_PARAM
and
properties.asint()
<> SecurityServi
ce.PROPERTY_INPUT_CONFIDENTIALITY
and
properties.asint() <> SecurityServi
ce.PROPERTY_INPUT_INTEGRITY
and
properties.asint()
<> SecurityServi
ce.PROPERTY_OUTPUT_CONFIDENTIALITY
and
properties.asint() <> SecurityServi
ce.PROPERTY_OUTPUT INTEGRITY

)

endpackage

2003-05-20

Appendices

javacard.security.KeyBuilder

package javacard::security

-- static
context KeyBuilder::buildKey(keyType: JByte,
keyLength: JShort,
keyEncrypt: Boolean): Key
pre : true
post: not excThrown(java::lang::Exception)
or
(
excThrown(CryptoException)
and
CryptException.systeminstance.getReason().asInt()
= CryptoException.NO_SUCH_ALGORITHM
)

endpackage

2003-05-20

82 Appendices

javacard.security.MessageDigest

package javacard::security

-- abstract
context MessageDigest::doFinal(inBuff: Sequence(JByte),
inOffset: JShort,
inLength: JShort,
outBuff: Sequence(JByte),
outOffset: JShort): JShort
pre : inBuff <> null
and
outBuff <> null
and
inOffset.asInt() >= 0
and
inLength.asInt() >=0
and
inOffset.asInt()+inLength.asInt() <= inBuff->size()
and
outOffset.asInt() <= outBuff->size()
post: true

-- abstract
context MessageDigest::update(inBuff: Sequence(JByte),
inOffset: JShort,
inLength: JShort)
pre : inBuff <> null

and
inOffset.asInt() >= 0
and
inLength.asInt() >=0
and

inOffset.asInt()+inLength.asInt() <= inBuff->size()
post: true

endpackage

2003-05-20

Appendices 83

javacard.security.RSAPrivateKey

package javacard::security

-- PRIVATE FIELDS

-- The variables below are not part of the informal specifica

-- tion given by SUN.

-- They are given a name, a type and a meaning that reflects a
-- part of the

-- system state, in order to be able to make a meaningful spe

-- cification. An

-- implementer of this class is naturally free to represent

-- the system state

-- with the help of other class and instance fields.

private byte[] valueExponent;
private byte[] valueModulus;
private boolean isInitExponent;
private boolean isInitModulus;

context RSAPrivateKey def:
let valueExponent: Sequence(JByte)
let valueModulus: Sequence(JByte)
let isInitExponent: Boolean
let isInitModulus: Boolean

context RSAPrivateKey inv:
self.isInitExponent
and
self.isInitModulus
implies
self.isInitialized()

context RSAPrivateKey::setModulus(buffer: Sequence(JByte),
offset: JShort,
length: JShort)
pre : buffer <> null
and
offset.asInt() >= 0
and
length.asint() >= 0
and
offset.asInt()+length.asInt() <= buffer->size()
post: (
not excThrown(java::lang::Exception)
and

2003-05-20

84 Appendices

self.isInitModulus

and
(
not self.oclisKindOf(javacardx::crypto::Key
Encryption)
or
self.getKeyCipher() = null
implies
Util.arrayCompare(self.valueModulus, 0, buf
fer,
offset,
length) =0
)
)
or
(
excThrown(CryptoException)
and

CryptoException.systeminstance.getReason().asint()
= CryptoException.ILLEGAL_VALUE

context RSAPrivateKey::setExponent(buffer: Sequence(JByte),
offset: JShort,
length: JShort)
pre : buffer <> null
and
offset.asInt() >= 0
and
length.asint() >= 0
and
offset.asInt()+length.asInt() <= buffer->size()
post: (
not excThrown(java::lang::Exception)
and
self.isInitExponent
and

(

not self.oclisKindOf(javacardx::crypto::Key
Encryption)

or

self.getKeyCipher() = null

implies

Util.arrayCompare(self.valueExponent, 0, buf

fer,
offset, length) = 0

2003-05-20

Appendices 85

excThrown(CryptoException)

and

CryptoException.systeminstance.getReason().asInt()
= CryptoException.ILLEGAL_VALUE

context RSAPrivateKey::getModulus(buffer: Sequence(JByte),
offset: JShort): JShort
pre : buffer <> null
and
offset.asInt() >= 0
and
offset.asInt() < buffer->size()
and
self.isInitialized()
post: result.asInt() = self.valueModulus->size()
and
Util.arrayCompare(self.valueModulus, 0, buffer, off
set,
self.valueModulus->si
ze()) =0

context RSAPrivateKey::getExponent(buffer. Sequence(JByte),
offset: JShort): JShort

pre : buffer <> null
and
offset.asInt() >=0
and
offset.asInt() < buffer->size()
and
self.isInitialized()

post: result.asInt() = self.valueExponent->size()

and
Util.arrayCompare(self.valueExponent, 0, buffer, off
set,
self.valueExponent-
>size()) =0
endpackage

2003-05-20

86 Appendices

javacard.security.Signature

package javacard::security

-- abstract
context Signature::update(inBuff: Sequence(JByte),
inOffset: JShort,
inLength: JShort)
pre : inBuff <> null

and
inOffset.asInt() >= 0
and
inLenght.asInt() >=0
and

inOffset.asInt()+inLength.asint() <= inBuff->size()
post: not excThrown(java::lang::Exception)
or
(
excThrown(CryptoException)
and
CryptoException.systeminstance.getReason().asInt()
= CryptoException.UNINITIALIZED_KEY

-- abstract
context Signature::sign(inBuff: Sequence(JByte),
inOffset: JShort,
inLength: JShort,
sigBuff: Sequence(JByte),
sigOffset: JShort): JShort
pre : inBuff <> null

and

sigBuff <> null

and

inOffset.asInt() >=0

and

inLength.asInt() >=0

and

sigOffset.asInt() >= 0

and

inOffset.asInt()+inLength.asint() <= inBuff->size()

post: not excThrown(java::lang::Exception)
or
(
excThrown(CryptoException)
and

(

2003-05-20

Appendices

87

CryptoException.systeminstance.getRea
son().asInt()
= CryptoException.UNINITIALIZED _KEY
or
CryptoException.systeminstance.getRea
son().asInt()
= CryptoException.INVALID_INIT
or
CryptoException.systeminstance.getRea
son().aslint()
= CryptoException.ILLEGAL_USE
)

)

endpackage

2003-05-20

88 Appendices

javacardx.crypto.Cipher

package javacardx::crypto

context Cipher def:
let key: Key
let mode: JByte
let algorithm: JByte
let initialized: Boolean = false

context Cipher::getinstance(algorithm: JByte,
externalAccess: Boolean): Cipher
pre : true
post: (
not excThrown(java::lang::Exception)
and
self.algorithm.asInt() = algorithm.asInt()

)

or
(
excThrown(javacard::security::CryptoException)
and
javacard::security::CryptoException.systeminstan
ce.getReason()
= javacard::security::CryptoExcep
tion.NO_SUCH_ALGORITHM
)

context Cipher::init(theKey: Key, theMode: JByte)
pre : true
post: (
not excThrown(java::lang::Exception)
and
self.key = theKey
and
self.mode.asInt() = theMode.aslInt()
and
self.initialized = true

)

or
(

excThrown(javacard::security::CryptoException)

and

javacard::security::CryptoException.systeminstan
ce.getReason()

= javacard::security::CryptoExcep

tion.ILLEGAL_VALUE

2003-05-20

Appendices

context Cipher::init(theKey: Key,
theMode: JByte,
bArray: Sequence(JByte),
bOff: JShort,
bLen: JShort)

pre : true
post: (
not excThrown(java::lang::Exception)
and
self.key = theKey
and
self.mode.aslInt() = theMode.asInt()
and
self.initialized = true
)
or
(
excThrown(javacard::security::CryptoException)
and

javacard::security::CryptoException.systeminstan
ce.getReason()
= javacard::security::CryptoExcep
tion.ILLEGAL_VALUE
)

context Cipher::getAlgorithm(): JByte
pre : true
post: result = self.algorithm

context Cipher::update(inBuff: Sequence(JByte),

inOffset: JShort,
inLength: JShort,
outBuff: Sequence(JByte),
outOffset: JShort): JShort

pre : true

post: (

not excThrown(java::lang::Exception)

)

or
(
excThrown(javacard::security::CryptoException)
and
(
(

javacard::security::CryptoException.systemin
stance.getReason()

2003-05-20

90 Appendices

= javacard::security::CryptoExcep
tion.UNINITIALIZED KEY
and
not self.key.isInitialized()

)

or
(
javacard::security::CryptoException.systemin
stance.getReason()
= javacard::security::CryptoExcep
tion.INVALID_INIT
and
not self.initialized
)
or
javacard::security::CryptoException.systemin
stance.getReason()
= javacard::security::CryptoExcep
tion.ILLEGAL_USE
)
)

context Cipher::doFinal(inBuff: Sequence(JByte),

inOffset: JShort,
inLength: JShort,
outBuff: Sequence(JByte),
outOffset: JShort): JShort

pre : true

post: (

not excThrown(java::lang::Exception)

)

or
(
excThrown(javacard::security::CryptoException)
and

(
(

javacard::security::CryptoException.systemin
stance.getReason()
= javacard::security::CryptoExcep
tion.UNINITIALIZED_KEY
and
not self.key.isInitialized()

)

or
(
javacard::security::CryptoException.systemin
stance.getReason()
= javacard::security::CryptoExcep
tion.INVALID_INIT

2003-05-20

Appendices

91

and
not self.initialized
)
or
javacard::security::CryptoException.systemin
stance.getReason()
= javacard::security::CryptoExcep
tion.ILLEGAL_USE
)
)

endpackage

2003-05-20

	OCL Specifications for the Java Card API
	Daniel Larsson 730527-4651 GU
	Wojciech Mostowski
	Wolfgang Ahrendt
	Abstract
	Sammanfattning
	Preface
	Table of Contents
	1. Introduction
	2. Analysis
	2.1. Formal methods and KeY
	2.2. Java Card
	2.3. Overview of JML and OCL
	2.4. OCL syntax used
	2.5. Comparing JML and OCL
	2.6. Semantics of constraints
	2.7. The null value
	2.8. Exceptions
	2.9. Arithmetic
	2.10. The assignable clause in JML
	2.11. Model fields
	2.12. Method for creating the specifications

	3. Results and conclusions
	3.1. The specifications
	3.2. Verification based on the specifications
	3.3. The strengths of OCL
	3.4. Limitations
	3.5. Conclusions

	4. References

	Appendices
	OCL specifications for the Java Card 2.2 API
	java.lang.Object
	javacard.framework.AID
	javacard.framework.APDU
	javacard.framework.APDUException
	javacard.framework.Applet
	javacard.framework.JCSystem
	javacard.framework.OwnerPIN
	javacard.framework.PIN
	javacard.framework.Util
	javacard.framework.service.BasicService
	javacard.framework.service.Dispatcher
	javacard.framework.service.RMIService
	javacard.framework.service.SecurityService
	javacard.security.KeyBuilder
	javacard.security.MessageDigest
	javacard.security.RSAPrivateKey
	javacard.security.Signature
	javacardx.crypto.Cipher

