A Basis for Model Computation
in Free Data Types

Wolfgang Ahrendt

Institut fiir Logik, Komplexitat und Deduktionssysteme,
Universtat Karlsruhe, Germany
ahrendt@ira.uka.de

Abstract. Abstract data types, specified by some equality logic under
the assumption of term generatedness, are called ‘free’, if terms, built
only by constructors, are semantically unique. This paper presents a
calculus, intended to search for models of free data type specifications. A
semantical view is discussed, where the uniqueness of constructor terms
is ‘hard wired’. This suggests an explicit reasoning about interpretations
instead of performing real equality reasoning. The rules, which depend
on signature, constructor definitions and axioms, are formulated as range
restricted clauses. This allows to ‘perform’ the calculus simply by calling
a model generation prover, in particular the MGTP system.

This approach is a ‘basis’ only, because one of the core problems in
model construction, the terminating detection of satisfying models, is not
yet solved for the described frame. Perspectives in this issue are briefly
discussed against the background of using the method for disproving
conjectures about consistent data types.

1 Free Data Types

Abstract Data Types (ADTs) are frequently used to model the structure and
the manipulation of data in computers. In this regard, the structure of data is
reflected by so called constructors (e.g., ‘nil’ and ‘push’ in the case of the ADT
‘stack’). Consequently, all (potential) data are covered by the set of constructor
terms, exclusively built by constructors. An ADT may have different sorts, each
characterized by a separate set of constructors.

The manipulation of data, on the other hand, is reflected by function sym-
bols' (e.g., ‘pop’ and ‘del’ on ‘stacks’). These symbols denote mappings over the
elements of the data type. The intended properties of such mappings are speci-
fied by azioms, usually written in some equality logic. Variants are, in increasing
expressiveness, pure equality (no negation, no disjunction), Horn equality, quan-
tifier free equality (negation, disjunction, implicit universal closure), and full
first-order equality. The approach presented here aims at full first-order equal-
ity. However, the paper mainly deals with the quantifier free case.

! Throughout the paper, we systematically distinguish between constructors and func-
tion symbols.

As a simple example, a specification for stacks of natural numbers is given in
Fig. 1. (To distinguish the constructors, they are written sans serif.) Intuitively,
the axioms in NatStack describe how function terms ‘reduce’ to constructor terms
of sort nat or stack. Please note that, even though the formulae are quite prim-
itive, one of them is not Horn.

sorts
nat generated by
0 ; succ(nat)
stack generated by
nil ; push(nat, stack)

axioms
pred(succ(n)) =n
top(push(n, st)) =n
pop(push(n, st)) = st

functions del(n, push(n, st)) = st

’ n#n —
f;";c‘i. Ztcjztck : ZZE del(n, push(n’, st)) = push(n', del(n, st))
pop: stack — stack del(n, nil) = nil
del : nat,stack — stack

Fig. 1. ADT NatStack

So far, nothing is said about if and when different constructor terms are
considered to be equal. In general, this can be specified by so called extensionality
axioms. For example in an ADT Set with constructors) and insert, some axiom is
needed to infer equalities between constructor terms, e.g., insert(a, insert(a, §)) =
insert(a, §) or insert(a,insert(b,()) = insert(b, insert(a,)). In contrast, it is clear
that in NatStack two stacks with a different number of pushed nats should be
different, as well as stacks with different nats at certain positions. Here, each
element should be uniquely represented by a separate constructor term. This is
not made explicit in Fig. 1, so far. In the field of algebraic specification, data
types with such a domain property are called free. This property, which is typical
for many frequently used data types can be expressed by formulae, or built into
the semantics.

The present work is exclusively concerned with free data types. Therefore, it
is natural to choose the semantics in such a way that the domain really is the
set of constructor terms itself, not any set of equivalence classes. The domain, as
well as the meaning of constructors, is predefined, not depending on any axiom.
The only model property specified by the axioms is how function symbols must
be interpreted.

Notation. If X is a family of sets, X denotes the union of all sets in X.

Signature. An abstract data type (adt) signature X is a tuple (S,C, F,), where
S is a finite set of sort symbols, C = {Cs}ses is a disjoint family of S-indexed
sets of constructor symbols, F = {Fs}ses is a disjoint family of S-indexed sets
of function symbols (CNF = §), and a : C UF — S* gives the argument sorts
for every constructor or function symbol.

Syntaz. Let X = (S,C,F,a) be an adt-signature.

— Let {Vi}ses be a disjoint family of S-indexed, infinite sets of variables.
Then Var(X) = {Vs}ses.
— Ts = {Ts}ses is the family of S-indexed sets, minimally defined by:
e if x € Vy, then = € Ty,
e ifle CsUF;, a(l)=s1...5, and (t1,...,tn) € Ts, X ... x Ty |
then I(t1,...,tn) € Ts.
T is the set of terms of sort s.
Ts. = T is the set of ¥-terms.
— Te = {CTs}ses is the family of S-indexed sets, minimally defined by:
o ifceCs, ac) =51...5, and {t1,...,tn) € CTs, x ... x CT;_,
then c(t1,...,t,) € CTs.
CTs; is the set of constructor terms of sort s.
Te = Te is the set of constructor X-terms.
— An atomic formula is an equality t = t', where t,t' € T}, for some s € S.

Non-atomic formulae are defined as usual. £y is the set of all X¥-formulae.

Semantics. Let X = (S,C,F,a) be an adt-signature, fulfilling the condition
that, for all s € S, CT, # 0.

— An %—interpretation 7 assigns to each function symbol f, with f € Fs and
a(f) = s1...8p, amapping: Z(f) : CTs,,...,CTs, — CTs.
(Te,T) then is a freely generated X -structure (fgx-structure).

— A wvariable assignment 8 : Var(X) — T¢ is a mapping, such that:
for z € V, B(z) € CTs.

— For any %—interpretation 7 and variable assignment [, a %—valuation of
terms valz g : Ty — T¢ is defined by:

e valz g(z) = B(z), for z € Var(X).
e valzs(f(t1,.-.,tn)) = Z(f)(valz g(tr), - . . ,valz,g(tn)),
fOI‘fE]'—, (tl,...,tn)ETE.

o valz g(c(te, ..., tn)) = c(valz g(t1),...,valz g(tn)),

forceC, C(tl,...,tn) €Tx.

To clarify the characteristics of these definitions, some particular features, dif-
fering from usual first-order logic, are pointed out here:

— A freely generated X-structure is really ‘generated’ because all domain ele-
ments can be denoted by a term (i.e. by themselves). And it is really ‘free’
because the domain contains each constructor term as a separate element.

— For a given Y| all fgs-structures have the same domain, i.e. the sorted parti-
tion of the constructor terms. (Therefore, val is not indexed by the domain.)

— The interpretation 7 is not defined for constructors.

— The valuation of terms can be seen as a combination of standard valua-
tions, cf. “valz g(f(-,...)) = Z(f)(valz g(),...)”, and Herbrand structure
valuations, cf. “valz g(c(-,...)) = c(valz g(-),...)”.

The valuation of formulae is defined as usual. In particular, valz g(t =¢t') = T
iff valz g(t) = valz g(t').

With these definitions, term generatedness and ‘freeness’ are built into the
semantics. This is necessary for generatedness, which cannot be expressed in first-
order formulae. ‘Freeness’, on the other hand, could alternatively be expressed
by the axioms of a data type. The advantage of ‘hard wiring’ this property too
lies in its fundamental consequences to the search for models.

Model, Satisfying Interpretation, Consistency, Consequence.
Let X' = (S,C, F, a) be an adt-signature.

— An fgy-structure (7¢,Z) is a freely generated X-model (fgs:-model) of a set
of formulae & C Ly, if valz g(¢) = T for all p € ¢ and variable assignments
3.

7 then is called a satisfying %—interpr@tation of &.

— @ is a fgs;-consequence of @, denoted & |:ff ¢, if each fgx-model of @ is also
an (fgx-)model of {p}.

— @ is fgs-consistent if it has an fgx-model. ¢ is fgs -consistent relative to &
if the fgx-consistency of ¢ implies the fgs-consistency of & U {p}.

Ezample 1. Let X = (S,C, F,a) be an adt-signature with

S = {nat, bOOl}a C= <{073ucc}nata {tta.ﬁ}bool); F = ({}nata {p}bool)a

a(s) = a(p) = nat, a(0) = a(tt) = a(ff) = X (the empty word).

Let @ = {p(0) = tt, p(xz) = tt — p(succ(z)) = tt}. Then the following holds:

— 2 succ(succ(suce(0))) # suce(0) (freely)
- S plr) =t (generated)

On the other hand, with the usual definition of =* (and a signature not distin-
guishing C and F), it holds that

— B* succ(succ(succ(0))) # succ(0) and
— @ ¥ p(x) = tt.

2 Explicit Reasoning about Interpretations

As discussed above, two freely generated structures for the same X' can only differ
in their respective %—interpretation T, which assigns to function symbols f € F
mappings over constructor terms. Therefore, the construction of structures resp.
models reduces to the construction of %—interpretations.

We can think of Z being an infinite table, in which each line relates one
function symbol and an appropriate tuple of domain elements with a resulting
domain element. This is visualized in Fig. 2. Here, the domain elements are
written as ‘ct;;’ to emphasize that they are constructor terms, and nothing else.

One main suggestion of this paper is, to perform reasoning about (resp. search
for) %—interpretations on a representation that immediately describes (parts of)
such interpretation tables. In particular, we will represent lines of Z-tables, called

fletir, ... ctin|ctio
f Ctzl,...,ctzn Ctz()

! 7 7 !
f Ctll,---,Ctlm Ctl()
7 7 7 7
fletar, - -+, clom |ctao

Fig. 2. 7 as a table

Z-lines, as atoms in our mechanism. Describing interpretations by their Z-lines
in a sense is an atomic representation of models. But instead of using equality
atoms, which are the only atoms allowed in the object logic, we use an extra
predicate I to build atoms like I(f,cty,...,cty,cto), representing single Z-lines
like | flcty, . . ., ctnlcto] A collection of I-atoms serves as a (partial) interpretation
candidate. Building an interpretation then consists of expanding candidates by
newly inferred I-atoms. The presence of disjunctive problem structure (the origin
of disjunctions is discussed below) causes splittings of interpretation candidates
by inferring alternative expansions. We obtain the picture of a tableau style tree,
where the nodes are I-atoms and the branches are interpretation candidates.
Provided we comply with the respective arity and sorts, any collection of I-
atoms partly describes a legal %—interpretation, with the only condition that the
functionality of interpretations must be respected, i.e. the resulting I-predicate
must be functional in the last argument. In consequence, inferring two I-atoms,
which violate the functionality property, is the reason for rejecting a branch.
The inference rules for expansion, splitting and rejection of interpretation
candidates will be represented by (slightly generalized) clauses. That means, in-
A
stead of tableau style rules like B ,wewrite A A B — C V D. The advantage
o
of this representation is, that we can give such clauses as input to an existing
system building clausal tebleauz. In particular, positive hyper tableau® provers
implement the operational semantics of clauses in such a way that the above
clause ‘behaves’ like the above rule. Moreover, we can use a restricted version
of hyper tableaux. As long as we infer ground atoms only, we can describe the
rules by clauses that are range restricted, which means that all variables appear-
ing on the right side of the implication also appear on the left side. The range
restricted variant of positive hyper tableau calculi is known as model generation
[7]. For the understanding of this paper, it suffices to know that a) clauses are
applied as sketched above, b) model generation manage with matching, not with
unification, c) deriving L (false) on a branch means rejecting it, d) branches are
kept regular (i.e. clauses cannot be applied if any atom would be doubled on any
branch), and e) a branch is saturated if no clause can be applied anymore. In

2 For hyper tableaux in general see, e.g., [1].

the following, we abbreviate model generation by “MG”, to prevent confusion
with our notion of ‘model construction’. (The first serves as a tool to perform
the second.)

The fastest implementation of MG currently is the system MGTP (Model
Generation Theorem Prover) [4], as far as we know. MGTP allows to use a
slightly more general form of clauses. The right side of the implication may
consist in a disjunction of conjunctions, e.g., ‘A A B — (C A D) v E’.
This allows to express inference rules which add more than one atom to the
same branch. In a sense, the language of generalized, range restricted clauses
serves, in the described approach, as a programming language for implementing
a machinery performing ‘interpretation inference’.

The first clause we give here is the, quite simple, functionality rule®:

I(F,CT,CTv) A I(F,CT,CT>) — SameElems(CT1,CT5).

This rule is only applicable for I-atoms whose function symbols have exactly one
argument. Variants are provided for each arity appearing in F. SameFElems is one
of the extra predicates we need besides I to be present in interpretation candi-
dates. These predicates are dedicated for additionally controlling the expansion,
splitting and rejection of branches. More of them are discussed below.
Intuitively, SameElems(CTy,CT,) means that CT; and CT» must be the
same domain element, i.e. the same constructor term, in the current branch. This
is implemented by X-dependent freeness rules. Here we give just two examples:

SameElems(push(N, S),nil) — L.

SameElems(Ny, No)
SameElems(push(Ny, S1), push(N2, S2)) — (A SameElemS(ShSz)) '

The first kind of clause is needed for each pair of different constructors (of
the same sort). The second kind is needed for each constructor with more than
zero arguments. At first glance, checking the syntactical identity by recursively
applying such rules seems to be an overkill. The reason why we really need this
recursive analysis is the following: in addition to pure constructor terms, we have
to handle place holders for constructor terms not yet known (see next section). In
presence of such place holders in constructor terms, we cannot just syntactically
check the constraint of ‘being the same element’.

3 Exploiting Domain Knowledge:
Constructor Splitting

The explicit representation of Z-lines reflects the information, resulting from
object equalities, in a more structured way than the equalities themselves do.
For example, it makes a big difference if (non-constructor) functions appear

3 In this as in following rules, arguments of atoms, if they start with a capital letter,
are considered to be the variables for the clause.

on both sides of an equality or not, resp. if they are nested or not. This is
exemplified in Table 1 (where again the f; denote function symbols and the ct;
denote constructor terms).

object equality | I-atoms

ground case:

fct1) = cta I(f,cty,cta)

(functions on both sides:)| There exists a constructor term k, such that

fi(ct1) = fa(ct2) I(fi,ct1,k) and I(f2,cta, k) holds.
(nested functions:) There exists a constructor term k, such that
fi(fa(ctr)) = ct2 I(f2,ct1,k) and I(f1,k,ct2) holds.
(mix:) There exist constructor terms ki, k2, such that

fi(fo(ct1)) = fa(eta) |I(f2,ctr, k1), I(f1, k1, ko) and I(f3,ct2, k2) holds.
universal case:

For all constructor terms X,

f(z)=ct I(f,X,ct) holds.
(functions on both sides:)| For all c.-terms X, there ezxists a c.-term k, s.t.

fi(z) = fo(x) I(f1,X,k) and I(f2,X, k) holds.

Table 1. Examples for equalities and corresponding I-atoms

On the right side of this table, constructor terms appear to be quantified
on a meta level (‘for all ¥’ and ‘there exists k’). The restriction to constructor
generated domains has significant consequences for the deductive handling of
(explicit or implicit) existential quantification. In the general first-order case,
existential quantifiers are removed by Skolemization, i.e. introduction of new
constants. Semantically, the current Herbrand model is considered to be extended
by the new constant.

However, in the case of predefined domains, usual Skolemization is not com-
plete, with respect to refutation. Even worse, this exactly means that, in prede-
fined domains, standard Skolemization is not sound with respect to model con-
struction! For example, from ‘3 z,4¢. @(Znqet)’ we cannot infer the satisfiability
of ‘p(sko)’ (where sko is a new constant), because 4 here must be a natural
number, whereas sko might be anything. Instead, we can infer that either ¢(0)
or 3 Tpa¢- @(succ(Tnqt)) must hold. Written as a tableau rule, this is:

3 Tnat- w(xnat)
<,0(0)|E| Trat- p(succ(Tnat))

In case of stacks, the rule is:

3 Tstack- So(xstack)
(,O(TLZZ)H Tnat) Ystack- (P(pUSh(mnat; ystack))

We call this constructor splitting. The general form is:

3 zs. o(zs)
pler)]--|e(e)]3 7 (ciri (@) -3 2 wlen(z))

where z;, € V; is a variable of sort s, Cs = {c1,...,¢i,Cit1,--.,Cn} are the
constructors of sort s, ¢; to ¢; have no arguments, and the variable vectors 7 to
Z match the respective arity of ¢;11 to c¢,.

Branching d-rules are also used in the field of (domain-)finite model con-
struction, see [5] (minimization rule) and [2] (6*-rule in the EP tableaux calcu-
lus). In both cases, the branching d-rules disjunctively enumerate finite domains.
Constructor splitting, as demonstrated above, in the general case performs an
approximation of disjunctively enumerating infinite domains.

Even if existential quantifiers cannot appear explicitly in trees built by MG,
Table 1 gives reasons for the necessity of, at least implicit, existential quantifi-
cation. This is done by introducing place-markers for constructor terms not yet
fixed. But in contrast to standard Skolemization, we have to search disjunctively
for suitable instances of place-markers. This is done by the constructor splitting
rules, which are Y-dependent clauses, controlled by an extra search-predicate.
We give two examples here:

search-nat(X) — X is 0 V (X is succ(new(1)) A search_-nat(new(1))).
X is push(new(1),new(2))
search_stack(X) — X isnil v A search_nat(new (1))
A search_stack(new(2))

When these rules are applied, then, for every i, the first appearance of new (i)
is meant to create a new symbol (relative to the current branch) that replaces
all occurrences of new (i) in the atoms of the extension. These ‘place-markers’
are treated as constants by MG (though they do not belong to the object sig-
nature). The new-construct is the only feature we need that is not standard in
MG systems.

Whenever we have a search_s-atom on the current branch, this initiates a
search for a constructor term of sort s. Applying the constructor splitting rule
then creates new place-markers, for which again a search is initiated. The extra
predicate is determines partly the result of the search. Later, ‘és’-atoms are
treated by primitive rewriting rules, e.g.:

I(F,X,Y) A X is CT — I(F,CT,Y).
I(F,X,Y) A Y is CT = I(F,X,CT).

Such rules are needed also for I-atoms with varying arity and moreover for
all extra predicates, even for is itself.

4 Representation of Axioms

The search for interpretations must respect the axioms which originally specify
the data type. Therefore, the axioms, written in equality logic, are transformed

into (generalized) clauses. We recall the primary restriction to quantifier free
formulae (with implicit universal closure). Essentially, a CNF of the axioms is
computed. Every disjunction of (in)equalities then becomes a single clause in
the following way. Each equality is turned in a conjunction of I-atoms as infor-
mally indicated by Table 1. (To express inequalities, we moreover need an extra
predicate DifferentElems, having the sole effect that it contradicts SameFElems
when applied to the same arguments. We omit the respective rule.) If necessary,
existential quantification is simulated by adding suitable search-atoms to the
conjunction. Universal quantification is represented just by putting variables at
respective positions. The resulting disjunction of conjunctions constitutes the
right side of clauses only. The left side now is used to, in a sense, ‘bind’ the vari-
ables by sort predicates. (The last step is similar to the general transformation
of arbitrary clauses into range restricted clauses found in [7]. Here, however, we
have to distinguish between different sorts.) Fig. 3 shows the result of transform-
ing three axioms found in Fig. 1.

del(n, nil) = nil > nat(N) — I(del, N,nil,nil).
del(n,push(n, st)) = st » nat(N) A stack(ST) — I(del, N,push(N,ST),ST).
n#n — del(n,push(n’, st)) = push(n’, del(n, st))
v
nat(N) A nat(N') A stack(ST) —
SameElems(N,N') vV
I(del, N, push(N', ST), push(N',new(1))) A
(I(del,N, ST,new(1)) A search_stack(new(l)))'

Fig. 3. Transforming axioms to clauses

These clauses are guarded by sort atoms, i.e. sort predicates applied to ar-
guments. Transformed axioms are therefore only applied to instances for which
a sort atom is present on the current branch. To make the axioms applicable to
the whole domain, we could add naive domain generation rules, e.g.:

T — nat(0). nat(N) — nat(succ(N)).
T — stack(nil). nat(N) A stack(ST) — stack(push(N,ST)).

(This again is similar to [7], where a single domain predicate is propagated
over function applications. Here, however, we respect sorts and constructors.)
Additionally, we have to make axioms applicable to (terms containing) place-
markers. This is done by adding clauses like:

searchnat(X) — nat(X). search_stack(X) — stack(X).

The transformation of axioms can be extended to full first-order equality.
Then, elimination of existential quantifiers creates Skolem function symbols,
which are considered as being added to F, not to C . Consequently, the mecha-
nism searches for the interpretation of Skolem functions also.

5 This is just the Basis

The described approach to interpretation reasoning is part of ongoing work which
aims at disproving conjectures about freely generated data types. Given an adt-
signature X and a set @ of Y-axioms, disproving a formula ¢ means to show
that & béf o holds. This is equivalent to finding a satisfying %—interpretation
for #U{3T.—p} (where T are the free variables in ¢). Therefore, & is transformed
into clauses as discussed in Sect. 4. 3T.—p is transformed in the same manner,
where additionally the variables T are replaced by place-markers, for which suit-
able search-atoms are added. Indeed, MG applied to the resulting rule system
constructs a tree in which the I-predicate defined by any saturated, unrejected
branch is a satisfying %—interpretation of U {IT.—~p}.

Unfortunately, but not surprisingly, the rule system is not able to construct
satisfying interpretations in finite time! This is due to the, intentionally called
naive, domain generation rules. They perform a conjunctive enumeration of the
(usually infinite) domains. This leads to non-terminating saturation of unre-
jectable branches, provided the signature has recursive constructors. Essentially
the same problem appears in [7], where, in presence of non-constant function
symbols, the range restricted transformation of consistent formulae results in
non-terminating MG. In general, tableaux systems usually run forever on con-
sistent input. The terminating saturation of consistent branches in tableau-like
frames requires additional concepts (e.g., constraints [3,9], or terms with expo-
nents [8,6]).

The approach described here is based on an atomic representation of interpre-
tations. To stop their construction, we need criteria telling that the I-predicate
defined by the current branch is extendible to a (total) satisfying interpreta-
tion of the respective formulae. This will not be possible without a pragmatic
simplification of the problem to be solved: if we assume a specification to be fgs -
consistent, then @ [;éff o holds if AT.—¢ is fgs;-consistent relative to @. Then, the
mechanism may not ‘take care’ of potential contradictions between axioms. The
naive domain generation rules must somehow be replaced by rules, depending
on ¢ and &, which either generate enough instances to ensure relative consis-
tency, or, where this is not possible, result in non-termination. This guarantees
soundness of each terminating answer.

Currently, the characteristics of ‘typical’ (free) data type specifications and
conjectures are investigated, to enable a terminating detection of relative con-
sistency in many cases.

Acknowledgments

I am grateful to Reiner Hahnle for his support and many, many, fruitful discus-
sions.

4 To be precise, this is only the case for branches with a finite number of constructor
splitting rule applications. Other branches constitute non-standard models, possess-
ing ‘terms’ with unfounded chains of constructor applications.

References

1. Peter Baumgartner. Hyper Tableaux — The Next Generation. In Harry de Swaart,
editor, Automated Reasoning with Analytic Tableauzr and Related Methods, volume
1397 of LNCS, pages 60-76. Springer-Verlag, 1998.

2. Francois Bry and Sunna Torge. A deduction method complete for refutation and
finite satisfiability. In Proc. 6th European Workshop on Logics in AI (JELIA),
volume 1489 of LNCS, pages 122-136. Springer-Verlag, 1998.

3. Ricardo Caferra and Nicolas Zabel. A tableaux method for systematic simultaneous
search for refutations and models using equational problems. Journal of Logic and
Computation, 3(1):3-26, 1993.

4. Hiroshi Fujita and Ryuzo Hasegawa. A model generation theorem prover in KL1
using a ramified-stack algorithm. In Koichi Furukawa, editor, Proceedings 8th In-
ternational Conference on Logic Programming, Paris/France, pages 535-548. MIT
Press, 1991.

5. Jaakko Hintikka. Model minimization — an alternative to circumscription. Journal
of Automated Reasoning, 4(1):1-13, 1988.

6. Stefan Klingenbeck. Counter Examples in Semantic Tableauz. PhD thesis, Univer-
sity of Karlsruhe, 1997. Diski 51, infix Verlag.

7. Rainer Manthey and Frangois Bry. SATCHMO: A theorem prover implemented
in Prolog. In Proceedings 9th Conference on Automated Deduction, volume 310 of
LNCS, pages 415-434. Springer-Verlag, 1988.

8. Nicolas Peltier. Increasing the capabilities of model building by constraint solving
with terms with integer exponents. Journal of Symbolic Computation, 24(1):59-101,
1997.

9. Nicolas Peltier. Simplifying and generalizing formulae in tableaux: pruning the
search space and building models. In Didier Galmiche, editor, Proc. International
Conference on Automated Reasoning with Analytic Tableauz and Related Methods,
Pont-a-Mousson, France, volume 1227 of LNCS, pages 313-327. Springer-Verlag,
1997.

