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Abstract

We analysethe problemof constructinga deterministic
proof procedue for freevariable clausaltableauxthat per
forms depth-fist proof seach without badtracking; and
we presenta solution basedon a fairnessstrategy. That
strategy usesweightorderingsanda notionof tableausub-
sumptionto avoid proof cyclesand it employsreconstruc-
tion stepsto handlethe destructivenessf freevariablecal-
culi.

1 Intr oduction

In this paper we analysethe problemof constructinga
deterministicproof procedureor free variabletableaucal-
culi that performsdepth-firstproof searchandis complete
withoutbacktracking As anexample ,we presentisolution
for first-orderclausaltableauxthatis basedon a fairness
stratgy. That stratgy usesweightorderingsanda notion
of tableausubsumptiomo avoid proofcyclesandit emplgys
reconstructiorstepso handlethedestructvenes®f clausal
tableaux.

First-orderclausaltableauxare proof-confluenti.e., ev-
erytableaufor anunsatisfiablelausesetcanbe completed
to a proof. They are, however, a destructivecalculusbe-
causeall occurrencesf a (free) variablein a tableauhave
to be instantiatedby the sameterm and, thus,a rule appli-
cationcanmake anotherule applicationimpossible.

Theproofsearctspacecanbevisualisedasasearchtree
whereeachpossiblechoiceof the next rule applicationto
atableauxT” createsa nodewith asmary successonodes
asT hasdifferentsuccessotableaux(Fig. 1). Sincewe use
aproof-confluentalculus all pathareeitherinfinite or end
in anodethatis labelledwith a proof,i.e.,aclosedtableau.

Therearetwo main conceptdor proof search:breadth

Figure 1. A proof search tree.

first anddepth-fist search.Depth-firstsearchrequiresthat
eithertherearenopathsn thesearchreethatdonotcontain
proofsor it is possibleto avoid suchpathsusing fairness
stratgyiesfor the constructiorof tableaux.

As fairnessstratayies that allow depth-firstsearchare
difficult to constructfor first-orderclausaltableaux,most
automatedieductiorsystemausebreadth-firssearchlt al-
lows to find shorterproofsthandepth-firstsearchbecause
all pathsof the searchtree are consideredvhereasusing
depth-firstsearchpathsin the searchtreethatcontainshort
proofs may be missed;fairnessstratgies only guarantee
thatsomeproofis foundbut it maynotbethe shortesbne.
However, the lengthof found proofsis not of greatimpor-
tancein automateddeduction(the only advantageof short
proofsis thattheir constructionrequireslessrule applica-
tions and are thus easierto find); and breadth-firstsearch
is “expensve” as comparedto depth-firstsearchbecause
neighbouringpathsin the searchtree containmary simi-
lar or evenidenticaltableauxthatusingbreadth-firssearch
all haveto beconsidered.

For all (practical)completionmodes,i.e., (monotonic)
functionsm from N to setsof tableauxsuchthat( J; . m (i)
includesall constructibletableaux,the size [m(i)| of the
searchtree grows exponentiallyin 7. Evenfor small s, it
is usually not possibleto storeall tableauxin m(4) in the
memoryof a machine. Therefore,mostimplementations
usedepth-fistiterative deepenindDFID). Theinitial, par
tial searchspaceconsistingof all the tableauxin M (i) =
U;<; m(j) for somei € Nis searchedor proofsin adepth-
first mannerusing backtracking,andif it turns out not to
containa proof, theni is increasedfor example,the proof
proceduredescribedn [4] is of this type). Then,however,
the tableauxin M (i) arenot availablefor the construction
of the tableauxin M (i + 1); they have to be constructed
againfrom scratch,which, however, merely causesoly-
nomial overheadas comparedto a breadth-firstsearchat
the“right” level i becausé (i + 1) is exponentiallylarger
thanM (7). AlthoughDFID searcHeadsto acceptablger
formanceof tableau-basedutomatedheoremprovers, it
shouldbe stressedhatit is only a compromisausedwhen
no completenespreservingairnessstratayy for depth-first
searchs available.

The advantageof depth-firstproof searchis thatthe in-
formationrepresentetly theconstructedableauxncreases
at eachproof step; no informationis lost sincethereis no
backtracking.In addition, consideringsimilar tableauxor



sequencesf tableauxn differentpathsof thesearchreeis
avoided.

Figure 2 shavs how the differentsearchstratagjiestra-
versethesearctspace Thecolouredparthasto besearched
beforea proofis found. Theform of the searchspacevisu-
alisesits exponentialgrowth.

In the caseof non-destructiveand proof-confluentta-
bleaucalculi—suchasthe groundversionof first-orderta-
bleauxthatdoesnot usefreevariables—itis relatively easy
to usedepth-firstproof search;it sufficesto systematically
add all possibleconclusionauntil all branchesof the con-
structedableawareeitherfully expandedr closed.Thesit-
uationis muchmorecomplicatedn freevariableclausata-
bleaucalculi, which aredestructive(evenif they areproof-
confluent). Applying a substitutionmay destry literalson
atableauthatareneededor the proof, suchthatthey have
to bededucedhgain.

Up to now therewasno practicalsolutionto the problem
of constructingadeterministiqroof procedurdor freevari-
able clausegableauxthat performsdepth-firstsearchand
is complete,i.e., that never fails to find a proof if thereis
one.Suchproceduresvereonly known for the specialcase
wheretableauxareexpandedvithoutinstantiatingvariables
andonly asinglesubstitutioris finally appliedthatis known
to allow to closeall branchessimultaneously Solving a
similar problem,Baumgartneet al. [1] recentlydescribed
adepth-firstproof procedurdor a connectiorcalculus

We proposein this papera deterministicsearchstrateyy
thatis basedupon:

e A tableausubsumptiorrelationto detect“cycles” in
the search(i.e., to make surethat it is not possible
to deducethe sameliterals or sub-tableawagainand
again).

o \\eightorderingsthatassigneachliteral a “weight” in
sucha way thatthereareonly finitely mary different
literals (up to variablerenaming)of a certainweight;
thus, if literals with lesserweight are deducedfirst,
thensooneror later eachpossibleconclusionis added
to all brancheontainingits premiss.

e Reconstructiorstepsto handlethe destructvenessof
freevariableclausaltableaux.immediatelyafterarule
applicationthatdestrgsliterals,the constructiorsteps
thatareneededo recreatehe destrgyed sub-tableaux
areexecuted.

The main difficulty is to definea tableausubsumption
relationthat on the onehandis restrictve enoughto avoid
cyclesin theproofconstructiorandontheotherhandis not
toorestrictive suchthatcompletenesis presered.

Our fairnessstratgy considersthe whole tableautree
(and not only a single branch)both for the subsumption
checkandfor choosinga conclusionof minimal weight; a
procedurebasedon this strategyy may extendany branchof
atableauat ary time. Note thatthis doesnotimply alarge
memoryconsumption;at leastit is not worsethanthat of
proof stratgjieswherea “current” branchis extendeduntil
it is closedbeforeotherbranchesreconsiderecandwhere
DFID-basedreadth-firssearchs usedto ensurecomplete-

nessasin thatcaseall closedbranchesaveto be storedfor
backtracking.

As said above, no practical deterministicproof proce-
duresfor free variableclausaltableauxwere known up to
now. Thereis trivially a (non-practicaldeterministigproof
procedurefor all proof-confluentcalculi, namelya proce-
dure performinga breadth-fist searchin the background.
“Practical” meanghatthe computationatomplexity of de-
ciding whatthe next rule applicationshouldbein eachsit-
uationhasto bereasonabljyow. In addition,the numberof
constructionstepsthatare necessaryo find a proof hasto
be reasonablysmall as comparedo the numberof neces-
sarystepswhena breadth-firssearchstratey is used.

If the fairnessstratgyy we presentin the following sec-
tionsis usedthenthecompleity of decidingwhatthe next
expansionstepshouldbeis in the worst casequadraticin
the sizeof thetableauto be expandedandits possiblesuc-
cessotableaux.In theaveragecasethe complexity is much
lower asonly thosepartsof atableauhave to be considered
that are affectedby one of the possibletableaurule appli-
cations.The sizeof the proofsthatarefound (andthusthe
numberof constructionsteps)is at mostthat of the proofs
constructedisingDFID in theworstcase(i.e.,if coinciden-
tally all pathsin the searchtree not containinga proof are
consideredirst).

The structureof the paperis asfollows: In Section2, we
describehe calculusof clausaftableaux.After introducing
our notion of tableausubsumptiorin Section3 andthat of
weightorderingsin Section4, our methodfor constructing
deterministicproof proceduredor free variableclausalta-
bleauxis presentedn Section5.

Dueto spaceestrictionsall proofsareomitted;they can
befoundin [2].

2 First-order Clausal Tableaux

The notionsof freeandboundvariable, term, atom lit-
eral, and substitutionare definedasusual. We usex, y, z
etc. to denotequantifiedvariablesand X, Y, Z etc.to de-
note free variables. The logical constantsT (true) and L
(false)are consideredo be literals (but not atoms). The
complemeniof a literal L is denotedwith L. A variable
renamings asubstitutionthatreplacesall variablesby dis-
tinct variablesthatare“new” w.r.t. the context.

A clauseC is afirst-orderformulaof theform

(Vz1) -+ - (Vo) (L1 V- -+ V L)

wherethe L; areliteralsand z,...,z, areall variables
occurringin Lq,....L,. A new instanceof C is aformula
(Ly V ---V L;)o whereo is avariablerenaming.

We usetheweakconnectednesonditionwhereaclause
usedfor expansionmusthave a link into the branchbeing
expanded(the strong connectednessondition, wherethe
clausemustbe linkedto the leaf of the branch,is not used
asit destrgs proof confluence).

A clausaltableaufor a setS of clausess built by a se-
guenceof applicationsof the following constructiorrules.
Eachrule hasa premiss(a setof literals) anda conclusion
(consistingof a setof literalsanda substitution).
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Figure 2. Comparison of proof search strategies.

Initialisation: If Ly V...V L, isanew instanceof aclau-
sein S, thenthe treeis a tableaufor S that consists
of therootnodeT andr sub-branchewith the single
nodesL,, ..., L,. (In this case the premissis empty
andtheconclusionis ({Ly, ..., L,},id).)

Expansion: If T is a tableaufor S, B is a branchof T,
Lis aliteralon B, L1 V---V L, is a new instance
of a clausein S, and L, L; are unifiable (for some
1 < j <r), thenatableauT” is atableaufor S if ob-
tainedby extending B with » nodesL,...,L,. (In
this case,the premissis {L} and the conclusionis

{L1,...,Lp},4d),)

Closure: If T is atableaufor S, B is abranchof T', L, I’
areliteralson B, and L, L' areunifiablewith MGU o,
thenT' is atableaufor S if obtainedby appendingL
to B andapplyingo to eachnodeof T'. (In this case,
thepremisss {L, L'} andtheconclusioris ({ L },0).)

Note,thatabranchis closedby addingthespecialliteral L;
therefore branchclosurecanbe consideredo be a special
kind of branchexpansion.

A tableauT is closedif all its branchesareclosed,i.e.,
contain L. A tableauproof for (the unsatisfiabilityof) a
clausesetS is atableaufor S thatis closed.

Clausaltableauxas definedabove are a completeand
proof-confluentalculus.

We usea slightly non-standardefinitionof thenotionof
successotableau:A tableaul” is a successotableauof a
tableadr if it is constructedrom 7' by oneor more “iden-
tical” rule applicationsj.e., thereare(1) differentbranches
By,...,B, (n>1)of T, (2) premissedI; onthe B; that
areidenticalup to variablerenaming(3) a (single)conclu-
sion(C, o) suchthatIl;c =ILjo (1 <4,j <n), andT” is
constructedrom T by extendingeachof the branchesB;
with theliteralsin C andapplyingthe substitutiorns to 7.

3 TableauSubsumptionRelation

Assumethata sequencdt, ..., T, of tableauxhasal-
readybeenconstructedA rule applicationto 7, is forbid-
denif thesuccessotableaul’, 1 is subsumetby oneof the
predecessdableauxI’;—in particulay if 75,44 is subsumed
by T;,. In thatcasethesequencdy, ..., T, constitutes
acycle in the proof searchbecausd’, ;; doesnot contain
ary informationthatis notalreadyin T;.

We definea tableauT; to subsumea tableauT,; iff
eachbranchof T; subsume®neof the branchesof T;, ;.
Intuitively, the tableauT’,: is in that caseredundante-
cause|f closedsub-tableauxanbe constructecbelow all
branchesof T;,11, it is possibleto constructclosedsub-
tableauxbelow all branche®f T; aseachof themsubsumes
abranchof T}, 4.

When doesa tableaubranch subsumeanotherbranch?
A first approximateanswerto thatquestionis: A branchB
subsumesabranchB'’ if B containsavariantof eachliteral
occurringon B'. That, however, is an over-simplification;
threeadditionalaspect$iave to betakeninto concern.

First additional aspect. For a branchB to subsumea

branchB’, it isin generahotsufiicientif thebranchB con-

tainsonevariantof eachliteral L occurringin B', namelyin

caseB’ containstwo variantsof L thatareall bothneeded
to closethebranch.However, sincethe premissfor asingle
rule applicationcontainsat mosttwo literals, it is sufficient

if B containsa variantof eachsetof (at most)two liter-

alsoccurringon B’. Thisimpliesthatat mosttwo variants
of eachliteral on B’ areneededn B (wherehowever, as
describedbelow, literals may have to be consideredo be
effectively differentalthoughthey arevariantsof eachother
onfirst sight).

Examplel. If the literals —p(X), p(f(X)), -p(X'), and
p(f(X")) occuron B’ whereaghebranchB only contains



-p(X) andp(f(X)) (and B and B’ are otherwiseidenti-
cal),then B containsa variantof eachliteral on B’. Never-
thelessthetransitionfrom B to B’ is definitelynotacycle
in proofsearctbecause—contratyp B—thebranchB’ can
beclosed.

Secondadditional aspect. The secondimportantaspect
is thatnot only theliteralson B and B’ have to be consid-
eredbut alsoassociatediteralson otherbrancheshathave

freevariablesin commonwith B andB’.

Definition 1. Literals L and L' areassociatedf thereis a
variableoccurringin both L and L'. The setof all literals
in atableauT thatareassociatedvith aliteral L, exclud-
ing L itself, is denotedwith Assoc(T, L). Accordingly, if
® is a setof literals, then Assoc(T, ®) is the variableset
(Ures Assoc(T, L)) \ ®.

Associatediterals play a role becausehe ordering of
tableaurule applicationsusedby a deterministicproof pro-
cedureasdescribedn Section5 hasto take all literalsinto
accountthat aregeneratedy an application. So, if L(X)
is a premissfor a certaintableaurule applicationthatleads
to the instantiationof X with a term ¢ andthereis a lit-
eral L'(X) onthetableauthenthatapplicationwill gener
atethe new literal L'(t); andthe form of L'(t)—andthus
theform of theassociatediteral L' (X )—affectsthechoice
of theapplication.

Third additional aspect. As saidabove,atableaul” sub-
sumesa tableauT" if for eachbranchB in T thereis a
branchB’ in T! suchthat B subsume®’. Thatincludesthe
possibility thattwo differentbranchesB,; and B, of T are
assignedhe samebranchB’. In thatcasethereis for each
setd’ (of at mosttwo literalson B’) aliteral set®; on B;
andalliteral set®, on B, thatarevariantsof ®'. Thebasic
ideabehindthe definition of our subsumptiorrelationim-
pliesthatevery possiblerule applicationon branchB’ with
thepremissd’ canaswell beapplied—simultaneously—on
thebranchesubsumingB’ with thepremisse®; resp.®,.
That, however, requiresthe two variable renamingscon-
structing®’ from ®; resp.®, to be compatible.The same
holdsif B’ is assignedo morethantwo branchen T'.

Formal definition of the subsumptionrelation. Wenow
formally defineour tableausubsumptiomelation. It is tran-
sitive undreflexive.

Definition 2. Let T" andT" be tableauxthat do not have
ary variablesin common. The tableaul’ subsumeshe ta-
bleauT" if

i. eachbranchB of T' canbeassigned branchB’ of T"

ii. andthen—foreachpair B, B’ respectiely—eachset
&’ of atmosttwo literalson B’ canbe assigneda set
& of literals B andavariablerenamingr

suchthat:

1. Thefollowing holdsfor eachof the ®, &' andr:

(a) o7 = @';

(b) for eachof the literals L in Assoc(T, ®) there
is (at least)oneliteral L' in Assoc(T",®') such
that L7 and L' areidenticalup the renamingof
variablesnot occurringin ®x resp.®’.

2. If abranchB’ of T is assignedo differentbranches
By,...,B, of T (s> 2), then,for all  on B’, the
variablerenamingsry, . .., w5 assignedo @' in con-
nectionwith By, ..., B, arecompatiblein thefollow-
ing way: thereis a substitutionr suchthattherestric-
tion of = tothevariablesoccurringin ® U Assoc(T, @)
isidenticalto; (1 < i < s).

Now, letT andT"” betableauxhathavevariablesn com-
mon;andlet p be avariablerenamingsuchthatT undT"p
donothaveary variablesn common.Then,T subsume$”
iff T subsumeq” p.

If atableadl” subsumesatableadl”, theneachbranchB
of T is assigneda branchB' of T". In that case,we say
that B subsume®’.

Completenessf clausaltableauxis preseredif theta-
bleausubsumptiomelationis usedfor restrictingthesearch
spaceGivenapartialproofTy, . . ., T; it is forbiddento de-
rive a successotableauT’;; from T; thatis subsumedy
ary of thetableauTy, ..., T;. Onthe otherhand,this re-
strictionis strongenoughto ensurethat every sequencef
tableauxbuilt accordingly i.e., every tableausequencaot
containingatableatthatis subsumedby oneof its predeces-
sors,hasthefollowing property:If the sequencés infinite,
thenit containsinfinitely mary differentliterals or, equva-
lently, if thesequenc®nly containsfinitely mary different
literals (up to the renamingof variablesXhenit is finite.

To checkwhethera tableaul’ subsume®neof its suc-
cessortableauxT” and,thus, whetherthe rule application
deriving T" from T is allowed, it is sufficient to only con-
siderthosepartsof the tableauxthat are affected, i.e., the
expandedoranchandthe formulaeon the tableauxthatare
associateavith it. The checkdoesnot involve unifiability
testsbecausdree variablesmay only be renamedbut not
instantiatedvith terms.

Example2. Let® = {p(X)} and®’ = {p(X")}; moreorer
let Assoc(T, ®) consistof ¢(X, Y1) andg(X,Ys). Then,
Condition 1 (a) in Definition 2 is, for example, satisfied
if Assoc(T',®") = {q(X',Y")}. Butit is neithersatisfied
if Assoc(T',®") =0 norif Assoc(T',®') = {q(Y',X")}
(becauseo make (X', Y1) andg(Y’, X') identicalwould
requireto renamehevariable X’ thatoccursin @',

Example8. The tableauT; in Figure 3 subsumegachof
thetableauly, T}, T;. Thetableaul> subsumesnly T7.

Examplet. Neither of the two tableauxin Figure 4 sub-
sumesthe otherone. The tableauT; on the left doesnot
subsumethe tableauT; on the right becausehe (single)
branchof T> containsanadditionalliteral; and,althougha
variantof eachliteral setonT; occursonT5, thetableaul,
doesnot subsumel; sincefor r(X') € Assoc(T2,q(X"))
thereis no correspondinglementn Assoc(T1, (X)) and,
thus,Condition1 (a) in Definition 2 is not satisfied.
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Figure 3. The tableaux from Example 3.
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Figure 5. The tableaux from Example 5.

Exampleb. Thetableaul; in Figure5 ontheleft subsumes
the tableauT> on theright. But 7> doesnot subsumer;
becausehe literals p(X') andg(X') in T> areassociated,
whereaghe correspondingjteralsin 77 arenotassociated.

Indeed,a transitionfrom 7> to 77 doesnot constitutea
cycle in proof searchbecausehe tableaul’; canbeclosed
whereadl; cannotbeclosed.

Exampleb. Thetableaul in Figure6 ontheupperleft does
notsubsumehetableaul” ontheright. Thatwouldonly be
possibleif the branchesB;, B, of T' would both subsume
the single branchof T’. Both B; and B, containa vari-
ant p(X,Y) resp.p(Y, X) of the (single) literal p(U, V)
on the branchof T'. But the requiredvariablerenamings
{X—»U,Y>V}and{X —V,Y — U} arenot com-
patible,which violatesCondition1 (a) in the definition of
the subsumptionelation(Def. 2).

This problemdoesnot occurwith the tableaushavn in
Figure 6 on the lower left. It subsumes” becausehe
two requiredvariablerenamings{X; — U, ¥; — V} and
{X2 U, Yy — V} arecompatible.

Exampler. Considerthe tableauT; shavn on the left in
Figure7. Therule applicationthat derivesthe conclusion
({L}, id) from the premiss{—p,p} canbe usedto close
bothof its branches Closingthe tableaurequirestwo con-
secutve applications. However, the intermediatetableau
that resultsfrom closing the left branch(in the middle of
Figure7) is subsumedy T; becauséoth branchesf T;
subsumehe right (not yet expanded)ranchof 7. Thus,
this first rule applicationis not allowed. The tableauTs,
however, thatresultsfrom closingbothbranchegshown in
theright in Figure7) is neithersubsumedby 75 nor by T} .

/
p(X,Y) p(Y,X) T

p(U,V)
RN
p(Xlayi) p(X27}/é)

Figure 6. Tableaux from Example 6.
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Figure 7. Tableau from Example 7.

Indeed,sinceboth rule applicationsusethe samepremiss
andconclusion T3 is by definitionasuccessatableawf Ty
(withoutconsideringheintermediatestep),andderiving T3
from T is anallowedrule application.

ExampleB. An importanttypeof tableauconstructiorsteps
thatgeneratatableaul” subsumedby it predecessdF and
thatare,thereforeforbidden,is thefollowing: Assumethat
a branchB; of T is extendedusing a conclusion{C, ¢),
anda branchB)o in the resultingtableauT” is subsumed
by all branchesB of T' affectedby therule applicationj.e.,
the branchB; (which is extended)andall otherbranches
containingvariablesthat are instantiatedby ¢. Thisis in
particularthe caseif Bjo is “contained”in aninitial sub-
branchR, of T' thatendsabove thefirst occurrenceof ary
freevariablein thedomainof o.

As an example considerthe tableauT shown in Fig-
ure 8 on the left, andassumehatits branchB; is closed
using the premissconsistingof the two literals p(a) and
p(X) to derive the conclusion({_L}, {X +— a}). Theright
branchB/o of theresultingtableauT” (shavn in Figure8
ontheright) whosenodesarelabelledwith theliterals p(a)
andtwice g(a) is “contained”in the sub-branchR, of T
whosenodesarelabelledwith p(a) andg(a); and Ry ends
abovethefirst occurrencef X in T whichis theonly vari-
ableinstantiatedy o. Intuitively, the applicationis useless
becauseary closedsub-tableauhatcanbe constructede-
low Bjo canbeconstructechswell belov both B; and Bs.

A forbiddenrule applicationasdescribedaboveis irreg-
ular accordingto the definition of regularity thatis usually
givenin the literature(e.g.[3]) sincethe branchB}c con-
tainsthe samebranchextensionmultiply.

4 Weight Orderings

Weight orderingsarethe secondmportantconcept(be-
sidesheconcepbf tableausubsumptionpnwhichourfair-
nessstratgy is based Thepropertiesanorderingon literals
for ensuringfairnessnusthave are: (1) It is awell-ordering
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Figure 8. Tableaux from Example 8.

onthesetof literals (up to renamingof freevariables)j.e.,
it is well-foundedandthereare only finitely mary literals
thatareincomparabldo agivenliteral. (2) Properinstances
of aliteral L have a higherweightthan L. (3) Literalsthat
areidenticalup to variablerenaminghave the sameweight.
Intuitively, thesearetypical propertiesof orderingson liter-
alsthataredefinedby assigninga “weight” to the symbols
of asignaturgwhichis why we call themweightorderings).

A weightorderingis extendedo setsof literalsby com-
paringthe maximalweightof theliteralsthey contain.This
extensionis a well-orderingaswell, providedthe setsthat
arecomparedareonly allowedto containa certainnumber
of variantsof eachliteral.

5 Deterministic Proof Proceduresfor Clausal
Tableaux

In this section we definea (classof) completedetermin-
istic proof procedure(shor clausaltableauxghis proof pro-
cedurecanbe usedto performdepth-firstsearchfor proofs
without backtracking. It is constructedusing the notions
of subsumptiorandweight orderingsasdescribedn Sec-
tions3 and4.

To ensurethat a deterministicproof procedures com-
plete,i.e., a proofis foundif thereis one,we demandhat
the constructedequencef tableauxsatisfieghe following
two conditions: (1) The creationof a tableauthatis sub-
sumedby oneof its predecessoris forbidden. (2) At each
step,from all possiblerule applicationsnot violating Con-
dition (1), anapplicationis choserthat createsa successor
tableaun whichthemaximalweightof literalsis assmallas
possible(i.e., successatableauxarecomparedccordingo
the maximalweightof the literalsthey contain). If several
rule applicationssatisfy theseconditions,arbitrary heuris-
tics may be employed to chooseone of them; for exam-
ple, rule applicationscreatinglessnew sub-branchesnay
bepreferred.

Note that conclusionsare not necessarilyaddedto a ta-
bleaubranchin the orderdefinedby the maximalweight of
theirliteralsbecausaliteral L canonly beaddedf thenec-
essanpremisdl is presenbnthebranch;andtheweightof
theliteralsin II maybe higherthanthatof L. Also, when
a conclusionis added,is controlledby its literal with the
highestweight suchthat literals with a lower weight that
canonly be addedaspart of a conclusioncontainingother
literalsof higherweightareaddedto thetableauater

To comply with the conditionthatall rule applications
addingliteralsof lessweighthave to be executedbeforelit-
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Figure 9. Proof search with a destructive col-
culus (top) and a non-destructive calculus
(bottom).

eralsof higherweightareaddedo atableaujt maybenec-
essaryto expandbrancheghatare alreadyclosed. Thatis
notalwaysredundantbecauselosedbranchestill contain
usefulinformationandcaninfluenceotherbranchesy the
substitutionghat areappliedwhenthey are expanded(the
first substitutionthatis appliedto closea branchis not nec-
essarilythe “right one” thatallows to completethe proof).
If a closedbranchhasno free variablesin commonwith
otherbranchesit needsotbefurtherexpanded.

Unfortunately the restrictionof the searchspaceasde-
scribedabove is difficult to implement;it requiresto com-
pareatableadl’, ; with all its predecessofE,, .. ., T, and
notonly with thetableaul’,, from whichit is derived. Such
a subsumptiorcheckis prohibitively expensie w.r.t. both
spaceand time. Moreover, if a subsumptionis encoun-
tered,i.e., if T,,;1 is subsumeddy one of the predeces-
sor tableauxT;, then other successotableauxof T (be-
sidesT},) have to be consideredwhichin a certainsense
amountsto backtracking. The reasonfor this is the fol-
lowing: A tableauT’,; thatis subsumedy a tableauT;
doesnot have to be consideredor proof searchbecausaill
the proofsthat may be constructedrom T,, 1 canbe con-
structedfrom T;. Now, if j = n, thenwe canjust exclude
the successotableauT;,,; andbe surethatif thereis a
proofderivablefrom T, thenit is derivablefrom T, with-
outconsiderindl’, 1. If, however, j # n, thenthetableau
proof that is known to be derivable from 7,1 andthus
from T; may not involve T, but requireto procceedwith
an alternatve successotableauT} ,, differentfrom T} .
This situationis shovn schematicallyin Figure9 (top).

All theseproblemsstemfrom thefactthatatableaul’; is
notnecessarilpubsumedy its successotableaul’;; be-
causethe clausaltableaucalculusis destructve andliterals
occurringin T; may not occurin Tj;4 ary more. How-
ever, if we make the calculusweaklynon-destructivén the
sensdhatatableaus alwayssubsumedby all its successor
tableauxthenwe have thesituationshovn in Figure9 (bot-
tom). Now, the tableauT; is subsumedy the tableauT’,
ensuringhatevery proofthatcanbeconstructedrom 75,11
canaswell beconstructedrom T,,—withoutderiving 75, +1



asanintermediateesult.In acertainsensea (weakly)non-
destructve calculusis proof-confluentw.r.t. the restricted
searchspace(whereno tableauxsubsumedy a predeces-
sorareallowed).

To make clausaltableauxweakly non-destructie, i.e.,
to make surethata tableauZ;; alwayssubsumedts pre-
decessottableauT;, we imposethe following additional
restrictionon the proof construction: Immediatelyafter a
tableauconstructionstepdestrging literals, the construc-
tion stepsthat are neededo recreatethe destrged literals
must be executed. In the worst case,a new copy of the
sub-tableauhat was affectedby the variableinstantiation
is createdandappendedo all sub-branchethathave been
affected. The resultis a tableauT; thatsubsume$oth
T; andT;,; andall thetableauxthatoccurasintermediate
resultsduringthereconstruction.

Example9. ConsidetheclausesetS consistingof theclau-
ses(Vz)(p(z) V q(z)), (Vz)(—q(z) V r(z)), and s1 V ss.

Figurel0(a)shavsatablead; for S. Theleft branchof T;

is closedusingtheconclusion{{_L}, {X ~ a}). Theresult
isthetableaul;, in Figurel0 (b), in whichall literalscon-
taining the free variable X have beendestryed. They are
reconstructetly appending.copy of thesub-tablealR(X)

thatconsistf all literalsin T; in which X occursto all the
branchesn T;,1 from whichliteralsaremissing;theresult-
ing tableaLﬂ“z.L (shonvnin Figure10(c)) subsumebothT;

andT;y ;.

If adeterministigproof proceduresxecutesareconstruc-
tion stepaftereachtableaurule applicationthenasequence
TiF, 5, . .. of tableauxis constructedvhere T}, is de-
rived from T;F by executinga constructionstep(thatdoes
notleadto atableausubsumedby its predecessogndthen
reconstructinghe destrged literals. To ensurethatsucha
sequenceneetsall conditionsit is sufficientto testwhether
the immediatesuccessotableauT; ; of TZ.Jr is subsumed
by T;". The earlier predecessordo not have to be con-
sideredasthey areall subsumedy 7;". Theorem3 below
statesompletenessf suchaproofprocedureit isthemain
theoremof this paper

Theorem3. If a clauseset S is unsatisfiable then every
sequencéT;");>; of tableauxfor S thatis constructedas
describecbelowcontainsa closedtableauT, (n € N).

ThetableauT;" is aninitial tableaufor S. Andfor all
i > 1 thefollowing holds:

1. Ty, is a successotableauof T, (seeSect.2) such
that (a) 7;" doesnot subsumeT;;; and (b) there is
no successotableauT?,, of T;" that satisfiesCon-
dition (a) and hasa smaller maximalliterals weight
thanT;,1 (w.r.t. an arbitrary but fixed weightorder-

ing).

2. Let{C;, ;) betheconclusion(derivedfromsomepre-
misson TZ.+) that is usedto constructT;,1; and let
R; be the minimal sub-tableauof T3, that contains
all occurrencesfthevariablesinstantiatedoy 7;. The
tableauT;fH is constructedromT;; by (repeatedly)
executingall rule applicationsthat are necessaryto
generte R;; R; is appendedo all branchesthat go

-p(a) —p(a)
/7 N\ / N
p(X) q(X) p(a) q(a)
/7 N\ | /7 N\
—¢(X) r(X) 1L —q(a) r(a)
[ / \ I / \
1 S1 52 1 S1 52
(@) (b)
B
—p(a)
~ ~
p(a) q(a)
| —~ ~
L —qla) r(a)
.E | PN
1 S1 S2
R(X>) R(X3) R(X4)
(©
whereR(X) =
N
p(X)  q(X)
/7 '\
—q(X) r(X)
| / \
1 S1 S2

Figure 10. A tableau reconstruction step (Ex-
ample 9).

throughthe sub-tableawof T;,; correspondingo R;
(which resultsfromapplyingr; to R;).

Examplel0. As an examplefor the proof constructionas
describedn this section,Figure 11 shavs a tableauproof
for the clauseset consistingof the clauses—p(a), —p(b),
—q(b), (Vz)(p(z) V ¢(x)). The proof constructionstarts
with addingthe unit literals to the initial tableau;the re-
sultis thetableauT;. At this point only onerule applica-
tion is possiblewhich resultsin thetableaul’;,. Thenthere
are several possibilitiesto proceed;the left branchof 75
can be closedinstantiatingX; with eithera or b andthe
right branchcanbe closedinstantiatingX; with b. We as-
sumethat accordingto the weight ordering,p(a) <,, p(b)
andq(a) <., q(b). Consequentlythe “bad” instantiation
{X:1 — a} is preferredandthe tableauT; is constructed,
becaus¢hemaximalweightof its literalsis lessthanthatof
theliteralsin thealternatve tableaux.Sincethevariable X
is instantiatedareconstructiorstepis requiredtheresultof
thatstepis thetableaul’y. Now thereareagainseveralpos-
sibilities. If the weight of literals were the only criterion,
thenthe tableauT’ would have to be derived from Ty, re-
peatingthe uselessnstantiationof a variablewith a. How-
ever, deriving T} form Ty is notallowedasT} is subsumed
by T, (it is easyto checkthateachbranchof T, subsumes
one of the branchesof T}). Therefore,the tableauTs is
derived insteadof T¢; andthe variable X3 is instantiated
with b insteadof a. Again,areconstructiorstepis required,



which resultsin the tableauTs. From Ty the closedta-
bleauT; caneasilybeconstructed.

A proofprocedureasdescribedn Theorem3 constructs
asequencd;t, Ty, . .. of tableauxsuchthatno tableauis | N
subsumedy ary of its predecessorand all tableauxare -pla) p(X1) ¢
subsumedy their successorsSucha proceduresimulates ' )
(in a certainsense) depth-firstiterative deepeningsearch
(asdescribedn theintroduction). Theweightof theliterals —q
thatcanoccurin the tableauxincreasestepwise.If some T T, T
(unrestricted}ableauproof existsthat doesnot containlit-
eralsof weightbiggerthanwn,., thenthereis a closedta- T,
bleauT thatis the lastin the constructedsequencenot S\
containingliterals of weight biggerthansomew, € N. p(a) q(a)
It subsumeal! tableauxthat canbe cons_tructedrom lit- l p(X3)  q(X3)
erals L of weight w(L) < wmax. The big advantageof /7
this simulatedDFID over classicalDFID searchbasedon p(X2)  q(X3)
backtrackings thatthe tableauT’! is a very compactrep- Ty
resentatiorof the searchspace. All the information that
is containedin tableauxwhoseliterals are of weight less T,
thanw,ax is presenin thesinglestructureT’,F; andall the N
tableauxin the searchspacethat are identical or in some p(a) q(a)
way symmetricalto eachotherarerepresentetby only one 1
sub-tableawf T)F. Sinceno backtrackingoccurs,no in- /7 \\ |
formationthat hasbeenderivedis ever lost. Theremay be p(X2) q(Xo) L
partsof thetableadl’;f thatrepresentedundaninformation T!
andarethereforeuselesqi.e., non-closedsub-tableauhat
shouldnot have beencreated)but thesearenot harmfulas T
they canberemovedusingthe pruningtechniqueg(se€]3]). - ! ~

The deterministicproof proceduregor clausaltableaux p(a) q(a)
describedn this paperis compatiblewith all searchspace | (b)/ N ®)
restrictionswith whichthecalculusremaingproof-confluent VRN P | ¢
suchas,for example selectionfunctions[5, 6]. p(X2) q(X2) L
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