
An Authoring Tool for Informal and Formal

Requirements Specifications

Reiner Hähnle, Kristofer Johannisson, and Aarne Ranta

Chalmers University of Technology, Department of Computing Science
S-41296 Gothenburg, Sweden, {reiner,krijo,aarne}@cs.chalmers.se

Abstract We describe foundations and design principles of a tool that
supports authoring of informal and formal software requirements specifi-
cations simultaneously and from a single source. The tool is an attempt to
bridge the gap between completely informal requirements specifications
(as found in practice) and formal ones (as needed in formal methods).
The user is supported by an interactive syntax-directed editor, parsers
and linearizers. As a formal specification language we realize the Object
Constraint Language, a substandard of the UML, on the informal side a
fragment of English. The implementation is based on the Grammatical
Framework, a generic tool that combines linguistic and logical methods.

1 Introduction

The usage of formal and semi-formal languages for requirements specifications
is becoming more widespread. Witness, for example, the Java Modeling Lan-
guage (JML) [11], closely related to which is the ESC/Java specification lan-
guage used in Extended Static Checking [12], the constraint language Alloy [9],
and the Object Constraint Language (OCL) [15,21]. The OCL is not only used
in meta-modeling to supply a precise semantics for UML diagrams, but also in
requirements specification. A subset of the OCL is also used in iContract [10],
the Java variant of design-by-contract, as an assertion language.

Although these languages make an effort to be more “user-friendly” than
earlier formal notations that were based on set theory and predicate logic, it still
takes a considerable effort to master them and use them effectively. Moreover, it
should not be forgotten that the by far most popular language, wherein software
specifications are still written today is natural language (NL).

None of the approaches mentioned above offers support for authoring, un-
derstanding, and maintaining formal specifications. We consider this deficiency
to be a serious obstacle to routine usage and further development of formal and
semi-formal methods. Specifically, the following problems have to be addressed, if
formal and semi-formal notations are to become a standard item in the software
engineer’s toolbox:

Authoring. Support is needed for authoring well-written, well-formed formal
specifications. A syntax-directed editor is of help along with specification
templates.

Maintenance. Large and complex expressions in any formal language are not
easy to read, even if, like OCL, this language was designed to enhance read-
ability. In realistic scenarios, numerous and complex expressions have to be
maintained and, therefore, understood by people who did not necessarily
author them or are even familiar with formal languanges.

Mapping Different Levels of Formality. No specification language fits all
needs. For different audiences and purposes it is important to have renderings
in, say, NL, OCL, and first-order logic. For effective communication parts of
these must be mappable into each other efficiently and with a clear semantics.

Synchronisation. If a system is specified in languages of differing level of pre-
cision, it is important to propagate changes consistently. For example, any
change in an OCL constraint should be instantly reflected in the correspond-
ing NL description. It will not do to perform these changes manually.

In this paper we suggest a solution to the problems just outlined. We show
that a systematic connection between specification languages on differing lev-
els of precision is possible. We concentrate on OCL and NL as specification
languages, but the method is not limited to this configuration.

Our approach is based on the Grammatical Framework (GF) [18], a flexible
mechanism that allows to combine linguistic and logical methods. The key idea is
to specify (i) an abstract syntax for a specification language (in our case roughly
corresponding to OCL) together with semantic conditions of well-formedness
and type-correctness, and (ii) concrete syntaxes for all supported notations (in
our case, concrete OCL expressions as well as a fragment of English). For each
set of abstract/concrete syntaxes the GF system then implements algorithms for
parsing, linearization, translation, type checking, and a graphical syntax editor.
The abstract grammar is much richer than the usual context-free OCL grammar
[15] and, together with the syntax editor, enables interactive editing of tem-
plates for frequently needed specifications. The result is an authoring system for
requirements specifications that supports creation and maintenance of informal
and formal specifications from a single source.

In Section 2 we walk through an example that serves as motivation and at the
same time demonstrates what can be done with our system. In Section 3 we give
some background on the GF formalism that is necessary to understand Section 4,
where the implementation is discussed in detail. In Section 5 we evaluate our
approach and we show how the problems outlined above are addressed in our
system. The paper is rounded off with brief sections on related work, on future
work, and by concluding remarks.

The latest prototype of our system can be downloaded from http://www.

cs.chalmers.se/~krijo/GF/specifications.html.

2 Motivating Example

As a motivating example we will consider a standard queue data structure—a
class Queue—and show how to use our system for developing specifications of
this class in OCL and natural language.

2.1 A Class for Queues

For the purpose of this example, we need to specify the interface of a class Queue
for queues of integers (but we need not consider any implementation details).
We use the standard OCL types in doing this:

Queue

enqueue(i: Integer): Integer

dequeue(): Integer

getFirst(): Integer {query}

size(): Integer {query}

asSequence(): Sequence(Integer) {query}

This class should be very straightforward. We have an operation enqueue for
enqueueing an integer on the queue and an operation dequeue for removing the
first integer of the queue. The return value of enqueue is simply the value of its
argument. We also have an operation getFirst for inspecting the first element
of the queue. The operation asSequence gives us a Sequence (standard OCL
type) with all the elements from the queue, in their correct order. This operation
is included for specification purposes; in an actual implementation of the class,
asSequence is not required.

Note also that all operations which do not affect the state of the queue (“ob-
server methods” or “queries”) have been tagged with {query}, using standard
UML notation.

2.2 Using the GF-based System

Our system is based on the GF system (described in Section 3) with grammars
for OCL and English (Section 4). It features an interactive editor for formulating
constraints in OCL and English:

Suppose that we want to author a postcondition for the method enqueue of
the class Queue in the interactive editor. Figure 1 shows what the editor looks
like after a few initial steps.

In this screen-shot we see the beginning of a postcondition for an operation.
The main part of the window shows the postcondition in OCL 1 and in English
2 , and also an abstract (internal to GF) representation 3 . To complete this
postcondition, we select a subgoal (that is, metavariable or placeholder) of the
form [?...?] and then select one of the possible refinements in the lower left
subwindow 4 , until there are no more subgoals to fill in. In the example, the
next logical step is to specify the operation for which the current postcondition
is intended, that is, enqueue. So we select the subgoal [?Operation?] and the
refinement enqueue. Figure 2 shows the result.

Now a new subgoal [?BindPPCond?] is active, and new refinements appear
in the lower left menu. The subgoal [?Class?] was automatically filled in with
Queue, since this was the only correct refinement left after we chose the operation
enqueue. The system is able to infer this automatically.

Figure 1. The Interactive Editor

1

2

3

4

5

Note that we edit the postcondition in OCL and in English in parallel. Every
change is instantly reflected in both the OCL and the English version. What
is actually going on is that we are editing the abstract representation, which
is linearized to English and OCL. This means that the user of the editor can
produce OCL constraints, even though he or she only understands the English
form of the constraint.

There are also other ways to interact with the editor. Aside from choosing
refinements from a menu to fill in a subgoal, we can simply enter a string (at
5 in Figure 1) in English or OCL which will be parsed by the GF editor. We
can also wrap a term in a function, that is, perform bottom-up editing instead
of top-down.

As will be seen in Section 3, the interactive editor is merely one part of GF:
having grammars for OCL and English means that we also have a parser for
OCL and for a fragment of English as well as a translator between OCL and this
fragment of English.

2.3 More Examples

We present some more constraints for methods in the Queue class authored with
our system and highlight some of the problems that had to be solved in order to
obtain a smooth rendering in English. In the OCL versions of the constraints only
line breaks and spaces were inserted by hand (this is a current limitation). The
formatting of the English version of the constraints was achieved by including
LATEX commands in the English grammar.

Operation getFirst

OCL: context Queue::getFirst() : Integer

pre: self.size() > 0

post: result = self.asSequence()->first

English: for the operation getFirst() : Integer of the class Queue, the following pre-
condition should hold:

Figure 2. The Interactive Editor—one editing step later

the size of the queue is greater than zero
and the following postcondition should hold:

the result is equal to the first element of the queue

The meaning of the OCL constraint self depends on the context. In these ex-
amples, self refers to an instance of Queue, since we are formulating constraints
for an operation of the class Queue. In English, self corresponds to an anaphoric
expression, which in this particular case is “the queue”.

The operation asSequence can be seen as a way of converting a Queue to an
OCL Sequence. While this type cast is necessary in OCL, it is not that interest-
ing in English. It is therefore omitted, so the OCL expression self.asSequence()

simply corresponds to “the queue” in English.

Operation dequeue

OCL: context Queue::dequeue() : Integer

pre: self.size() > 0

post: (self.size() > 0 implies self.asSequence() =

self.asSequence@pre() -> subSequence(2, self.size() + 1))

and result = self.getFirst@pre()

English: for the operation dequeue() : Integer of the class Queue, the following pre-
condition should hold:

the size of the queue is greater than zero
and the following postconditions should hold:

– if the size of the queue is greater than zero, then the queue is equal
to the subsequence of the queue at the start of the operation which
starts at index 2 and ends at the index equal to the size of the queue
plus one

– the result is equal to the first element of the queue at the start of the
operation

Here we see that a sequence of conjuncts in OCL (such as x and y and ...)
can be displayed as an itemized list in English. This implies that we need to have
the word “postconditions” in plural form (in contrast to the getFirst example,

where we have “postcondition”). We can also note that @pre in OCL simply
corresponds to “at the start of the operation” in English.

The OCL operation subSequence requires its second argument to be greater
than or equal to its first argument – it never returns an empty sequence. This
explains why we use the condition that the size of the queue is greater than zero
in the first postcondition.

3 Grammatical Framework

The Grammatical Framework (GF) is a framework for defining grammars and
working with them [18]. It is used for defining special-purpose grammars on top
of a semantic model, which is expressed in type theory [13]. Type theory is a
part of GF, the abstract syntax part. The concrete syntax part tells how type-
theoretical formulas are translated into a natural language or a formal notation.

The first application of GF was in a project on Multilingual Document Au-
thoring at Xerox Research Centre Europe [4]. The idea in multilingual authoring
is to build an editor whose user can write a document in a language she does not
know (for example, French), while at the same time seeing how it develops in a
language she knows (for example, English). From the system’s point of view, the
object constructed by the user is a type-theoretical formula, of which the French
and English texts are just alternative views.

The GF programming language, as well as the tools supporting multilingual
authoring, are designed to be generic over both the subject matter and the
target language. While prototypes have been built for documents such as tourist
information and business letters, the most substantial application so far has been
natural-language rendering of formalized proofs [5]. Software specifications are
another natural GF application, since it is usually clear how specifications are
expressed in type theory. Most uses of type theory as a specification language
have been based on the Curry-Howard isomorphism, but we will here use it for
OCL specifications.

3.1 Abstract Syntax

GF, like other logical frameworks in the LF [6] tradition, uses a higher-order type
theory with dependent types. In this type theory, it is possible to define logical
calculi, as well as mathematical theories, simply by type signatures. The type-
theoretical part of a GF grammar is called the abstract syntax of a language.

To take an example, we first define the types of propositions and proofs,
where the type of proofs depends on proposition.

cat Prop ; Proof Prop ;

We then define implication as a two-place function on propositions, and the
implication introduction rule is a function whose argument is a function from
proofs of the antecedent to proofs of the succedent:

fun Imp : Prop -> Prop -> Prop ;

fun ImpI : (A,B:Prop) -> (Proof A -> Proof B) -> Proof (Imp A B)

As usual in functional languages, GF expresses function application by juxtapo-
sition, as in Proof A, and uses parentheses only for grouping purposes.

3.2 Concrete Syntax

On top of an abstract syntax, a concrete syntax can be built, as a set of lineariza-
tion rules that translate type-theoretical terms into strings of some language. For
instance, English linearization rules for the two functions above could be

lin Imp A B = {s = "if" ++ A.s ++ "then" ++ B.s} ;

lin ImpI A B c = {s = "assume" ++ A.s ++ "." ++ c.s ++ "." ++

"Hence" ++ "if" ++ A.s ++ "then" ++ B.s} ;

As shown by these examples, linearization is not just a string, but a record of
concrete-syntax objects, such as strings and parameters (genders, modes, etc.),
and parameter-dependent strings. Notice that linearization rules can generate
not only sentences and their parts, but also texts. For instance, a proof of the
implication A&B → A as generated by the rules above, together with a rule for
conjunction elimination, is a term that linearizes to the text:

Assume A and B. By the assumption, A and B. A fortiori, A. Hence if A and
B then A.

Different languages generally have different types of concrete-syntax objects. For
instance, in French a proposition depends on the parameter of mode, which we
express by introducing a parameter type of modes and defining the linearization
type of Prop accordingly:

param Mode = Ind | Subj ;

lincat Prop = {s : Mode => Str} ;

The French linearization rule for the implication is

lin Imp A B =

{s = table {m => si (A.s ! ind) ++ "alors" ++ B.s ! m}} ;

which tells that the antecedent is always in the indicative mode and that the
main mode of the sentence is received by the succedent. One may also notice
that si is not a constant string, but depends (in a way defined elsewhere in the
grammar) on the word following it (as in s’il vous plâıt).

Finally, in formal logical notation, linearization depends on a precedence
parameter:

lincat Prop = {s : Prec => Str} ;

lin Imp A B = {s = mkPrec p0 (A.s ! p1 ++ "->" ++ A.s ! p0)} ;

where the function mkPrec (defined elsewhere in the concrete syntax) controls
the usage of parentheses around formulas.

The examples above illustrate what is needed to achieve genericity in GF.
In the abstract syntax, we need a powerful type theory in order to express
dependencies among parts of texts, such as in inference rules. In the concrete
syntax, we need to define language-dependent parameter systems and complex
structures of grammatical objects using them.

3.3 Functionalities

GF helps the programmer of grammar applications by providing framework-level
functionalities that apply to any GF grammar. The main functionalities are lin-

earization (translation from abstract to concrete syntax), parsing (translation
from concrete to abstract syntax), type-checking of abstract-syntax objects,
syntax editing, and user interfaces (both line-based and graphical). Although
these functionalities apply generically to all grammars, it is often useful to cus-
tomize them for the task at hand. For this end, the GF source code (written in
Haskell) provides an API for easy access to the main functionalities.

4 Implementation

4.1 Classes and Objects

In this section we give a general idea of how we have implemented GF gram-
mars for OCL and natural language (at present English). We begin by defining
categories and functions for handling standard object-oriented concepts such as
classes, objects, attributes and operations:

cat Class;

cat Instance (c : Class);

There is a category (type) Class of classes, and a dependent type Instance,
hence, for every class c there is a type Instance c of the instances of this class.
OCL expressions are represented as instances of classes (and we can of course
see an instance of a class as an object).

Classes are introduced by judgements like the following:

fun Bool : Class; Integer : Class; Real : Class;

This means that we have type checking in the abstract grammar: for example,
where a term of type Instance Bool is expected, we cannot use a term of type
Instance Integer.

The linearizations of these functions to OCL is easy: for Integer we simply
take lin Integer = {s = "Integer"}, and so on. In English, a class can be
linearized either as a noun (which can be in singular or plural form, say, “integer”
or “integers”) or as an identifier of a class (“Integer”). In GF we handle this by
using parameters, as explained in Section 3.

Subtyping (inheritance) between classes is handled by defining a subtype
relation and a coercion function:

cat Subtype (sub, super : Class);

fun coerce : (sub,super:Class) -> Subtype sub super ->

Instance sub -> Instance super;

The function coerce is used for converting an instance of a class c into an
instance of any superclass of c. The arguments to this function are the classes
in question, a proof that the subtyping relation holds between the classes, and
finally an instance of the subclass. The result is an instance of the superclass.
For every pair of classes in OCL’s subtyping relation we introduce a term (a
proof) of the type Subtype, e.g.:

fun intConformsToReal : Subtype Integer Real;

The linearization of coerce is interesting: since the whole point is to change the
type (but not the meaning) of a term, the linearization rule will leave everything
as it is. For both OCL and English we have:

lin coerce _ _ _ obj = obj;

GF converts to context free grammars to realize parsing, and this makes this rule
circular (it has the form Instance -> Instance). This means that we cannot
use our grammars to parse OCL or English with the GF system as it is now. We
will have to implement custom modifications for coercion rules.

4.2 Attributes, Operations and Queries

For operations and attributes we have three categories:

cat Attribute (c,a : Class);

Operation (c:Class) (args:ClassList) (returns:Class);

OperationQ (c:Class) (args:ClassList) (returns:Class);

Attributes are simple enough: the two arguments to Attribute give the class
to which the attribute belongs, and the type (class) of the attribute itself, re-
spectively. For operations, we need to know if they have side-effects, i.e. whether
they are marked with {query} in the underlying UML model or not. This ex-
plains why there are two categories for operations. The first argument of these
categories is, again, the class to which they belong. The second argument is a
(possibly empty) list of the types of the arguments to the operation, the third
argument is the return type (possibly void) of the operation. The use of lists
makes these categories general (they can handle operations with any number of
arguments), but this generality also makes the grammar a bit more complex at
places.

Here is how we use an UML attribute or query method (a term of type
OperationQ) within an OCL expression:

fun valueOf : (c, result:Class) -> (Instance c) ->

Attribute c result -> Instance result;

query : (c:Class) -> (args:ClassList) -> (ret:Class) ->

Instance c -> OperationQ c args ret -> InstList args ->

Instance ret;

The arguments to query are, in turn: the class of the object we want to query,
a list of the classes of the arguments to the query, the return type of the query,
the object we want to query, the query itself, and finally a list of the arguments
of the query. The result is an instance (an object) of the return type.

The linearization to OCL is fairly simple:

lin query _ _ ret obj op argsI =

dot1 obj (mkConstI (op.s ++ argsI.s ! brackets));

What happens here is that the list of arguments is linearized as a comma-
separated list enclosed in parentheses (argsI.s ! brackets), then we put the
name of the query (op.s) in front, and finally add the object we query and a
dot (dot1 ensures correct handling of precedence), so we end up with something
like obj.query(arg1, arg2, ...).

For the English linearization, we have the problem of having one category
for all queries, regardless of the number of arguments they depend on. Our
solution is to give a custom “natural” linearization of queries having up to three
arguments (this applies to all query operations in Queue). For instance, the
linearization of the query getFirst produces “the first element of the queue”.
For asSequence we take, as could be observed in Section 2, simply “the queue”.
The implementation is based on the following:

param Prep = To | At | Of | NoPrep;

lincat OperationQ = {s : QueryForm => Str;

preps : {pr1 : Prep; pr2 : Prep; pr3 : Prep}};

The idea is that the linearization of a query includes up to three prepositions
which can be put between the first three arguments. If there are more than three
arguments, these prepositions are ignored and we choose a more formal notation
like “query(arg1, arg2, . . .) of the queue”.

4.3 Constraints

For handling OCL constraints (invariants, pre- and postconditions) we introduce
a category Constraint and various ways of constructing terms of this type. The
simplest form of constraint is an invariant for a class:

cat Constraint;

fun invariant : (c:Class) -> (VarSelf c -> Instance Bool) ->

Constraint;

To construct an invariant we supply the class for which the invariant should
hold: the first argument of invariant. We require a boolean expression (a
term of type Instance Bool) which represents the actual invariant property.
An additional complication is that we want to be able to refer to (the cur-
rent instance of) the class c in this boolean expression—in terms of OCL this
means to use the variable self. This accounts for the type of the second argu-
ment, VarSelf c -> Instance Bool, which can be thought of as a term of type

Instance Bool where we have access to a bound variable of type VarSelf c.
This bound variable can only be used for one purpose: to form an expression
self of the correct type:

fun self : (c:Class) -> VarSelf c -> Instance c;

The linearization of invariant is simple, and we show the linearizations for both
OCL and English:

lin invariant c e = {s = "context"++c.s++"inv:"++e.s};

lin invariant c e = {s = ["the following invariant holds

for all"] ++ (c.s ! cn pl) ++ ":" ++ e.s} ;

Notice the choice of the plural form of a class: c.s ! cn pl produces, for ex-
ample, “queues”, for Queue.

For formulating pre- and postconditions of an operation, we use the same
technique employing bound variables. In this case one bound variable for each
argument of the operation is required, besides the ones for self and result.

4.4 The OCL Library and User Defined Classes

The grammar has to include all standard types (and their properties) of OCL.
Just as an example, we show the Sequence type and some of its properties:

fun Sequence : Class -> Class;

subSequence : (c:Class) -> Instance (Sequence c) ->

(a,b : Instance Integer) -> Instance (Sequence c);

seqConforms2coll : (c:Class) ->

Subtype (Sequence c) (Collection c);

The operations of Sequence (or any standard OCL type) are not terms of type
OperationQ, they are simply modelled as functions in GF. This is very conve-
nient, but it also means that the grammar does not allow to express constraints
for the standard OCL operations. User defined operations, however, must per-
mit constraints, so they are defined using Operation and OperationQ. Here are
some operations of the class Queue from Section 2:

fun Queue : Class;

Queue_size : OperationQ Queue nilC Integer;

Queue_enqueue : Operation Queue (consC Integer nilC) Integer;

Note the use of the constructors nilC and consC to build lists of the types of
the arguments to the operations.

5 Evaluation

5.1 Advantages

Our approach to building an authoring tool has a number of advantages for the
development of requirements specifications:

Single Source Technology. Each element of a specification is kept only in one
version: the annotated syntax tree of the abstract grammar. Concrete expressions
are generated from this on demand. In addition, edits made in one concrete
representation, are reflected instantly in all others. This provides a solution to the
maintenance and synchronization problems discussed in Section 1. The following
two items address the mapping problem:

Semantics. The rules of abstract and concrete GF grammars can be seen as a
formal semantics for the languages they implement: for each pair of concrete lan-
guages, they induce a function that gives to each expression its “meaning” in the
other language. Working with the syntax directed editor, which displays abstract
and concrete expressions simultaneously, makes it easy for users to develop an
intuition for expressing requirements in different specification languages.

Extensibility. GF grammars constitute a declarative and fairly modular formal-
ism to describe languages and the relationships among them. This makes it
relatively easy to adapt and extend our implementation.

These positive features rest mainly on the design principles of GF. From an
implementor’s point of view, the GF base provides a number of additional ad-
vantages. The fact that GF is designed as a framework is crucial:

Tools. GF provides a number of functionalities for each set of abstract and con-
crete grammars as detailed in Section 3.3 and an interactive syntax directed
editor coming with a GUI. In particular, we have a parser for full OCL incorpo-
rating extensive semantic checks.

Development Style. The declarative way, in which knowledge about specific gram-
mars is stored in GF, permits a modern, incremental style of development:
rapid design-implementation-test cycles, addition of new features on demand,
and availability of a working prototype almost from the start, are a big asset.

5.2 Limitations

GF gives a number of functionalities for free, so that applications can be built
simply by writing GF grammars. The result, however, is not always what one
would expect from a production-quality system. Software built with GF is more
like a prototype that needs to be optimized (more accurately: the grammars can
be retained, but the framework-level algorithms must be extended). In the case
of specification authoring, we encountered the following limitations:

Parsing. The generic GF parsers are not optimized for parsing formal languages
like OCL, for which more efficient algorithms exist. More seriously, the parser
has to be customized to avoid the circularity problem due to instance coercions
(Section 4.1).

Compositionality. Texts generated by GF have necessarily the same structure
as the corresponding code. One would like to have methods to rephrase and
summarize specifications.

The need for grammars. All new, user-defined concepts (classes and their fea-
tures) have to be defined in a GF grammar. It would be better to have the

possibility to create grammars dynamically from UML class diagrams given in
some suitable format (for example, in the UML standard exchange format XMI
[20]); this can be done in the same way as GF rules are generated from Alfa
declarations [5].

A general limitation, which is a problem for any natural-language interface, is:

Closedness. Only those expressions that are defined in the grammar are recog-
nized by the parser.

This means a gap persists between formal specifications and informal legacy
specifications. One could imagine heuristic natural language processing methods
to rescue some of this material, but GF does not have such methods at present.

Finally, an obstacle to the applicability of syntax-directed editors for pro-
gramming languages, for which special techniques are required [19], is the phe-
nomenon that top-down development as enforced by stepwise refinement is usu-
ally incompatible with the direction of the control flow. The latter, however, is
more natural from an implementor’s point of view. This problem does not arise
in the context of specifications due to their declarative nature.

6 Related Work

We know of no natural-language interfaces to OCL, but there are some earlier
efforts for specifications more generally: Holt and Klein [7] have a system for
translating English hardware specifications to the temporal logic CTL; Coscoy,
Kahn and Théry [3] have a translator from Coq code (which can express pro-
grams, specifications, and proofs) into English and French. Both of these systems
function in batch mode, and they are unidirectional, whereas GF is interactive
and bidirectional. Power and Scott [16] have an interactive editor for multilin-
gual software manuals, which functions much like GF (by linearizations from an
underlying abstract representation), but does not have a parser. In all these sys-
tems, the grammar is coded directly in the program, whereas GF has a separate
grammar formalism. The mentioned systems are fine-tuned for the purposes that
they are used for, and hence produce or recognize more elegant and idiomatic
language. But they cannot be dynamically extended by new forms of expression.
An idea from [3] that would fit nicely to GF is optimization by factorization:
For example, x is even or odd is an optimization of x is even or x is odd.

The context free grammar of OCL 1.4 [15] is a concrete grammar, which
is not suitable as a basis for an abstract grammar for both OCL and English.
Furthermore, it provides no notion of type correctness. A proposal for OCL 2.0
[14] addresses these problems: both an abstract and a concrete grammar are
included, as well as a mechanism for type correctness. However, these gram-
mars are partly specified by metamodelling, in the sense that UML and OCL
themselves are used in the formal description of syntax and semantics. It is,
therefore, not obvious how to construct a GF grammar directly based on the
OCL 2.0 proposal.

A general architecture for UML/OCL toolsets including a parser and type
checker is suggested in [8], but informal specifications are not discussed there.

7 Future Work

Besides overcoming the limitations expressed in Section 5.2, we will concentrate
on the following issues:

Integration. For our authoring tool to be practically useful, it must be tightly
integrated with mainstream software development tools. In the KeY project [1]
a design methodology plus CASE-tool is developed that allows seamless integra-
tion of object-oriented modeling (OOM) with program development, generation
of formal specifications, as well as formal verification of code and specifications.
The KeY development system is based on a commercial UML-CASE tool for
OOM. Following, for example, [8] we will integrate our tool into KeY and, hence,
into the CASE tool underlying KeY. Users of the CASE tool will be able to use
our authoring tool regardless of whether they want to do formal reasoning.

Stylistic Improvements. To improve the style of texts, we plan to use techniques
like factorization [3] and pronominalization [17], which can be justified by type-
checked definitions inside GF grammars. To some extent, such improvements
can be even automatized. However, one should not underestimate the difficulty
of this problem: it is essentially the same problem as taking a piece of low-level
code and restructuring it into high-level code.

More and Larger Case Studies. We started to author a combined natural lan-
guage/OCL requirements specification of the API of the Java Collections Frame-
work based on textual specifications found there.

Further Languages. It is well-known how to develop concrete grammars for other
natural languages than English. Support for further formal specification langages
besides OCL might require changes in the abstract grammar or could even imply
to shift information from the abstract to the concrete grammars. It will be
interesting to see how one can accomodate languages such as Alloy or JML.

Improve Usability. The usability of the current tool can be improved in various
ways: the first are obvious improvements of the GUI such as context sensitive
pop-up menus, powerful pretty-printing, active expression highlighting, context-
sensitive help, etc. A conceptually more sophisticated idea is to enrich the ab-
stract grammar with rules that provide further templates for frequently required
kinds of constraints. For example, a non-terminal memberDeleted could guide
the user in writing a proper postcondition specifying that a member was deleted
from a collection object. This amounts to encoding pragmatics into the grammar.

Increase Portability. The GUI of GF’s syntax editor is written with the Haskell
Fudgets library [2]. We plan to port it to Java. This is compatible with the KeY
system, which is written entirely in Java.

8 Conclusion

We described theoretical foundations, design principles, and implementation of
a tool that supports authoring of informal and formal software requirements

specifications. Our research is motivated by the gap between completely infor-
mal specifications and formal ones, while usage of the latter is becoming more
widespread. Our tool supports development of formal specifications in OCL: it
features (i) a syntax-directed editor with (ii) templates for frequently needed el-
ements of specifications and (iii) a single source for formal/informal documents;
in addition, (iv) parsers, (v) linearizers for OCL and a fragment of English, and
(vi) a translator between them are obtained.

The implementation is based on a logico-linguistic framework anchored in
type theory. This yields a formal semantics, separation of concrete and abstract
syntax, separation of declarative knowledge and algorithms. It makes the system
easy to extend and to modify.

In summary, we think that our approach is a good basis to meet the challenges
in creating formal specifications outlined in the introduction.

Acknowledgements

We would like to thank Wojciech Mostowski and Bengt Nordström for the careful
reading of a draft of this paper, for pointing out inaccuracies, and for suggestions
to improve the paper.

References

1. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
and P. H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzmán, G. Brewka, and L. M.
Pereira, editors, Proc. JELIA, LNAI 1919, pages 21–36. Springer, 2000.

2. M. Carlsson and T. Hallgren. Fudgets—Purely Functional Processes with applica-
tions to Graphical User Interfaces. PhD thesis, Department of Computing Science,
Chalmers University of Technology, 1998.

3. Y. Coscoy, G. Kahn, and L. Thery. Extracting text from proofs. In M. Dezani-
Ciancaglini and G. Plotkin, editors, Proc. Second Int. Conf. on Typed Lambda
Calculi and Applications, volume 902 of LNCS, pages 109–123, 1995.

4. M. Dymetman, V. Lux, and A. Ranta. XML and multilingual document authoring:
Convergent trends. In COLING, Saarbrücken, Germany, pages 243–249, 2000.

5. T. Hallgren and A. Ranta. An extensible proof text editor. In M. Parigot and
A. Voronkov, editors, Logic for Programming and Automated Reasoning, LPAR,
LNAI 1955, pages 70–84. Springer, 2000.

6. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM,
40(1):143–184, 1993.

7. A. Holt and E. Klein. A semantically-derived subset of English for hardware
verification. In Proc. Ann. Meeting Ass. for Comp. Ling., pages 451–456, 1999.

8. H. Hussmann, B. Demuth, and F. Finger. Modular architecture for a toolset
supporting OCL. In A. Evans, S. Kent, and B. Selic, editors, Proc. 3rd Int. Conf.
on the Unified Modeling Language, LNCS 1939, pages 278–293. Springer, 2000.

9. D. Jackson. Alloy: A lightweight object modelling notation. sdg.lcs.mit.edu/

~dnj/pubs/alloy-journal.pdf, July 2000.
10. R. Kramer. iContract—the Java Designs by Contract tool. In Proc. Technology of

OO Languages and Systems, TOOLS 26. IEEE CS Press, Los Alamitos, 1998.

11. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06i, Iowa State Univ.,
Dept. of Computer Science, Feb. 2000.

12. K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s manual. Technical
Note #2000-002, Compaq Systems Research Center, Palo Alto, USA, May 2000.

13. B. Nordström, K. Petersson, and J. M. Smith. Martin-löf’s type theory. In S. Abra-
masky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, volume 5. Oxford University Press, 2000.

14. Object Modeling Group. Response to the UML 2.0 OCL RfP, Aug. 2001. cgi.

omg.org/cgi-bin/doc?ad/01-08-01.
15. Object Modeling Group. Unified Modelling Language Specification, version 1.4,

Sept. 2001. www.omg.org/cgi-bin/doc?formal/01-09-67.
16. R. Power and D. Scott. Multilingual authoring using feedback texts. In COLING-

ACL 98, Montreal, Canada, 1998.
17. A. Ranta. Type Theoretical Grammar. Oxford University Press, 1994.
18. A. Ranta. Grammatical framework homepage, 2000. www.cs.chalmers.se/

~aarne/GF/index.html.
19. T. Teitelbaum and T. Reps. The Cornell program synthesizer: a syntax-directed

programming environment. CACM, 24(9):563–573, 1981.
20. Unisys Corp. et al. XML Metadata Interchange (XMI), Oct. 1998. ftp://ftp.

omg.org/pub/docs/ad/98-10-05.pdf.
21. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling

with UML. Addison-Wesley, 1999.

