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Abstract The main objectives of OCL are to restrict UML models by
additional constraints and to clarify the definition of the UML meta
model. For certain applications, however, it is crucial for the modeler to
have a flexible and precisely defined access mechanism to the meta level
of UML models. In the present paper we sketch such a modeling scenario
and we argue that the current definition of OclType is insufficient. We
propose an alternative definition based on metamodeling the type system
of OCL in such a way that it is fully integrated with the UML meta
model. This also clarifies some ambiguous issues in the OCL language
specification and makes the reflexion mechanisms in OCL explicit.

1 Introduction

The main objectives of OCL are to restrict UML models by additional constraints
and to clarify the definition of the UML meta model. OCL is a formal language
in the sense that it has a formal syntax given as an EBNF context-free grammar
(see the current OCL language specification [4, Section 7])!).

The grammar alone, however, is not sufficient to check syntactical correct-
ness of a given OCL expression. OCL is a typed language, so the conformance
rules for the type system (informally described in Section 7.4) have to be met. In
addition, the set of admissible identifiers in OCL expressions is not reflected in
the grammar (they are simply referred to by <name>). OCL names are derived
from two sources: most names for classes, data types, operations, etc., of an un-
derlying UML model are valid OCL names (see Sections 7.3 and 7.5 for details).
The second source is the library of predefined OCL types and their properties
as stated in Section 7.8.

Most issues concerning syntax beyond the mere grammar are dealt with
informally in [4]. We show in Section 2 of the present paper that this leads to
a number of ambiguous or contradictory interpretations. Ultimately, the syntax
of OCL should be defined at least as precise as the other parts of the UML with
the help of a metamodel.

! Throughout the paper we refer to parts of [4]. It would be cumbersome to mention
[4] each time we refer to this document—when it is obvious from the context we
refer only to a section number or page of this document without citing it.



The advantages of the metamodeling approach for OCL are generally ac-
knowledged [2], although the only suggestion for a full metamodel of OCL we
are aware of is [5]. In Section 4 of the latter paper a metamodel for OCL’s type
system is suggested. This is an important contribution, but there are a number
of drawbacks:

— the type metamodel in [5] does not reflect the changes made in OCL 1.3
[4]: according to [5], the type OclAny is the supertype of all types while [4,
p. 7-29] states that “[t]he predefined OCL Collection types are not subtypes
of OclAny”;

— the type metamodel in [5] contains several metaclasses with the stereotype
<<singleton>> resulting in a somewhat clumsy class structure;

— most importantly, there is no conceptual distinction between metamodeling
of basic OCL types such as Integer and the special type OclType.

In the present paper we propose an OCL type metamodel that remedies these
shortcomings. In particular, we treat 0c1Type consequently as a metatype com-
prising all other types of OCL as instances, and which is not in subtype relation
with any of them. As a byproduct, we obtain an extension of the current possi-
bilities to access the meta level of OCL together with a systematic integration
into the UML meta model core package (p. 2-13). A flexible and precisely de-
fined access mechanism for the modeler to the meta level of UML is crucial for
building tools that give modelers far-reaching possibilites to create and manip-
ulate useful OCL constraints. This is required, for example, to integrate design
patterns with OCL constraints [1].

The paper is organized as follows: In Section 2, we report some inconsistencies
and ambiguities in the current definition of OCL’s type system and we point out
limitations of OCL regarding access of the metamodel level. The latter is critical
in an application involving the precise definition of design patterns and briefly
sketched in Section 2.2. Our proposal for a precise definition of OCL’s type
system including a metamodel is in Section 3. For (as far as we know) the first
time, comprehensive well-formedness rules are given. Section 4 shows that the
problems discussed in Section 2 are resolved in our metamodel. We wrap up in
Section 5 and also state open issues we were not yet able to solve satisfactorily.

2 Shortcomings of the OCL language specification

The quality of the OCL semantics documents improved considerably in recent
years, but the current version [4, Chapter 7] still contains a number of contra-
dictions and ambiguities.

2.1 Inconsistencies and Ambiguities in OCL Semantics

What are Basic Types? The term basic type is used informally in [4]. A clar-
ification is crucial to understand the role of the type 0c1Type. On p. 7-28 we



read: “The basic types used are Integer, Real, String, and Boolean. They are
supplemented with OclExpression, OclType, and OclAny.” This would imply
that there is no conceptual difference between 0c1Type and, say, Integer. The
role of Oc1Type is then explained: “All types [...] have a type. This type is
an instance of [...] OclType.” The conclusion is that the type 0clType is an
instance of itself. While this is not contradictory in itself, we find it unintuitive
and unnecessary. Recall that 0c1Any was already modified in OCL 1.3 for similar
reasons [2].

On p. 7-7 we read: “Collection, Set, Bag and Sequence are basic types as
well” contradicting the statement “[...] OclAny is the supertype of [...] the
basic predefined OCL type[s]. The predefined OCL Collection types are not
subtypes of OclAny.” on p. 7-29.

Are Nested Collection Types Permitted? On p. 7-20 flattening of nested collec-
tions is explained and from this nested collections clearly are imaginable. On
p. 7-37ff the properties of type Collection(T) are defined: “A real collection
type is created by substituting a type for the T.” In particular, T can be a
collection type, hence nested collection types are not excluded.

Consider declaration collection->includes(object: OclAny): Boolean
on p. 7-37, where the parameter of includes must be of type OclAny. On p. 7-
38, on the other hand, the declaration of includesAll features a parameter c2
of type Collection(T) with postcondition

(1) result = c2->forAll(elem | collection->includes(elem)) .

Now, if c2 is of type Collection(T) then elem must be of type T and, because
elem is used as argument of includes in (1), T must be a subtype of OclAny.
Therefore, T cannot be a collection type (p. 7-29) and nested collection would
cause a type error.

OclEzpression. “Each OCL expression itself is an object in the context of OCL.
The type of the expression is OclExpression” (p. 7-31). In [5] OclExpression
does not occur in the metamodel of the OCL type system, instead, it serves as
the root metaclass of another part of the metamodel, where as well the query
properties forAll, collect, etc., are handled. Hence, unlike OCLType, the type
OclExpression constitutes not a metatype, but an analogous type to String. It
is useful to imagine instances of OclExpression to be surrounded by quotation
marks similar to instances of String.

Enumerations. On p. 7-26 we read: “The OCL type Enumeration represents the
enumerations defined in an UML model.” This suggests that the instances of
Enumeration are classifiers with stereotype <<enumeration>>in an UML model.
We know from Section 2.5.2.13 that “[d]ata types include primitive built-in types
as well as definable enumeration types.” So 0clType.allIlnstances yields all
types in a model including all enumerations; Enumeration.allInstances yields
all enumerations. In contrast to this, on p. 7-8: “The type of an enumeration



attribute is Enumeration.” If in the UML model an enumeration SeasonKind
is defined and used in an attribute season: SeasonKind, then we know (Sec-
tion 2.5.2.5) that season has type SeasonKind. If season has type Enumeration,
too, then Enumeration must be supertype of each enumeration, not its metatype.

2.2 Pattern extension — a scenario for using OCL’s meta level

The purpose of 0c1Type is that it “allows the modeler limited access to the meta-
level of the model” (p. 7-28). As far as we know, this possibility is rarely used
so far. Here we sketch the precise definition of design patterns within UML (see
[1] for a detailed explanation) as one application, where flexible and precisely
defined access to the meta level is crucial.

Design patterns [3] are widely acknowledged as one of the most useful tools
available to software designers. Typically, a software design pattern is described
in a form structured into several slots: Motivation, introducing the problem
solved by the pattern; Structure, presenting a skeleton solution, usually with a
class diagram; Forces, trading off advantages and disadvantages of its applica-
tion; Implementation, where implementation variants are discussed, etc. Most
slots are described informally using natural language. In [1] we show that some
of the informally specified parts of a design pattern can be formalized in OCL.
Probably the simplest example is the formalization of the semantics of the Sin-
gleton pattern [3], expressed in OCL as: Singleton.allInstances->size<=1.

Let us make this example slightly more complex: assume that the class
StorageElement has to ensure that there exist at any time at most maxInstance
instances. The instances of StorageElement are kept in a Storage with a fixed
number of cells. Each attribute defined in StorageElement occupies one stor-
age cell. Furthermore, it is required that StorageElement has an attribute name
whose value is distinct for each instance. The class diagram

StorageElement

name: String

is supplemented by the following constraints:

StorageElement.alllnstances—>size <= maxInstance
StorageElement.allInstances->isUnique(s | s.name)

These constraints use the allInstances operation of type 0c1Type. They have,
therefore, access to the meta level but their effect is to restrict the instances of
StorageElement and not the class itself.

Another kind of constraint is used to restrict the applicability of design pat-
terns. When adapting a design pattern to a concrete problem the modeler usually
extends and modifies the skeleton solution in the slot Structure, for example, by
adding new features to a class, by adding new subclasses, etc.

If a pattern is intended to be adapted only in a restricted manner, then its
author can often formalize such requirements in OCL. In that case, an OCL



constraint has the effect to restrict the language of UML diagrams, which can
be used by the modeler when applying the pattern.

In our example, we want a pattern to ensure that the capacity of the stor-
age is not exceeded. Therefore, not only the number of instances but also the
number of attributes of StorageElement must be limited—it may not exceed
limit = capacity.div(maxInstance). The constraint

StorageElement.attributes->size <= limit

ensures that the modeler does not add too many attributes to StorageElement
when applying the design pattern. The constraint implements in effect a well-
formedness rule for the UML classifier StorageElement. This example may seem
contrived, but it is easy to imagine that company-wide or project-wide regula-
tions, say, naming rules for features, are implemented in this way.

2.3 Limitations of OCL

Sometimes it is necessary to ensure that a class has no superclasses. In OCL
a constraint like StorageElement.supertypes = Set{0OclAny} does the job.
If, however, we want to express constraints on subclasses of StorageElement,
we run into problems, because 0clType has a property supertypes, but not
subtypes. For example, the following constraint, restricting the number of at-
tributes in subclasses of StorageElement, is illegal:

StorageElement.subtypes-> forAll(s | s.attributes->size <=
limit)

A further limitation of the current standard is that the properties attributes,
operatiomns, etc., of 0c1Type return a set of strings and no structural informa-
tion. So it is not possible, for example, to distinguish between static attributes
(ownerScope has value #classifier) or normal ones (ownerScope has value
#instance). In our example, such a distinction would permit a tighter con-
straint, assuming that static attributes do not occupy a storage cell for each
instance of StorageElement. In Section 4 we will see how these limitations can
be overcome by our judicuous definition of 0c1Type.

3 Precise Definition of OCL Types

3.1 Metamodel for OCL’s Typesystem

Metamodeling is a technique to precisely define complex syntactical issues and
is used in the specification of the diagrammatical parts of the UML, but not for
OCL in [4]. The paper [5] suggests a metamodel for OCL as well and discusses
its integration into the UML metamodel.

Our alternative suggestion, displayed in Figure 1, encompasses merely the
type system of OCL, but it could be extended to a metamodel of full OCL. As



mentioned above, we handle 0c1Type as a proper metatype, which, as we shall
see, renders its properties declared on p. 7-28f obsolete.

The metaclass Classifier on the left constitutes the connection with the
UML core package backbone metamodel and UML extension mechanisms [4,
pp- 2-13, 2-70]. This will be heavily used in the examples below.

The root class of our metamodel is 0c1Type and represents the OCL type
OclType. It has an association conform with roles subType and superType that
models the conformance relation among OCL types (Sections 7.4.4, 7.5.14 in
[4]). 0c1Type has an attribute name to identify its instances.

superType I*—

<<abstract>>
OclType

conform
name : String

4L

subType

|Cp11ectionType|

* * superConstructor I()li

1
<<abstract>> 1 CollectionConstructor|

Collectable | elementType "

subConstructor

c1 i fi 1\descriptor
assitier OclBasicType <<enumeration>>
(from Core) ) "
CollectionKind
1\/descriptor Bag
<<enumeration>> Set
OclBasicKind Sequence
OclAny Collection
OclState
Real
Integer
String
Class DataType Boolean
(from Core) (from Core) .
Enumeration
OclExpression

Figurel. Metamodel of OCL’s type system

The instances of 0c1Type are all types in OCL’s type system. This is different
from the current specification of OCL. In our metamodel, neither is 0c1Type an



instance of itself, nor is it a subtype of 0c1Any. The subType association is only
applicable to instances of 0c1Type but not to the class itself.

The metaclass CollectionType is a subclass of 0c1Type and represents the
collection types in OCL’s type system. Even though in [4] no terminological dis-
tinction is made between, for example, Set and Set (T), we think that such a dis-
tinction is crucial. Therefore, the auxiliary metaclass CollectionConstructor
representing Collection, Set, Bag, Sequence is associated to CollectionType.
There is a sub-/superConstructor hierarchy over CollectionConstructor,
which is important to define the conformance relation on instances of 0c1Type
(see Section 3.2 below).

CollectionConstructor cannot directly be made into an enumeration to
represent the finite set {Collection, Set,Bag, Sequence}, because UML enu-
merations cannot be part of inheritance hierarchies or undirected associations
[4, Section 2.5.3.12[2]]. The solution is to introduce a separate enumeration
metaclass CollectionKind whose client is CollectionConstructor (in con-
formance with Section 2.5.3.3[1]). A well-formedness rule (see Section 3.2 below)
ensures isomorphy between the literals of CollectionKind and the instances of
CollectionConstructor. The same technique is applied to OclBasicType.

CollectionType has an association elementType to Collectable giving the
parameter of a collection type. As a consequence, nested collection types do
not occur in our metamodel. Each instance of Collectable must be either an
instance of Classifier (the bridge to the core package of UML’s metamodel)
or an instance of OclBasicType. The latter represents all predefined OCL types,
such as OclAny, Real, Boolean

In contrast to [4], the properties name, subType, and superType of the meta-
class 0c1lType are defined already in the metamodel, not on the MOF model
level. This yields, in our opinion, a more systematic approach to defining the
properties of 0clType than the one in Section 7.8.1.1, which seems rather ad
hoc (supertypes is present, but not subtypes). The properties attributes,
associationEnds, operations are available in our metamodel as well (by in-
heritance from the UML core metamodel) for those instances of the metaclass
Classifier that need them. The OCL 1.3 expression type.attributes (and
similarily, the other properties) would be defined in our metamodel via naviga-
tion, which has the advantage that type can be ensured to be a classifier:

type.oclAsType(Classifier) .feature->
select(f | f.oclIsKindOf (Attribute))->collect(a | a.name.body)

3.2 Well-Formedness Rules

We increase the precision of the available specifications of OCL’s type system
by supplying constraints (well-formedness rules) for our metamodel. Attribute
name of OclType is defined as follows:

context 0clType inv:
self.name =
if self.oclIsKindOf(CollectionType)



then self.collectionConstructor.descriptor.name.body.
concat (’ (?) .concat(self.elementType.name) .concat(’)’)
else if self.oclIsKindOf (0clBasicType)
then self.descriptor.name.body

else —- self is a Classifier
self.oclAsType (ModelElement) .name.body
endif
endif

We define CollectionConstructor as an isomorphic copy of the enumeration
CollectionKind:

CollectionConstructor.allInstances->size =
CollectionKind.allInstances->size and
CollectionConstructor.allInstances->isUnique(descriptor)

A similar constraint is needed for 0c1BasicType and OclBasicKind.

We define the value of subConstructor (and, by invertability, the value of
superConstructor) with an auxiliary operation directSubConstructor; then
subConstructor is defined as the reflexive closure of directSubConstructor.

context CollectionConstructor inv:
let directSubConstructor =
if self.descriptor = #Collection
then Set{#Bag, #Set, #Sequence}
else Set{}
endif in
subConstructor = directSubConstructor->including(self)

Similarly, we define the association subType by the help of an auxiliary op-
eration directSubType. Then subType is the reflexive and transitive closure
of directSubType. We view Enumeration as a supertype of Boolean and, in
general, of each datatype with stereotype <<enumeration>>. This is compatible
with Sections 2.5.2.13, 2.7.2.

context 0clType inv:
let directSubType =
if self.oclIsKindOf (CollectionType)
then CollectionType.allInstances->select(c |
self.collectionConstructor.subConstructor->
includes(c.collectionConstructor)
and
self.elementType.directSubType->
includes(c.elementType))

else if self.name = ’0OclAny’
then Collectable.allInstances->
reject(c | c.name = ’0OclAny’)
else if self.name = ’Real’

then Collectable.allInstances—>



select(c | c.name = ’Integer’)
else if self.name = ’Enumeration’
then Collectable.allInstances->select(c
c.name = ’Boolean’ or
(c.o0clIsKind0f (DataType) and
c.stereotype—->notEmpty and
c.stereotye.name = ’enumeration’))
else if self.oclIsKindOf(Classifier)
then self.specialization->collect(child)
else Set{}
endif
endif
endif
endif
endif in
subType = directSubType->including(self)->
union(self.directSubType->collect(d | d.subType)->asSet)

The definition ensures that directSubType and subType are acyclic because the
association specialization between Generalization, GeneralizableElement
is acyclic (see Section 2.5.3.18[3]).

4 Resolved Problems

Our metamodel resolves (among other issues) the ambiguities und contradic-
tions uncovered in Section 2.1: 0c1lType is a metatype, nested collections are
excluded, OclExpression is regarded as a basic type, and so is Enumeration,
which contains all enumeration literals of an underlying UML class diagram.

The main advantage, however, is to overcome the limitations in formulating
meta level constraints. Now we can, for example, formulate those constraints on
the class StorageElement that caused problems in Section 2.3:

-- Number of instance attributes does not exceed capacity
StorageElement.feature->select(f | f.ownerScope = #instance)->
select(f | f.oclIsKindOf (Attribute))->size <= limit
-- Number of all attributes in subclasses does not exceed capacity
StorageElement.specialization->forAll(s | s.feature->
select(f | f.oclIsKind0f (Attribute))->size <= limit)

5 Future Work and Conclusion

In general, the properties of OCL types, such as size of Collection, are not
definable within the OCL metamodel. Due to its metaclass character, 0c1Type
is an exception: in Section 3.1 we defined all properties of 0c1Type (pp. 7-28f),
with the exception of allInstances, by virtue of the connection with the UML
core metamodel. Unfortunately, allInstances causes problems: The property
allInstances is declared as type.allInstances:Set(type) on p. 7-29, where



type represents an instance of OclType. This allows to construct arbitrarily
nested sets. Worse yet, the result type of allInstances depends on the argument
type and cannot be statically determined.

One way to proceed from here is to treat allInstances analogously to
subType, that is, model it as an association allInstances from 0clType to
a suitable metaclass (discussed in a moment). Then allInstances is appli-
cable to instances of 0clType, but not to OclType itself (in contrast to [4]):
the expression 0c1Type.allInstances becomes syntactically incorrect. A draw-
back of this proposal is that nested set types can still be constructed (take
Set (Boolean) .allInstances). Nested collection types are avoided by attach-
ing allInstances not the metaclass 0c1Type but to the metaclass Collectable:

*

<<abstract>>
Collectable alllnstances OCIAny

The supplier of allInstances is the instance O0clAny of 0c1lType, which now
plays a second role in the OCL metamodel as the metaclass representing in-
stances of OclAny. As a consequence, the result type of type.allInstances is
Set (0clAny), not Set (type), but this can be easily ensured by the constraint:

context Collectable inv:
self.allInstances->forAll1(i | i.oclIsKindOf (self))

In conclusion, we are aware that our proposal of a metamodel of OCL types
might be perceived problematic by some, because we decided to deviate from the
current OCL standard in some points, notably, in the treatment of 0c1Type as
a metaclass. Moreover, a formal treatment of allInstances could only be had
for the price of letting 0c1Any appear on different modeling levels. On the other
hand, we feel that these are not quirks of our particular model, but consequences
of the reflexion mechanism in OCL and, therefore, difficult (if not impossible)
to avoid in a precise OCL specification. As our approach clearly improves the
precision of available OCL type specifications and includes a clearly defined and
flexible interface to metamodeling, we think that it deserves discussion.
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