
Position Paper: Proof Search without Backtracking
using Instance Streams

Martin Giese

Institut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe, Germany

giese@ira.uka.de

Most existing automated proof procedures using free-variable analytic tableaux
require iterative deepening and backtracking to guarantee completeness.

The general process for closing a proof with, e.g., two branches consists in first
searching an instantiation for the (rigid) free variables that permits closure of one of
the branches. A corresponding substitution is then applied to the tableau, and a proof
of the second branch is attempted. If the instantiation chosen for the first branch was
not right, proof search on the second branch will proceed up to the current iterative
deepening bound and fail. Any information about the work done on the second branch
is then discarded. A second way to close the first branch is sought, and the process is
repeated.

Unless restrictions, like e.g. the connectedness condition, make possible rule ap-
plications strongly dependent on the applied instantiations, a significant amount of
the work done on the second branch has to be repeated again and again: Apart from
instantiation of some of the free variables, the formulae on the second branch are
always the same, so the possible rule applications also repeat themselves. This can
mean a significant amount of duplicated work.

From an abstract point of view, proof search with backtracking is a way of enu-
merating proof attempts. First-order validity being only semi-decidable, it is clear
that proof search must rely on some sort of enumeration. But it would be nice to
organize this enumeration in a way that leads to less duplicated work.

Instance Streams are a way of organizing the search for instances which close a
proof. The basic idea is as follows: To close a proof with two branches, one needs
to find an instantiation for the free variables, that allows to close both of them. So
one first expands the first branch, until a closing instance is found. Then, one does
the same for the second branch. If these two instances are compatible, they may be
joined to give an instance that closes both branches simultaneously. Otherwise, the
first two instances are remembered, and further instances closing each of the two
branches are sought, by expanding them if necessary. Each instance that closes one
branch is checked for compatibility with all of the instances that have been found for
the other one. As soon as two of these instances are compatible, the joint instance
closes both branches simultaneously. This process is applied recursively, if one of the
two branches splits further. No backtracking, and no iterative deepening are needed.

The name ‘Instance Stream’ refers to the view that a refutation procedure takes
an open branch as argument and returns a stream — also known as lazy list — of
instances closing this branch. This means that elements of the stream are calculated
only by need.

Here is a rough sketch of a leanTAP -like function ‘refute’, that takes a set M of
formulae in negation normal form and returns a stream of instances, i.e. a list of



substitutions for free variables occurring in M , under which M can be refuted. If the
initial formula set is unsatisfiable, refute returns a non-empty stream.

refute( {α1 ∧ α2} ∪M ) = refute( {α1, α2} ∪M )
refute( {β1 ∨ β2} ∪M ) = merge( refute( {β1} ∪M ), refute( {β2} ∪M ) )
refute( {∀x.γ1} ∪M ) = refute( {γ1[x/X],∀x.γ1} ∪M) |FreeVars({∀x.γ1}∪M)

refute( {L,¬L′} ∪M ) = first mgu(L,L′), if it exists,
followed by refute( {L,¬L′} ∪M )
– – ( only once for each pair of literals )

An auxiliary function ‘merge’ is used, which makes a new instance stream out of two
given ones, by trying to join each of the instances in one with each of the instances
in the other. This is most easily described in a more operational fashion:

merge( s0, s1 ) =
set up buffers P0 and P1 for sets of instances
While s0 and s1 are not both empty,

fetch an instance I from sk, k ∈ {0, 1} (fairly/alternatingly).
Pk := Pk ∪ {I}
For all J ∈ P1−k,

If J is compatible with I
write join(I, J) to the output stream.

Note, however, that merge is to be implemented in a way, that ensures its lazy oper-
ation, i.e. no calculation is performed unless an instance is actually required from the
output stream.

The author has implemented this concept in a prototypical prover named ‘PrInS’.
PrInS is written in the Java Programming Language, and besides instance streams
uses a first-order simplification rule with constraints described in [4]. Some promising
first experimental results are also given there.

Current research concerns the adaptation of refinements such as pruning, regular-
ity, etc. (see e.g. [3]) to the Instance Stream approach. The effectiveness of various
refinements in combination with Instance Streams will have to be evaluated. Efficient
data structures, e.g. for representing the buffers Pi are also a central issue. Related
work like that of Baumgartner [1] and Beckert [2] will have to be compared to the
presented approach.

Acknowledgements: I am grateful to Reiner Hähnle, Elmar Habermalz, Bernhard
Beckert and Wolfgang Ahrendt for comments on drafts of this paper.

References

1. P. Baumgartner. FDPLL – a First-Order Davis-Putnam-Logeman-Loveland Procedure. In
D. McAllester, editor, Automated Deduction, CADE-17, LNAI. Springer, 2000.

2. Bernhard Beckert. Depth-first proof search without backtracking for free variable clausal tableaux.
In Proc. Int. Workshop on First-Order Theorem Proving, St. Andrews, Scotland, 2000. Available
online at http://i12www.ira.uka.de/˜key/doc/2000/beckert00a.ps.gz.

3. Bernhard Beckert and Reiner Hähnle. Analytic tableaux. In W. Bibel and P. Schmitt, editors,
Automated Deduction: A Basis for Applications, volume I, chapter 1, pages 11–41. Kluwer, 1998.

4. Martin Giese. A first-order simplification rule with constraints. In Proc. Int. Work-
shop on First-Order Theorem Proving, St. Andrews, Scotland, 2000. Available online at
http://i12www.ira.uka.de/˜key/doc/2000/giese00a.ps.gz.

http://i12www.ira.uka.de/~key/doc/2000/beckert00a.ps.gz
http://i12www.ira.uka.de/~key/doc/2000/giese00a.ps.gz

