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Abstract. Several variants of a first-order simplification rule for non-normal form
tableaux using syntactic constraints are presented. These can be used as a framework for
porting refinements of clausal first-order proof procedures to non-normal form tableaux.
Some experimental results obtained with a prototypical implementation are given.

1 Introduction

Non-normal form analytic tableaux have a number of advantages over the proof pro-
cedures for clausal form implemented in most successful automated theorem provers.
For instance, when the logic is enhanced by modal operators, clausal form cannot be
used without previously translating the problems into first-order. Another case is the
integration of automated and interactive theorem proving [Il8], where normal forms
would be counter-intuitive. Unfortunately, standard non-normal form tableaux tend
to be rather inefficient, as many of the refinements available to clausal procedures are
hard to adapt.

In [11], Massacci presents a simplification rule for propositional and modal tableau
calculi. This rule is of the form

@Z} stmp ¢ [Qﬂ
o 7 ¢

where 1[@] is the formula that results form first replacing any occurrence of ¢ in 9
by true,ﬂ and then applying a set of boolean simplifications of the form

—true — false, —false — true, true Ao — ¢, false N — false, etc.

to eliminate all occurrences of truth constants. Massacci shows that proof proce-
dures using this rule can subsume a number of other theorem proving techniques for
propositional logic, e.g. the unit rule of DPLL [7], the ¢ rules of KE [6], regular-
ity and hyper-tableaux [2]. This is done mainly by specifying the strategy of when
and where to apply the simp rule. Much of the power of these and other formalisms
(e.g. Stalmarck’s Proof Procedure [13]) comes from simplification-like rules.

While DPLL and hyper-tableaux are originally formulated for problems in clause
normal form (CNF), the simplification rule is applicable to arbitrary predicate logic
formulae, making it a good framework to generalize CNF techniques to the non-normal
form case. Massacci gives variants of the simplification rule for various modal logics.

LIf ¢ = —¢', any occurrence of ¢’ may be replaced by false. I will omit this complementary case
throughout the paper for terseness’ sake.



In [10], he also gives a variant of the rule for first-order free-variable tableaux. Unfor-
tunately, this rule does not in general subsume first-order versions of unit-resolution,
hyper-tableaux etc., because it places strong restrictions on the instantiation of free
variables.

This paper presents variants of the simplification rule, that overcome this limita-
tion.

2 Lifting with Constraints

Consider a free-variable tableau branch with the formulae p(X) V ¢(X) and —p(a),
where X is a free variable. If X is instantiated with a, the disjunction may be sim-
plified to g(a). One possibility for lifting the simplification rule consists in applying a
substitution to the whole proof, that unifies certain subformulae, so that a simplifi-
cation becomes possible.

Such a rule would be formulated using the most general unifier (mgu) of the
simplifying formula and some subformula of the simplified formula. A little care must
be taken to prevent the instantiation of bound variables by such a unifier. We call
(an occurrence of) a subformula £ of ¢ simplifiable, if no variable occurring free in £
is bound by ¢. So p(z) is simplifiable in Jy.(q(y) A p(x)), but not in Jz.(p(y) A p(z)).
It is also simplifiable in (3x.q(z)) A p(z), because the quantifier does not bind the =
occurring free in p(z).

Using this notion, a simplification rule with global instantiation can be givenﬂ

w simp M(¢)[M(¢)]
¢ (¢)

where p is a mgu of ¢ and some simplifiable subformula of 1,
and p is applied on all open branches.

The problem with this approach is that it introduces a new backtracking choicepoint,
because the applied unifier may not lead to a proof.

2.1 Unification constraints

A universal technique for avoiding the global application of substitutions is to decorate
formulae with unification constraints. A unification constraint C' is a conjunction of
syntactic equalities between terms or formulae, written as

si=t1 & ... & s, =t

We use the symbol = for syntactic equality in the constraint language to avoid con-
fusion with the meta-level =. Let

Sat(C) = {o | for all i, o(s;) equals o(t;) syntactically}
be the set of ground substitutions satisfying a constraint. A constraint is called sat-

isfiable, if Sat(C') is not empty, which means that there is a simultaneous unifier for

2 We use a non-standard notation for tableau rules: the formulae on the left are required to be on
the branch and are replaced by the ones on the right. This notation has the advantage of making
clear which formulae need to be retained after the rule application.



the pairs {s;,t;}. A constraint C' subsumes a constraint D, iff Sat(D) C Sat(C). Two
constraints C' and D are equivalent, iff Sat(C') = Sat(D).

A formula ¢ with constraint C' is written as ¢ < C. The intuition is to consider the
formula ¢ as present, only if the free variables are instantiated in a way that satisfies
the constraint. The empty constraint, which is satisfied by all ground substitutions,
is usually omitted. Instead of globally applying a mgu of two formulae ¢ and ¥
to the proof, when a rule application requires some instantiation of free variables,
we can annotate the formulae resulting from the rule application with a constraint
¢ = 1, which is a local operation that does not lead to a backtracking choicepoint.
For instance, simplification of p(X) V ¢(X) with —p(a) requires instantiation of X
with a leading to false V ¢(a) < X = a, which is rewritten to ¢(a) < X = a.

Obviously, if formulae ¢; < C; which already carry constraints are involved in
a rule application, the conjunction Cy & C ... has to be passed on to the resulting
formulae. This is referred to as constraint propagation.

Constraints are propagated through rule applications, until a branch is closed.
Closure between two literals L < C' and =L’ < C" is only allowed if the constraint
C & C'& L = I is satisfiable.

Using unification constraints, the simplification rule takes the form

1/1 <C simp<0 1/} <C
p<D 77 ¢ < D
() [u(@)] < (C& D& ¢ =¢)

where £ is a simplifiable subformula of 1,
w1 is a mgu of & and ¢,
and C & D & ¢ = € is satisfiable

Theorem 1. The simp™ rule is sound in a free variable tableau calculus with con-
straints.

Proof sketch. Let o be (a ground specialization of) the instantiation used to close a
proof. Consider the ground proof-tree obtained by applying o to all formulae, and
omitting those formulae with constraints not satisfied by ¢. The resulting proof is
easily seen to be closed, and uses a ground version of the simplification rule, which is
obviously sound.

It is a little misleading to call simp®® a simplification rule, because the original
formula 1 <« C has to be retained for completeness. There is however an important
special case: if D & ¢ = £ subsumes C, the original formula ¥ < C may be discarded.
Let simp® be the rule obtained with this modification.

Theorem 2. The simp°! rule is sound. It is also complete, i.e. a tableaux branch
that can be closed by a refutation R, can still be closed by a modified refutation R’
after an application of the simp®' rule. Moreover, there is an R' that is at most as
large as the original RE|

Proof sketch. Soundness follows from Theorem [I] The rest is shown by constructing
R’ from R by a proof transformation, in which rule applications on (descendents of)

3 Note, that the simp®! application is not counted in R’. So the overall proof size may increase by 1.



a discarded original formula ¢ < C can either be applied to (descendents of) the
simplified formula, or be discarded altogether.

The simp® rules enjoy an interesting finiteness property. Call two constrained
formulae ¢ < C, ¥ < D wariants, if C and D are equivalent and for all o € Sat(C),
o(¢) =0(¥). E.g. p(X) < X =a and p(a) < X = a are variants.

Theorem 3. Starting from a given tableau branch, only a finite number of o, 3, § and
simp® rule applications without intervening applications of the v rule are possible,
if simp® is never applied twice to the same pair of constrained formulae, and any
formula which is a variant of a formula already present on a branch is discardedﬁ
The same is true for the simp°! rule.

Proof sketch. A formula ¢ can only be simplified by setting one of its subterms to true
or false, and the resulting simplified formulae are all smaller than ¢. So the number
of distinct formulae that can be generated is finite. On the other hand, all constraints
that could be generated are conjunctive combinations of existing constraints and
syntactic equations between subformulae of formulae on a branch, so there can be
only finitely many non-equivalent constraints. Accordingly, the number of non-variant
constrained formulae must be finite. For simp®! even less rule applications are possible,
so the same argument holds.

As a practical consequence of this finiteness property, there is no need to interleave
~v and simp® applications in a proof procedure to guarantee fairness. It is possible to
apply all possible simplifications before considering an application of the  rule.

2.2 Dis-unification constraints

In most cases, the original formula ¢ < C has to be kept on the branch in the simp©!
rule. This can lead to redundancies as exemplified by the following tableau branch
for the set of formulae {p(a), ¢(a), p(X)V =q(X) Vr(X)}:

- pla)
2 q(a)
3: ﬁp(X) —q(X) vV r(X)
4=simp(3,1) : ~q(a) Vr(a) < X =a
5=simp(3,2): —pla) Vra) < X =a

After generation of 4, formula 5 is redundant, because if X is actually instantiated
with a as the constraint of 5 demands, formula 3 could have been discarded after
generating 4. ¢(a) only needs to be used to simplify 4, leading to r(a) < X = a. In
the presence of a large formula and many simplifying literals, a large number of such
redundant formulae may be generated.

One way of overcoming this problem is to record instantiations under which a
formula could have been discarded in the constraint. To do this, we have to require the
constraint language to be closed under negation (denoted ‘!’) as well as conjunction.
The resulting constraint satisfiability problems are known as dis-unification problems,
see e.g. [0], so I will talk of dis-unification or DU constraints.

4 This might be enforced through a regularity condition that forbids the application of a rule that
would lead to variant formulae on one of the extended branches.



A little care has to be taken with the semantics of DU constraints: Some DU con-
straints that are not satisfiable in the current signature might become satisfiable when
the signature is extended. E.g., ! X = a, is not satisfiable in a signature consisting
only of the constant symbol a, but it is satisfiable in any extended signature. In our
context, satisfiability should be considered with respect to a possibly extended signa-
ture, because new skolem symbols might be introduced at a later point. In practice,
it turns out that the satisfiability and subsumption checks actually get simpler with
this definition. The same effect for term ordering constraints was noted in [12].

Using DU constraints, the simplification rule can be reformulated as follows:

p<D 77 <D
() [u(¢)] < (C& D& ¢ =¢)

where £ is a simplifiable subformula of 1,
1 is a mgu of £ and ¢,
and C & D & ¢ = € is satisfiable

In addition, we allow formulae with unsatisfiable constraints to be discarded. One
easily checks, that this makes it possible to discard i at least in all those cases, where
simp®! allows it.

The example above now becomes

:p(a) 1:p(a)
2 q(a) ~ 2:q(a)
3:p(X ) —q(X) Vr(X) 3:p(X)VyX)vr(X)< !X =a
4:-q(a)Vria) < X =a

The constraint ! X = a now prevents the simplification of 3 with 2. Simplification of
4 with 2 gives a new constraint of X = a & ! X = a for 4, which is unsatisfiable, so 4
can be discarded after adding the literal 7(a) < X = a

Theorems [2| and |3] also hold for the simp®® rule. The principal drawback of this
variant is the high complexity of dis-unification. As a compromise, it is possible to
keep unification (U) and dis-unification (DU) parts of constraints separate and to
weaken the DU part of constraints if convenient. The unification part has to be left
alone, as it is relevant for soundness. The DU part only serves to reduce the necessary
proof search, so it may be thrown away without losing correctness.

One possible approach consists in restricting oneself to constraints of the form
Co&!C1&!Cy. .., where the C; are conjunctive unification constraints as in Sec.
Here, Cj is the U part and ! C7 & ! Cs . .. the DU part of the constraint. The DU part
of the constraint of a formula is discarded before it is used to simplify another one,
in order to maintain this form for all constraints. Satisfiability and subsumption (for
possibly extended signatures) are fairly easy to check for these constraints.

3 Using Universal Variables

In practice, the simplification rules as outlined above tend to require a lot of instances
of y-formulae. E.g., given the formulae {p(a),p(b),p(c),Vz.=p(x) V q(z)}, one can
produce after one v expansion the literals ¢(a) < X = a, ¢(b) < X = b, and



q(c) < X = c. But these literals have mutually contradictory constraints, so any
further rule application or closure can involve at most one of these literals. One needs
three instances of the v formula to produce the compatible literals ¢(a) < X1 = a,
q(b) < X9 = b, and ¢(c) € X3 = c. But with three instances, not only these three
useful literals are deducible, but a total of nine ¢-literals coming from the simplification
of each instance —p(X;) V ¢(X;) with each of the three p-literals. As all of these will
subsequently be used to simplify any g-subformula on the branch, this can quickly
lead to a huge (though finite) number of rule applications.

One way to reduce the number of distinct instances of v formulae is to use universal
variables, see e.g. [4]E| A free variable x is called universal with respect to a formula
¢ on a tableau branch, if Vz.¢ is a logical consequence of the formulae on a branch.
All other free variables are called rigid. This property is of course undecidable. In
practice, one uses simple sufficient criteria to detect universality of free variables,
the most common one being to flag all free variables introduced in a ~ extension
as universal, and to preserve universality through all non-splitting rule applications.
After a (8 rule application, those free variables which occur on more than one of
the subformulae become rigid. The benefit of universal variables is that they may
be instantiated independently for all formulae and may also be renamed as needed,
whereas rigid variables have to be instantiated identically on all branches.

I shall write [X]¢ < C for a constrained formula with universal variables X. Using
universal variables, the following derivation is possible:

p(a) p(a)
p(b) p(b)
p(C) 3IXsimp p(C
Vz.—p(z) V q(z) ~ Vz.—p(z) V q(z)
[X]-p(X) Vq(X) (X]-p(X)VgX) <! X =a&! X =0&! X =¢

[X]g(a) < X =a
(X]¢(b) < X =b
[X]g(c) x X =¢

The resulting literals are no longer incompatible, because X may be instantiated
differently for each of them. It is of course possible to eliminate the universal variable
and constraint altogether in these literals, but that is a technical optimization which
is not strictly necessary.

Formally, in a simplification, all free variables in the result that were universal in
one of the original formulae may be flagged as universal in the result:

Yip<D 77 o [Y]¢p < D
(X UY]u()[ue)] < (C& D& ¢ =)

where £ is a simplifiable ﬁ subformula of 1,
w1 is a mgu of & and ¢,
and C & D & ¢ = € is satisfiable

® They have been used to solve a similar problem in equality handling in [3].
5 The ‘simplifiable subformula’ condition could be relaxed to permit, e.g. the simplification of Jy.p(y)
with [X].p(X), but this becomes rather technical, so we won’t do it in this paper.



This rule is sound and complete for the free-variable tableau calculus with uni-
versal variables, but there is a difficulty with the finiteness property. To get the full
power out of this rule, it is necessary to rename universal variables in the original
formulae to make them disjoint. But this renaming destroys finiteness. Consider for
instance the formulae p(a) and [X]-p(X)Vp(f(X)). With simplification and renaming
of universal variables, it is possible to consecutively deduce

[(Xi1].p(f(a) < X1=a
[X1, Xo].p(f(f(a) < X1 =a& X2 = f(a)
(X1, Xo, X3].p(f(f(f(a) < X1 =a& X2 = f(a) & X3 = [(f(a))

etc.

This means, that in general simplification and ~ instantiation need to be interleaved to
retain fairness. As the simp®" rule without renaming obviously enjoys the finiteness
property, one might alternatively interleave renaming and ~ instantiation, but that
would amount to ignoring universality for most of the time.

There are problems, like e.g. Schubert’s Steamroller [14], or the ‘Natural Language’
problems submitted to this FTP Workshopﬂ in which simplification with universal
variables actually always terminates. To handle these cases efficiently, it is advisable
to equip a proof procedure with some sort of cycle detection, that only interleaves
simplifier applications with ~ rules, if they threaten to lead to infinite simplification
sequences. One possibility is to set a limit to the size of inferred formulae, which
can be incrementally increased as -y rules are applied. This would always allow rule
applications which really simplify a formula in the sense of making it smallerﬁ

4 Experimental Results

PrInS is a theorem prover implemented in the Java programming language. It uses a
simplification rule with universal variables, but only uses unification constraints. Like
leanTAP, it works on formulae in negation normal form (NNF) for simplicity, but it
would be easy to extend it to non-normal form tableaux. To avoid redundancy, it uses
a NNF variant of positive hyper-tableaux:

Only positive literals are used for simplification.

— Only negative literal subformulae of §-formulae are simplified, and only those
negative literals which are leftmost on a disjunctive path.

— For the sake of simplicity, simplification is not performed below quantifiers.

(8 expansion is only performed on formulae with at least one disjunctive path that
contains only positive literals or quantified formulae.
— (3 applications not needed for a closure are pruned, see e.g. [42].

Instantiation of rigid variables is handled by a backtracking-free process outlined in
[9]. No equality handling is built in, so the standard axiomatization is used, which
leads to poor performance on equality problems.

" See http://www.uni-koblenz.de/ftp00/ProblemSets/

8 Another possibility might be to force interleaving on simplifications in which a formula is used to
simplify one of its own ancestors, but the author is not sure whether this condition guarantees
finiteness in all cases.



Running on a 440 MHz Sun SPARC Ultra 10 with JDK 1.2, PrInS can prove,
resp. disprove all of the ‘johan’ problems in the FTP’00 ‘Natural Language’ set in a
total of 4.0 CPU seconds. Of the 97 problems in the ‘Mathematics’ set, 68 are proven
and 2 disproven with a time limit of 15 seconds per problem.

Schubert’s Steamroller in the TPTP PUZ031+41 formulation is solved in 0.6 sec-
onds. Of the 73 Pelletier problems in the TPTP collection (FOF formulations were
taken where available), 63 are solved in 2.3 seconds. The size 8 pigeonhole problem,
MSCO007-1.008, is solved in 85 seconds. The ones not solved are mainly from the GRP
and LCL categories.

To our knowledge, comparable results have not previously been achieved with a
non-clausal tableaux prover.

5 Conclusion

Several possibilities for a first-order version of the simplification rule of Massacci
[TOUIT] were presented. Instead of globally applying unifying substitutions, syntactic
constraints are used. Besides soundness and completeness, a finiteness property is
discussed, which is important for the design of fair proof procedures. Experimental
results are quoted, which show that an efficient proof procedure can be implemented
using non-clausal tableaux with a simplification rule.

Further work includes the refinement of cyclicity tests and development of more
goal-oriented simplification strategies than the currently implemented hyper-tableaux
variant.
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