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Abstract. This paper presents a technique for automated theorem prov-
ing with free variable tableaux that does not require backtracking. Most
existing automated proof procedures using free variable tableaux require
iterative deepening and backtracking over applied instantiations to guar-
antee completeness. If the correct instantiation is hard to find, this can
lead to a significant amount of duplicated work. Incremental Closure is
a way of organizing the search for closing instantiations that avoids this
inefficiency.

1 Introduction

Since the 1980’s, the technique of using free variables to postpone the choice of
instantiations in the γ-expansions of tableau calculi for first-order logic is used in
practically all implementations. These free variables have to be instantiated at
some point in the proof search by unifying complementary literals on branches,
and one faces the problem that doing this in a näıve way can lead to non-
termination for some unsatisfiable sets of formulae, and thus to incompleteness
of the procedure.

The most used way of regaining completeness employs backtracking and iter-
ative deepening: A complexity limit for the proof is fixed, and a proof that does
not exceed this complexity is sought for, using backtracking to explore the search
space. If no proof is found, the limit is increased. Unfortunately, backtracking
can lead to a large amount of duplicated work, because the prover forgets infor-
mation which it might need again. On the other hand, the analytic free variable
tableau calculus is proof confluent, meaning that any open tableaux for an un-
satisfiable set of formulae may be closed by further expansion. This means that
the calculus does not require backtracking, contrary to connection tableaux, for
instance.

This is probably the main incentive to consider proof procedures that can do
without backtracking. Another reason is that they are more suited for use in an
integrated automated and interactive system: The user has more possibility of
seeing what went wrong in a failed proof attempt, if all information about what
has been tried so far is kept.

Lately, a number of tableau-based procedures has been proposed that work
without backtracking. Most of these concentrate on overcoming the mentioned



näıveté of simply closing a branch as soon as possible. In [Bil96] for instance,
instead of instantiating free variables in the tableau, the set of input clauses
is extended by instantiated variants, leading to a kind of saturation process. A
similar approach based on the connection calculus is presented in [BEF99]. In
[Bec00], an ordering restriction on the sequence of generated tableaux is imposed
that forbids cycles.

This paper describes an approach in which the free variables are never in-
stantiated in the tableau, but the various possibilities are effectively considered
in parallel. We use an incremental approach to compute an instantiation of the
free variables that closes all branches simultaneously, hence the name Incremen-
tal Closure.1

After defining a few basic notions, we shall present the basic idea of the
approach in Sect. 3. We describe a number of possible refinements in Sect. 4,
and some experimental results are quoted in Sect. 5.

2 Preliminaries

We assume a fixed first-order signature throughout this paper. Let terms and
first-order formulae (without equality) over that signature be defined in the usual
way. A ground term is a term that does not contain variables.

A formula is in negation normal form (NNF), iff negation signs appear only
in front of atomic formulae p(t1, . . . , tn). By the application of de Morgan’s rules,
any formula can be transformed into an equivalent NNF formula. A formula is in
skolemized negation normal form (SNNF), iff it is in NNF and does not contain
existential quantifiers. Any formula F can be transformed by skolemization into
a formula F ′ in SNNF that is satisfiable iff F is satisfiable. A formula is closed
if all variable occurrences in it are bound by a quantifier.

Definition 1. An instantiation is a mapping from the set of all variables to
ground terms. Let Sub0 denote the set of all instantiations.

This differs from the usual concept of a ground substitution, in that we require
all, i.e. infinitely many variables to be mapped.

Definition 2. A goal is a finite set of formulae. A tableau is a finite tree where
every node has zero, one, or two children, and each node is labeled with a goal.
A leaf is a node with no children. The leaf goals of a tableau are the goals that
label its leaves.

A tableau for a finite set of SNNF formulae S is defined inductively as follows:

1. The tableau consisting of the root node labeled with the goal S is a tableau
for S, called the initial tableau.

2. If there is a tableau for S that has a leaf n with goal {α1 ∧α2}∪G, then the
tableau obtained by adding a new child n′ with goal {α1, α2}∪G to n is also
a tableau for S. (α-expansion)

1 A predecessor to this approach was sketched in the Postition Paper[Gie00b] under
the name of ‘Instance Streams’.



3. If there is a tableau for S that has a leaf n with goal {β1 ∨ β2} ∪G, then the
tableau obtained by adding two new children n′, resp. n′′ with goals {β1}∪G,
resp. {β2} ∪G to n is also a tableau for S. (β-expansion)

4. If there is a tableau for S that has a leaf n with goal {∀x.γ1} ∪ G, then the
tableau obtained by adding a new child n′ with goal {[x/X ]γ1, ∀x.γ1} ∪G to
n, where X did not previously occur in the tableau, is also a tableau for S.
(γ-expansion)

A complementary pair is a pair φ, ¬ψ, where φ and ψ are unifiable atomic
formulae. A goal G is closed under an instantiation σ, iff there is a comple-
mentary pair {φ,¬ψ} ⊆ G with σ(φ) = σ(ψ). A tableau T is closed under an
instantiation σ, iff each leaf goal of T is closed under σ. A tableau is closable iff
it is closed under some instantiation.

We use this somewhat unusual formulation of tableaux labeled with sets
of formulae (Smullyan [Smu68] calls them block tableaux ) because it helps in
describing the procedure. Note that in an implementation, it is sufficient to keep
the leaf goals in memory; they correspond to the branches in the usual definition.

Another deviation from the usual formulations of free variable tableau cal-
culi in that there is no rule that instantiates the free variables introduced by
a γ-rule. Instead, an instantiation that closes all branches simultaneously has
to be found, to decide that a tableau is closable. This is an important aspect
of the incremental closure technique. It is obvious, that the usual correctness
and completeness proofs for free variable tableaux are also applicable to this
formulation.

Proposition 1. Let S be a set of closed formulae in SNNF. S is unsatisfiable
iff there is a closable tableau for S.

3 Incremental Closure

From Prop. 1, it is easy to derive a complete proof procedure:

T := initial tableau for S
while ( not closable (T) ) do

if expandable(T) then

select possible expansion of T
expand T

else

answer ’ satisfiable ’
end

end

answer ’ unsatisfiable ’

This is a complete proof procedure, provided the selection of tableau expan-
sions is fair. Being fair means that if the procedure does not terminate, any
extension step possible on a goal will at some point be applied on that goal or
one of its descendants. In particular, in a non-terminating run, infinitely many
instances of each γ-formula will ultimately be produced on each branch.



The main problem with this proof procedure is the test closable (T): In gen-
eral, the right combination of complementary literals has to be found in the leaf
goals to compute a simultaneous unifier. This is NP-complete in the size of the
leaf goals.2

The problem of finding the right complementary pairs has to be solved in
any free variable tableau proof procedure, backtracking or not. But although the
worst-case complexity cannot be reduced, a speedup can be achieved by tuning
the procedure to perform well in practical cases.

The approach presented here makes the procedure more efficient by comput-
ing closable (T) in an incremental fashion, based on the following observations:

– If a pair of complementary literals is unifiable, it will stay unifiable after any
extension. This should make an incremental algorithm worthwhile.

– An instantiation has to be found for the free variables introduced by the γ-
rule. These only occur in the proof tree below the corresponding γ formula.
To take advantage of this locality, the algorithm should exploit the structure
of the proof tree.

3.1 An abstract description

In this section we shall abstract away from concrete representations of instan-
tiations, and assume that we can perform calculations on (potentially infinite)
sets of instantiations. How to represent these in an actual implementation is
discussed in Sect. 3.2.

Let
unif(φ, ψ) := {σ ∈ Sub0 | σ(φ) = σ(ψ)}

be the set of instantiations that unify two atomic formulae. We define

cl(G) :=
⋃

φ,¬ψ∈G

unif(φ, ψ)

to be the set of instantiations under which a goal G is closed. For a node n of
a tableau, let lg(n) be the set of leaf goals associated with the leaves that are
descendants of n. Use this to define

cl(n) :=
⋂

G∈lg(n)

cl(G)

to be the set of instantiations under which all leaves below n are closed. Obvi-
ously, cl(root), where root is the root node, is the set of instantiations that close
the whole tableau.
2 Unifiability can be decided in linear time [PW78], so with indeterministic selection of

complementary pairs, closable (T) is in NP. On the other hand, SAT for propositional
clauses can be reduced to this problem by translating each clause to one leaf goal,
mapping propositional symbols to free variables, such that a goal is closable under an
instantiation to {0, 1} iff the clause is satisfied by the corresponding interpretation.
E.g., translate A ∨ ¬B to {pA(0),¬pA(1), pB(0),¬pB(1), pA(A),¬pB(B)}.



We can take advantage of the tableau structure by expressing cl(n) recur-
sively: If a node n has only one child n′, cl(n) = cl(n′), for two children n′, n′′,
cl(n) = cl(n′) ∩ cl(n′′). For a leaf n labeled with goal G, cl(n) = cl(G).

We shall clarify these notions using the following tableau:

n1 : ∀x.(qx ∨ ¬px), ∀y.qy,¬qb, pa

n2 : qX ∨ ¬pX, ∀y.qy,¬qb, pa, ∀x.(. . .)

n3 : qX, ∀y.qy,¬qb, pa, ∀x.(. . .) n4 : ¬pX, ∀y.qy,¬qb, pa, ∀x.(. . .)

n2 was constructed by applying a γ-expansion at n1, and n3, n4 were introduced
by a β-expansion at n2. The newly introduced formulae are underlined in each
goal. The goal at n3 contains one complementary pair qX,¬qb. So cl(n3) =
unif(qX, qb) = {σ ∈ Sub0|σ(X) = b}, the set of instantiations that map X to
b. Similarly, cl(n4) = {σ ∈ Sub0|σ(X) = a}, because of the complementary pair
¬pX, pa. For cl(n2) we have to find instantiations that close both leaf goals,
cl(n2) = cl(n3) ∩ cl(n4). There are obviously no such instantiations, cl(n2) = ∅.
The same holds for the root n1, of course.

To get an incremental algorithm, we shall examine the values of cl change
when a tableau expansion produces new complementary pairs. In general, one
expansion step might lead to several new complementary pairs in one goal, or
there might be two new goals, each of which can contain new complementary
pairs. We shall examine the changes to cl induced by one new complementary
pair φ,¬ψ at one leaf l, called the selected leaf. If there are several new comple-
mentary pairs, these changes may be applied consecutively for each of them.

Let cl0 denote the value of cl before taking into account φ,¬ψ, while cl
is the updated value. Possible closing instantiations are never destroyed by an
expansion step, so the sets cl can only grow when the tableau is expanded,
i.e. cl(n) ⊇ cl0(n) for all nodes of the tableau. Define δ(n) := cl(n) \ cl0(n) to
be the set of new closing instantiations. Obviously, cl(n) = cl0(n), so δ(n) = ∅,
if the selected leaf l is not a descendant of n. In other words, δ(n) is non-empty
only for nodes n on the path between l and the root of the tableau. For the
selected leaf l, δ is given by

δ(l) = unif(φ, ψ) \ cl0(n) .

Using the recursive expression for cl(n), we can ‘propagate’ this change up
the branch towards the root. We obtain δ(n) = δ(n′) for all nodes n with one
child n′. For a node n with two children n′ and n′′, we assume that l lies below
n′. This implies that cl(n′′) = cl0(n

′′), so we have

δ(n) = cl(n) \ cl0(n)
= (cl(n′) ∩ cl(n′′)) \ (cl0(n

′) ∩ cl0(n
′′))

= (cl(n′) ∩ cl0(n
′′)) \ (cl0(n

′) ∩ cl0(n
′′))

= (cl(n′) \ cl0(n
′)) ∩ cl0(n

′′)
= δ(n′) ∩ cl0(n

′′)



The case where l lies below n′′ is of course symmetrical.
The central idea of the incremental closure procedure is to keep track of the

sets cl(n) and update them by propagating the additional closures δ(n) up the
branch using this equation. As soon as δ(root) 6= ∅, the tableau must be closable.

We shall continue the example from above to demonstrate the propagation
of δ values.

n1 : ∀x.(qx ∨ ¬px), ∀y.qy,¬qb, pa

n2 : qX ∨ ¬pX, ∀y.qy,¬qb, pa, ∀x.(. . .)

n3 : qX, ∀y.qy,¬qb, pa, ∀x.(. . .) n4 : ¬pX, ∀y.qy,¬qb, pa, ∀x.(. . .)

n5 : qY , qX,¬qb, pa, ∀x.(. . .), ∀y.qy

There is a new node n5 stemming from a γ-expansion at n3. This leads to
the new complementary pair qY,¬qb. Not taking this into account leads to:
cl0(n3) = cl0(n5) = {σ ∈ Sub0|σ(X) = b}, cl0(n4) = {σ ∈ Sub0|σ(X) = a}, and
cl0(n1) = cl0(n2) = ∅. These are the values we derived for cl on the previous
page. Now, including qY,¬qb, we get

δ(n5) = unif(qY, qb) \ cl0(n5) = {σ ∈ Sub0|σ(Y ) = b and σ(X) 6= b}

This allows us to calculate δ for all nodes between n5 and the root: After δ(n3) =
δ(n5), we have

δ(n2) = δ(n3) ∩ cl0(n4) = {σ ∈ Sub0|σ(Y ) = b and σ(X) = a}

This in turn leads to δ(n1) = δ(n2) 6= ∅, so the proof is closable, namely by any
instantiation that maps X to a and Y to b.

Still assuming we could calculate with infinite sets of instantiations, we shall
now show how the computation and propagation of the δ values is organized.
The procedure shall be described in a state-based way, but it turns out that
operations on the state will typically be local. For that reason, we shall take an
object oriented view.

Every leaf goal has an associated Sink object. A sink is an object capable of
receiving a set of instantiations and performing some computation on it. This
is realized by giving a put method to the Sink objects that takes a set of in-
stantiations as parameter. The proof procedure will call this method after every
expansion step with any set δ(n) of new closing instantiations coming from a
new complementary pair i.e.

goal. sink . put(unif(φ, ψ) \ cl0(n))

We shall see further down how cl0(n) is extracted from the data structures.
There are two kinds of objects that act as sinks. One is the RootSink, which

will receive δ(root). This contains a flag closable that records whether a non-
empty set of instantiations has yet been received:



RootSink::put(S) is

if S nonempty then

closable := true

end

end

The other kind of sink is provided by Merger objects which correspond to
the splits in the tableau and are responsible for calculating the intersections
δ(n) = δ(n′) ∩ cl0(n

′′).
The structure of a Merger is shown in the following diagram:

outδ(n)

B B

other

left

MergerSink

right

MergerSink

Merger

δ(n′) δ(n′′)

It consists of two MergerSink objects, one to receive δ(n′) and one for δ(n′′). The
current set cl(n′), resp. cl(n′′) is stored in a buffer B in the corresponding input
sink. Furthermore there is a reference out to an output sink, to which δ(n) will
be passed on. The two sinks are mutually connected by an association other, so
they can access each others buffers via other. B. Accordingly, the put method of
the MergerSink object works as follows:

MergerSink::put(S) is

J := S ∩ other. B // δ(n) = δ(n′) ∩ cl0(n′′)
B := B ∪ S // cl(n) = cl0(n) ∩ δ(n)
out. put(J)

end

It only remains to see how cl0(n) can be computed to determine δ(n) =
unif(φ, ψ)\cl0(n) for a new closure. There are two cases: If the goal is associated
with the RootSink, cl0(n) must be empty, because the proof would otherwise be
closed already. If it is associated with a MergerSink, this sink contains the current
value of cl0(n) in its buffer B.

The proof procedure is now changed as follows:

T := initial tableau for S
associate RootSink r with goal of T
while ( not r . closable ) do

if expandable(T) then

select possible expansion of T



expand T
possibly generate new Merger
handle new complementary pairs

else

answer ’ satisfiable ’
end

end

answer ’ unsatisfiable ’

At the initialization, a RootSink object is associated with the single goal of
the tableau.

In the case of a β-expansion, i.e. a new split in the tableau, the step ‘possibly
generate new Merger’ creates a new Merger object. The buffers B are initialized
with the current value of cl0 of the parent node. The output of the merger object
is sent to the sink s of the parent node, and the new child nodes are associated
with the input sinks of the merger, as shown in the following diagram:

. . . β1 ∨ β2 . . .

s

; . . . β1 ∨ β2 . . .

. . . β1 . . . . . . β2 . . .
B B

s

After the sinks have been updated, the procedure checks for new complemen-
tary pairs introduced by the expansion, calculates δ(n) = unif(φ, ψ) \ cl0(n) for
each of them, and sends δ(n) into the associated sink of the goal.

After all new closing instantiations have been passed to the sinks, the tableau
is closable, if the closable flag of the root sink has been set.

3.2 Representation of instantiation sets

We have so far assumed that we can compute with infinite sets of instantia-
tions. To get closer to a concrete implementation, we have to show how these
may be represented with finite data structures. We shall briefly describe the
representations used in the prototypical prover PrInS. (Prover with Instance
Streams—referring to the streams of closing instantiations passed between the
Sink objects.)

We use syntactic equality constraints to denote sets of instantiations: These
are first-order formulae with equality as only predicate symbol, which are inter-
preted over the free term algebra. A constraint represents the set of instantia-
tions that satisfy it. E.g. unif(p(X, b), p(a, Y )) yields a constraint X ≡ a&Y ≡ b,
that is satisfied by all instantiations that map X to a and Y to b. As usual for
unification, these constraints are kept in a ‘solved form’, that makes it easy to
determine their satisfiability. The intersection of sets of instantiations required



in the Mergers corresponds to the conjunction of constraints. In the updates of
the MergerSinks’ buffers B, set union is required which could be represented as
disjunction of constraints. There is however no need to handle arbitrary dis-
junctive constraints: The buffers B can be implemented as lists of conjunctive
constraints. The put method then looks as follows:

MergerSink::put(C) is

foreach D in other. B do

J := C & D
if J satisfiable then

out. put(J)
end

end

add C to B
end

The constraints passed into the put methods are then purely conjunctive.
Finally, the set difference operation can be modeled either by taking negation

into the constraint language, or by introducing subsumption checks at various
places. We will not elaborate this here. See e.g. [Com91] for a survey on syntactic
constraint solving methods.

4 Refinements

The Incremental Closure approach has the desirable property that it can eas-
ily be refined in a number of ways. We stress this point, because incremental
closure is surely not the answer to all problems in automated theorem proving.
It is therefore important to see how this new technique can be combined with
successful existing approaches.

This section presents a number of possible refinements. While some of them
are particular to the incremental closure technique, many are adaptations of
refinements known from backtracking procedures.

4.1 Restriction of instantiation domains

On the abstract level, instead of passing instantiations for all free variables
through the sink structure, it is possible to define the method to work with
instantiations of only the free variables actually present at a certain tableau
node.

For instance, in the following tableau:3

...
∀u, v.p(X,u, v) ∨ q(u, v, Y )

p(X,U, V ) ∨ q(U, V, Y )

p(X,U, V ) q(U, V, Y )
3 We shall adopt a more familiar and compact notation for tableaux here and in the

sequel, by writing only the newly introduced formulae of each goal.



assume that the left branch may be closed for instantiations satisfying X ≡ U ,
and the right branch for U ≡ Y . The Merger corresponding to the split will find
that both branches are closable with X ≡ U&U ≡ Y . But U does not exist in the
tableau above the γ-expansion, so this sub-tableau can be considered closable
for all instantiations satisfying X ≡ Y .

In terms of constraints, the restriction to a subset of occurring variables
corresponds to existential quantification: X ≡ Y is equivalent to ∃U, V.X ≡
U & U ≡ Y . This variation may be implemented by introducing a new kind of
Sink object at every γ-expansion that computes the domain restriction.

This modification has several advantages:

– As in the example above, the existentially quantified constraints can often
be simplified. Thus, they consume less space in the buffers B.

– Assume that a new combination of complementary literals leads to X ≡
V & V ≡ Y in the example. This would have to be handled separately in
the original version, but domain restriction leads to X ≡ Y as above. A
subsumption check can be used to avoid further redundant computations.

4.2 Delete Propositionally Closable Branches

It occasionally happens that a sub-tableau is closable under any instantiation.
This is the case in proofs of propositional formulae, where no free variables
are required at all, but it can also happen with first-order formulae if there is
a complementary pair that is unifiable without any further instantiation. It is
useless to expand that part of the tableau any further, because no more closing
instantiations can be found. The sub-tableau is called propositionally closable.

In the implementation using constraints, this corresponds to a constraint
(equivalent to) true being passed through the sink structure. If this is detected,
the corresponding goals and the Sink structure may be deleted to reduce memory
consumption.

4.3 Using Buffers for Goal Selection

So far, the Sink structure built during a proof has only been used to check whether
the tableau is closable. It turns out that it can also be useful for goal selection,
i.e. deciding on which goal the next expansion step should take place.

The buffers B contain representations of the closing instantiation for sub-
tableaux. If, for instance, one subtree of a node has no closing instantiation yet,
while the other does, expansions should take place in the first subtree, until at
least one closing instantiation has also been found there. It is also possible to
use the size of the buffers or of the constraints they contain for heuristics that
tend to expand branches that seem harder to close.

4.4 Pruning

Pruning (see e.g. [BH98, BFN96]) is an important technique known from back-
tracking procedures that can reduce the search space dramatically: The prover



keeps track of the ancestry of formulae, i.e. the set of formulae in the tableau
which were used to derive it.4 If a branch is closed by unifying a particular
complementary pair φ,¬ψ, the prover examines the β-expansions that occurred
earlier on the branch. If for a particular expansion, neither the ancestry of φ,
nor that of ¬ψ contains the sub-formula β1/2 introduced by the expansion, then
the closure would have been possible without that expansion. Consequently, the
expansion can be removed a posteriori, saving the work of closing the other
branch introduced by it. Of course, the decision for that particular complemen-
tary pair might be revised in a backtracking step, and then the expansion has
to be reintroduced.

We will now see how the pruning technique can be adapted to the incremental
closure approach. We record for each formula an ancestry of β-expansions on
which it depends. We can use references to the Merger objects for this, as there is
exactly one of these for each β-expansion. In the abstract view of the procedure,
we now compute with sets of pairs (σ, h) of instantiations with ancestries, instead
of just sets of instantiations. We have to redefine the operations unif, ∩, ∪ and
\ to work with sets of such pairs. In particular, the ∩ operation in the Merger

has to combine the histories of instantiations.
The ‘pruning’ takes place, when a Merger m receives an instantiation that

does not have m in its ancestry: it can pass such an instantiation to the output
sink independently of the contents of the buffer of the other branch:

MergerSink::put(S) is

P := {(σ, h) ∈ S | this Merger 6∈ h}
out. put(P)
S := S \ P;
J := S ∩ other. B
B := B ∪ S
out. put(J)

end

As the complementary pair that led to this closing instantiation might not be
the one that is ultimately needed to close the proof, the other branch may not, in
general, be deleted. But the gain of passing a closing instantiation further up the
Sink structure turns out to be very important in practice. Of course, in the case
of a propositional closure, it is even possible to delete the whole sub-tableau,
giving an even greater advantage.

4.5 Constraints

A wide range of refinements and variations of the incremental closure method
becomes possible if the prover is modified to work with constrained formulae. A
constrained formula is a pair φ � C of a formula φ and a constraint C. The
meaning of this is that φ may be used to close a branch only if the instantiation
of the free variables of the tableau satisfies the constraint. Constrained formulae
may be used to port tableau rules that normally require an instantiation to the

4 Actually, it suffices to record only the β-subformulae introduced by β-expansions.



incremental closure method, and also for restrictions of the search procedure
that limit the permissible instantiations in some way.

Rules introducing constraints. In [Gie00a], a simplification rule using
constraints was presented. Consider for instance a tableau branch containing the
formulae

(1) : ∀y.(q(y) ∧ p(X))
(2) : p(a)

In a backtracking framework, (1) could be simplified with (2), by instantiating X
with a, then replacing the occurrence of p(X) by true, and finally rewriting the
formula to ∀y.q(y). The original, unsimplified formula (1) could be discarded.
It would however be necessary to backtrack over the instantiation of X . Using
constraints, one would not perform the instantiation explicitly; instead one would
derive the constrained formula

(3) : ∀y.q(y) � X ≡ a

and replace the original formula by

(4) : ∀y.(q(y) ∧ p(X)) � X 6≡ a ,

using the constraint to keep track of the fact, that for instantiations with X ≡ a,
formula (3) should be used instead of (4).

This approach blends perfectly with the incremental closure method. Only
one change is needed: When a new complementary pair φ� C, ¬ψ � D is found,
the constraints of the formulae have to be added to the unification constraint.
One defines:

unif(φ� C,ψ � D) := unif(φ, ψ) & C &D .

The same approach can be used to build an incremental closure version of
hyper tableaux ([Bau98]) with (rigid) free variables: For a hyper tableau rule

p(a) → q(y) ∨ r(y)

and a literal p(X), one can produce an expanded tableau

...
p(X)

q(Y ) � X ≡ a r(Y ) � X ≡ a

where Y is a new free variable.

Another use for constrained formulae is equality handling: In [NR01], Sect. 5,
Nieuwenhuis and Rubio point out the importance of using ordering constraints
to reduce the search space in automated equality reasoning, and [Bec94] presents



a constraint based method for equality handling in tableaux that can be neatly
integrated with the incremental closure approach.

To use ordering constraints, one simply has to extend the constraint language
to contain an ordering predicate ≺ in addition to the syntactic equality ≡. The
semantics of constraints is given by fixing the interpretation of this predicate to
some suitable reduction ordering.

Restrictions introducing constraints. Constraints can also be introduced
to adapt certain proof search restrictions from backtracking procedures, in a
similar way to what is described in [LS01], Sect. 8.

One example is regularity. In its simplest form, the regularity condition re-
quires that no rule is applied that introduces a formula on a branch that already
occurs on it. While this is easy to enforce for the (purely academic) case of ground
tableaux, it requires a certain effort when free variables are used, because two
formulae might become equal through an instantiation.

In the incremental closure framework, constraints can be used to ensure reg-
ularity. A goal containing p(a) and p(X) ∨ q(X) might be expanded thus:

p(a)

p(X) ∨ q(X)

p(X) � X 6≡ a q(X) � X 6≡ a

Then, if the instantiation X ≡ a ultimately does lead to a proof of, say, the
left branch, the ancestry of that instantiation cannot contain this β-split, so the
pruning mechanism will take care that the redundant splitting expansion does
no harm.

5 Experimental results

In this section we shall quote some results obtained with an experimental im-
plementation of the iterative closure procedure.

To cleanly separate the effects of incremental closure from those of various
refinements, the technique was tested with a very simple implementation: No re-
finements like pruning or simplification were employed. Only the goal selection
strategy from Sect. 4.3 was used. Formulae in goals are kept in a list and the
first formula in this list is used for expansion. On the other hand, an equally
simple backtracking prover was implemented using the same data-structures.
Iterative deepening was applied on the number of γ-expansions per branch.
The proof search of this backtracking prover is practically identical to that of
leanTAP [BP94].

Comparing the two provers on some simple probelms (harder problems re-
quire refinements in both cases) shows that the incremental closure prover is
nearly always faster. The difference is particularly noticeable in cases that re-
quire heavy backtracking, i.e. where many complementary pairs are found that



do not lead to a proof. This is the case, e.g. in SYN054+1 from the TPTP library,
where the backtracking procedure requires 14317 rule applications and 37817
unifications versus 151 rule applications and 680 unifications with incremental
closure. The problem family p(c) ∧ ¬p(fn(c)) ∧ ∀x.(p(x) → p(f(x))) also shows
this phenomenon very clearly, because there are many possible closures, and
only few of them are correct for a low depth limit. For n = 15, the backtracking
prover performs over 300,000 rule applications and over 1,000,000 unifications,
while the incremental closure procedure requires 32 rule applications and 133
unifications.

The current implementation incorporates most of the refinements given in
Sect. 4. It proves 161 of the 237 full-first-order theorems without equality in
TPTP v.2.3.0, one of which, SYN067+1, is rated 0.67.

One would expect the described procedure to give rise to memory problems.
But with resource limits of 300 s CPU and 160 MB heap, only about 30% of the
failures were due to lack of memory. We hope to further reduce this amount by
implementing more powerful rules and a better goal selection strategy, leading
to shorter proofs. The idea is that without backtracking, one can afford to spend
more time on individual rule applications, as these do not need to be repeated.

6 Conclusion, Related Work and Future Research

We have presented an approach to eliminate backtracking from a proof procedure
for free variable tableaux. It is built around the idea of incrementally computing
instantiations that close sub-tableaux until one global instantiation is found
that closes the whole tableau. We have demonstrated that this technique allows
various refinements to be incorporated in the calculus and the procedure. Finally
we have given some experimental results obtained by comparing the approach
with a backtracking solution.

A similar approach has independently been described by B. Konev and T. Je-
belean in [KJ00]. However, they hardly consider possibilies for refinements.

Further work includes experiments with integrated equality handling, search
for specialized data structures, e.g. for the buffers B, better goal selection strate-
gies and adaptations of further refinements from backtracking procedures. It
might also be interesting to experiment with a parallelized implementation.

Acknowledgments

I thank Wolfgang Ahrendt, Elmar Habermalz, Reiner Hähnle and the anonymous
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