
Appendix for FASE System Description

The System:

Integrating Object-Oriented Design and

Formal Methods

– Appendix –?

Wolfgang Ahrendt2, Thomas Baar1, Bernhard Beckert1, Martin Giese1,
Reiner Hähnle2, Wolfram Menzel1, Wojciech Mostowski2, and

Peter H. Schmitt1

1 Universität Karlsruhe
Inst. f. Logik, Komplexität und Dedukt.-Syst.

D-76128 Karlsruhe, Germany
2 Chalmers University of Technology
Department of Computing Science

S-41296 Gothenburg, Sweden

1 Introduction

This document is a short description of the contents of a demo of the KeY system.

1.1 Prerequisites

The KeY system currently runs on PCs under Linux.1 To install the system, you
need the following items:

– Together Control Center (TogetherCC), version 5.01 or 5.5. An evaluation
version of TogetherCC can be obtained free of charge from:
http://www.togethersoft.com/

– A Java runtime environment, version 1.3 or higher.

– Perl.

– The KeY system itself, which can be downloaded from:
http://i12www.ira.uka.de/ key/download.htm

The tutorial example described in this document can be downloaded from
the same page.

? The KeY project is supported by the Deutsche Forschungsgemeinschaft (grant
no. Ha 2617/2-1).

1 We are planning to support Windows soon.

Fig. 1. Package Structure of Tutorial Example

1.2 Tutorial Example

In this tutorial we use an example application to illustrate most of the capabilities
offered by the KeY system.

The tutorial example is a Java application organized in two packages, see
Fig 1.

– appgui — the implementation of the GUI of the application
– appcore — the application itself

In addition, there is a class StartClasswhich provides the main method to start
the application.

The appcore package realizes a simulation of a simple Order/Manufacture/
Deliver scenario. The GUI built on top of that in appgui offers an order dialog
and makes it possible to observe the internal state of the application’s most
interesting object, the manufacturing centre including its stock of supplies.

The items to be ordered, manufactured, and delivered are necklaces that are
decorated with gems. The customer (user of the application) fills in an order
form for each necklace with the number of gems of each available colour. One
can also specify that a necklace must be one-coloured. Then the order is sent
to the manufacturing centre, which in turn sends a request to the associated
warehouse to make sure that sufficient resources (the corpus of the necklace
and enough gems of the desired colour) are in stock. Finally, the manufacturing
centre assembles the necklace and checks, whether the new necklace meets all

2

Fig. 2. Activation of KeY Extensions

requirements stated in the order. If this is successful, the necklace is ready for
delivery. Otherwise, the necklace is thrown into a wastebasket. The latter can
happen, because the order may contain contradictory information, such as a
one-coloured necklace with red gems and blue gems. This possibility can be seen
as a bug of the current implementation. The KeY system aims to formally prove

the absence of such bugs. For example, one could formally verify an invariant
stating that the wastebasket is always empty.

The static structure of the example application is modelled in the class dia-
gram appcore. The intended semantics of some classes is defined with the help
of invariants denoted in the Object Constraint Language (OCL). Likewise, the
behaviour of most methods is described in form of pre-/postconditions in OCL.

The demo outlined in this document shows how to create and modify the
OCL specifications, how to parse them, how to generate proof obligations and
how to prove these proof obligations.

2 Creating a Formal Specification in OCL

The first step is to activate the KeY extensions to TogetherCC. This is done
by a simple mouse click, as seen in Fig. 2.

3

Fig. 3. Generation of OCL Expressions

The KeY system supports authoring of OCL constraints that express typ-
ical requirements. The technology behind this is a template-like and easy-to-
understand mechanism. Consider, for example, the behavioural specification of
typical production-and-store methods that create a certain amount of new ob-
jects and store them in an associated collection of objects. The specification of
such methods has the following form in general:

production-and-store-method(tint i):

pre: i >= 0

post: associatedObjects->size = associatedObjects@pre->size+i

There is a plethora of similar constraints needed in related situations (e.g.,
ProduceForAssociationSet, GetFromAssociationSet, IncreaseAttribute,
and, as an example for an invariant constraint, AttributeHasKeyProp). The
KeY system contains predefined blueprints (or templates) of such constraints
which we call KeY-Idioms.

In addition to KeY-Idioms there is a slightly more complicated way to gener-
ate a specification, called KeY-Pattern. Again, the basic idea is to use blueprints.
In contrast to KeY-Idioms, where the blueprints are merely attached to a single
class, they are now attached to OO design patterns like Composite, Observer,
etc. The KeY-Patterns can be used in the same way as the other design patterns
that are available in TogetherCC.

4

Each KeY-Pattern contains a set of blueprints that are selected and instan-
tiated by the user during a customization dialog, see Fig. 3. As is the case for
standard patterns, TogetherCC generates a concrete design after finishing the
dialog. In addition, concrete OCL constraints are generated as instances of OCL
blueprints.

3 Parsing a Specification

When a number of OCL constraints has been added to the model, the KeY
system can parse them to check that they are syntactically correct and well-
typed. The parser currently integrated in the KeY system was developed at
Dresden University of Technology.2

As OCL expressions only makes sense in the context of a UML diagram, the
parser needs to consult an XMI file containing model information of the current
UML model. At the current stage, the user must ensure manually that this XMI
file was generated and is up-to-date. There is a menu item to do this.

The user can now chose to parse a class invariant or the pre- and postcondi-
tions of a method: The KeY system extends the TogetherCC context menus
for classes and methods (see Fig. 4) by a number of additional items. Selecting
Parse Invariant passes the invariant of a class to the OCL parser and reports
any syntax or typing errors found.

4 Generation of Proof Obligations

When some classes or methods have been annotated with OCL constraints that
are accepted by the parser, the KeY system can generate proof obligations ex-
pressing statements about the specification (analysis) or about the relationship
between the specification and the implementation (verification).

For instance one might want to show that the postcondition of some method
implies the postcondition of that method specified in some superclass. Maybe
one might also be able to show that the pre- and postconditions of a method
are strong enough to ensure that a method preserves the class invariant if only
it satisfies its pre- and postcondition. These are analysis statements. A typical
verification statement would be that the implementation of a method ensures
that the postcondition holds after execution.

As Fig. 4, the generation of such proof obligations is also done using the
context menus of methods and classes. The OCL constraints are parsed again,
and translated into a dynamic logic for Java(JavaDL). The resulting formulae
are then suitably combined to provide the proof obligations.

5 Using the Prover

The generated proof obligations are passed to the KeY prover, a specialized
deduction system for JavaDL. The prover features a graphical user interface
2 See http://dresden-ocl.sourceforge.net/index.html for details.

5

http://dresden-ocl.sourceforge.net/index.html

Fig. 4. Options offered by the class menu

in which proof goals are displayed. The user conducts a proof by clicking on a
formula or term that should be used in a proof step. The prover then displays a
menu of rules applicable at that position, see Fig. 5. Together with the ability to
define rules specific to the domain theory and datatypes involved in a particular
application, this provides a very intuitive and easy to use prover interface.

A certain degree of automation is possible by activating heuristics that au-
tomatically perform possible rule applications. In the future we plan to extend
the prover by powerful automated reasoning technology to reach a high degree
of automation for common proof tasks.

6

Fig. 5. Applying a Rule in the KeY Prover

7

	 The KeY System: Integrating Object-Oriented Design and Formal Methods -- Appendix --
	Introduction
	Prerequisites
	Tutorial Example

	Creating a Formal Specification in OCL
	Parsing a Specification
	Generation of Proof Obligations
	Using the Prover

