
Proof Reuse for Deductive Program Verification

Bernhard Beckert and Vladimir Klebanov
Institute for Computer Science
University of Koblenz-Landau
www.key-project.org

Abstract

We present a proof reuse mechanism for deductive pro-
gram verification calculi. It reuses proofs incrementally
(one proof step at a time) and is employs a similarity mea-
sure for the points (formulas, terms, programs) where a rule
is applied.

The method is flexible, as the reuse mechanism does not
need knowledge about particularities of the calculus and
its rules. It allows to adapt and reuse proof steps even if
the situation in the new proof is merely “similar” but not
identical to the template. In case reuse has to stop because
a changed part in the new program is reached that requires
genuinly new proof steps, reuse can be resumed later on
when an unaffected part is reached.

Our method has been successfully implemented within
the KeY system to reuse correctness proofs for Java pro-
grams.

1. Introduction

The need for proof reuse in software verification. Ex-
perience shows that the prevalent use case of program verifi-
cation systems is not a single proof run. It is far more likely
that a proof attempt fails, and that the program (and/or the
specification) has to be revised. Then, after a small change,
it is better to adapt and reuse the existing partial proof than
to verify the program again from first principles. This is
of particular advantage for deductive verification systems
(which we consider here), where proof reuse reduces the
number of required user interactions.

The problem setting. In this paper we present a reuse
technique that applies to the following general setting. We
assume a specification and an “old” program to be given, as
well as a corresponding partial correctness proof for the old
program (the “proof template”) that is done using a sequent-
style (or similar) calculus. Moreover, a (corrected) new pro-
gram is given (for now, we assume the specification to be

unchanged), and our goal is to reuse and adapt as much
as possible of the template proof for the construction of a
”new” proof for the correctness of the new program.

Features. The main features of our reuse method are:
(1) The units of reuse are single rule applications. That

is, proofs are reused incrementally, one proof step at a time
(alternative approaches are discussed under “related work”,
see Section 7). This allows to keep our method flexible,
avoiding the need to build knowledge about particularities
of the calculus, its rules, and the target programming lan-
guage into the reuse mechnism.

(2) Proof steps can be adapted and reused even if the sit-
uation in the new proof is merely “similar” but not identical
to the template.

(3) In case reuse has to stop because a changed part in the
new program is reached that requires genuinly new proof
steps, reuse can be resumed later on when an unaffected
part is reached.

Basic ideas. As usual, we assume the rules of the calculus
to be represented by rule schemata. Thus, at each proof step,
there are three choices that the reuse facility—like every in-
cremental proof construction method—has to make: (a) the
rule (schema) to be applied, (b) the goal/position where it is
applied (which we call the “focus” of the rule application),
and (c) instantiations for schema variables.

Our goal is to make—if possible—the same choices as
in the template proof. But that requires us to generalise and
extract the essence of the choices in the old proof such that
it can be applied to the (similar but different) situation in the
new proof.

For finding the rules that are candidates for choice (a),
such a generalisation is readily available. The rule schemata
are natural generalisations of particular rule applications.
They are defined by the developer of the verification calcu-
lus, who has the required insight to know what the essence
of a rule application is. We then adhere to the overall suc-
cession of rule schema applications in the template proof.
But, since proofs are not linear, at each point in time there



can still be several candidate rules that compete for being
used first.

Choice (b), i.e., the point where a candidate rule is to be
applied, is more difficult as it is hard to capture the essence
of a formula or sequent. To solve this problem, we define
a similarity measure on formulas. Fortunately, there is usu-
ally only a moderate number of possibilities, because pro-
gram verification calculi are to a large degree “locally deter-
ministic”. That is, given a partial (new) proof, there is for
most rule schemata only a small number of potential appli-
cation foci.

Then, the combinations of candidate rules and their po-
tential focus points—which we call reuse pairs in the fol-
lowing—are ordered according to the similarity between
the potential new and the template focus points. Thus, the
similarity measure both implements the generalisation for
choice (b) and is used to prioritise the rule candidates left
from choice (a).

Finally, to make choice (c), schema variable instantions
are computed by matching the rule schema against the cho-
sen focus of application. Schema variables that do not get
instantiated that way, e.g. quantifier instantiations, are sim-
ply retained from the old proof.

Adaptability. Our approach is very flexible. The only
part that is to some extent adapted to the target calculus is
the similarity measure on formulas. But even that does not
incorporate any knowledge about particular rules but only
some limited information about the target programming lan-
guage (Java in our case) and general properties of the cal-
culus (e.g. that rules are typically applied at the beginning
of a program). Nothing has to be changed if new rules are
added to the calculus or even new logical operators and the
corresponding rules are added. And no knowledge has to be
built into the method about what effects a certain program
change has on the structure of its correctness proof.

Implementation. Our method has been successfully im-
plemented within the KeY system [8, 2, 1] to reuse correct-
ness proofs for Java programs (see Sect. 2.1). This imple-
mentation can handle many different types of changes in
the program to be verified, such as adding/changing/delet-
ing statements, changing (sub-)expressions, changing the
control structure (e.g. by adding an if-statement), chang-
ing the class hierarchy, and overwriting inherited method
implementations. It works well in practical everyday use;
and only rarely are old proof attempts reused in a less than
optimal way.

Structure of this paper. The rest of this paper is orga-
nized as follows. Section 2 gives some more details on the
background and motivation of our work. In Section 3, we
present the main reuse algorithm. Section 4 describes how

the similarity of programs and formulas is measured that is
used to evaluate reuse candidates. In Section 5, the choice
of initial reuse candidates is discussed (the points in the old
proof where reuse can be (re-)started), which is based on
the difference between the old and the new program to be
verified. Section 6 contains an extended example. In Sec-
tion 7, we discuss other approaches to proof reuse and re-
lated work; and, finally, in Section 8, we draw conclusions
and discuss future work.

2. Background

2.1. The KeY Project

The KeY system [8, 2, 1] is a comprehensive environ-
ment for integrated deductive software design. Software
developed with KeY can be formally proven correct, i.e.
to be behaving up to the given specification. In the KeY
process, the correctness of programs is formally proven by
establishing the validity of Java Dynamic Logic formulas
(see Sect. 2.2) generated from the specification and the im-
plementation of a program.

The system is built on top of the commercial CASE tool
Together ControlCenter, which is an enterprise-grade plat-
form for UML-based software development. KeY augments
this modeling foundation with an extension for formal spec-
ification, a verification middle-ware, and a deduction com-
ponent. Formal software specifications are written in Ob-
ject Constraint Language (OCL), which is part of the UML
standard but enjoys only rudimentary support from CASE
tool vendors for now. The KeY extension offers facilities
for authoring, rendering and analysis of formal specifica-
tions. The verification middle-ware is the link between the
modeling and the deduction component. It translates the
model (UML), the implementation (Java), and the specifi-
cation (OCL) into Java Dynamic Logic proof goals, which
are passed to the deduction component. The verification
middle-ware is also responsible for managing proofs during
the development and verification process. The deduction
component is a novel Java Dynamic Logic theorem prover,
which is used to actually construct proofs for the proof goal.

2.2. Java Dynamic Logic

Dynamic Logic (DL) can be seen to be an extension of
Hoare logic (see [6] for an overview). It is a first-order
modal logic with a modality 〈p〉 for every program p (we
allow p to be any sequence of Java statements with the only
restriction that they must not contain threads). In the seman-
tics of these modalities a world w (called state in the DL
framework) is accessible from the current world, if the pro-
gram p terminates in w when started in the current world.
The formula [p]φ expresses that φ holds in all final states



of p, and 〈p〉φ expresses that φ holds in some final state
of p. Considering sequential Java programs, there is exactly
one such final state for every initial state (if p terminates) or
there is no final state (if p does not terminate). The formula
φ→ 〈p〉ψ is valid if, for every state s satisfying precondi-
tion φ, a run of the program p starting in s terminates, and
in the terminating state the post-condition ψ holds.

2.3. The KeY Calculus for Java Dynamic Logic

The programs in Java DL formulas are basically executa-
ble Java code. The verification of a given program can be
thought of as symbolic code execution.

The rules of the Java DL calculus [4, 1] operate on the
first active command p of a program πpω; it is the focus of
their application. The non-active prefix π consists of an ar-
bitrary sequence of opening braces “{”, labels, beginnings
“try{” of try-catch-finally blocks, etc. The pre-
fix is needed to keep track of the blocks that the (first) ac-
tive command is part of, such that the abruptly terminating
statements throw, return, break, and continue can
be handled appropriately. The postfix ω denotes the “rest”
of the program, i.e., everything except the non-active prefix
and the part of the program the rule operates on. For exam-
ple, if a rule is applied to the following Java block operating
on its first active command i=0; then the non-active pre-
fix π and the “rest” ω are the marked parts of the block:

l:{try{
︸ ︷︷ ︸

π

i=0; j=0; }finally{ k=0; }}
︸ ︷︷ ︸

ω

Since there is (at least) one rule schema in the Java DL
calculus for each Java programming construct, we cannot
present all of them in this paper. Instead, we give a simple
but typical example, the rule schema for the if statement:

Γ, b = TRUE ` 〈π p ω〉φ
Γ, b = FALSE ` 〈π q ω〉φ

Γ ` 〈π if(b) p else q ω〉φ

The rule has two premisses, which correspond to the two
cases of the if statement. The semantics of this rule is that,
if the two premisses hold in a state, then the conclusion is
true in that state. In particular, if the two premisses are valid,
then the conclusion is valid. Note, that this rule is only ap-
plicable if the condition b is known (syntactically) to be free
of side-effect. Otherwise, if b is a complex expression, other
rules have to be applied first to evaluate b.

The KeY calculus is highly locally deterministic (i.e.,
there are usually few possible foci for a particular rule to
extend a given partial proof). The reasons are that (1) sym-
bolic execution rules only apply at the first (“active”) state-
ment of the program, and (2) 2there is no split rule, so active
statements do not “multiply”.

3. The Main Reuse Algorithm

3.1. Basic Definitions

As usual for deductive program verification systems, we
use a sequent-style calculus.

Definition 1 A sequent is of the form Γ ` ∆, where Γ,∆
are duplicate-free lists of formulas.

Definition 2 A rule R is a binary relation between (a) the
set of all tuples of sequents and (b) the set of all sequents.
The elements 〈P1, . . . , Pk〉 (k ≥ 0) of R are called rule in-
stances. If R(〈P1, . . . , Pk〉, C) (k ≥ 0), then the conclu-
sion C is derivable from the premisses P1, . . . , Pk using
rule R.

We assume that rules are, as usual, represented by rule
schemata (such as the rule for if in Section 2.3). In the fol-
lowing, we identify rules and their schema representations.

Most rules (rule instances) have a focus, i.e., a single for-
mula, term, or program part (in the conclusion of the rule)
that is modified or deleted by applying the rule. The focus
of the if-rule in Section 2.3, for example, is the if-else
statement. An example for a rule that does not have a focus
is the cut rule; it can be applied anywhere.

A proof for a goal (a sequent) S is an upside-down tree
with root S. In practice, rules are applied from bottom to
top. That is, proof construction starts with the initial proof
obligation at the bottom and ends with axioms (rules with
an empty premiss tuple). A rule application (in a proof)
consists of a rule instance and a node in the proof tree that
is derived from its child nodes using that instance.

3.2. The Reuse Scenario

As said in the introduction, we start with two versions of
a program: an “old” one, and a (corrected) “new” one. We
also have two proofs in the system: the old (template) proof
dealing with the old program—it may or may not be a com-
plete proof—and an incomplete new proof dealing with the
new program. At the beginning, the new proof only consists
of a single node containing the (new) initial proof goal con-
structed from the new program and the specification. For
now we assume that the specification remains unchanged
but an extension to allow such changes is possible.

3.3. The Algorithm

The main reuse algorithm is shown in Table 1. It main-
tains a list C of rule applications in the old (template) proof,
which contains the reuse candidates. While reuse progres-
ses and the new proof grows, C always contains those rule



input oldProof , oldProgram , newProgram , specification ;

newProof := initialProofGoal(newProgram , specification);
C0 := initialCandidateList(oldProof ,∆(oldProgram ,newProgram));
C := C0;
while newProof has open goals do

〈candidate ,newFocus〉 := chooseReuse(C, oldProof ,newProof );
if 〈candidate ,newFocus〉 6= ⊥ then

newProof := result of applying rule(candidate) at newFocus in newProof ;
if candidate 6∈ C0 then C := C \ {candidate}; fi
C := C ∪ {c | c is a child of candidate in oldProof };

else
newProof := applyRuleWithoutReuse(newProof );

fi;
od;

output newProof ;

Table 1. Main reuse and proof construction algorithm.

applications in the old proof that are currently considered
available for reuse.

Initially, the new proof consists of the (new) initial proof
goal, and C contains the initial candidates computed by the
function initialCandidateList (they are also stored in C0).

A possible reuse pair consists of (1) a candidate rule ap-
plication and (2) a possible new focus, i.e., a position in a
goal sequent of the new (target) proof, where the same rule
is applicable. At each iteration step, function chooseReuse
(Table 2) is invoked to compute all possible reuse pairs and
choose the best one (this choice is mainly based on focus
similarity).

The rule of the selected reuse pair is then applied at the
target focus, extending the new proof. The candidate is re-
moved from the list C, unless it is an initial candidate (i.e.,
an element of C0), in which case it is persistent in C. The
reason for making the initial candidates persistent is ex-
plained in Section 5. Finally, the children of the reused
candidate (in the old proof) become new candidates and
are added to C. Thus, the candidates form a “wavefront”
through the old proof during reuse.

So far, two very important questions have been left open:
How is the quality of possible reuse pairs computed (i.e.,
how does the function score that is used by chooseReuse
work)? And where do the initial candidate proof steps come
from (i.e., how does function initialCandidateList work)?
These questions are answered in Sections 4 and 5, respec-
tively. Note, that our algorithm is “modular” in the sense
that different answers would not affect its overall workings.

While performing reuse, the danger is not only to do too
little, but also to do “too much”. Sometimes, even though
there are possible reuse pairs available, it is better to apply

none of them. This is not so odd as it seems, since the ex-
istence of a reuse pair signifies little more than a possible
application of a certain rule. Though activating a “wrong”
reuse pair never undermines the correctness of the proof
under construction (since only correct rule applications are
performed), it is poisonous for reuse. To safeguard against
bad reuse, we compare the quality scores of possible reuse
pairs to a threshold value ε. In case the score of all possible
reuse pairs is below ε—which is an indication that we have
reached a situation that is either different or not present in
the old proof—a completely new proof step has to be chosen
by the user or the automated proof search procedure (this
choice is symbolized by calling applyRuleWithoutReuse in
the algorithm). Reuse can then be restarted using one of the
initial candidates.

For some rules, it is not sufficient to know where they
are applied (i.e., what their focus is), but additional infor-
mation is required. For example, (a) the cut formula has to
be known for an application of the cut rule, (b) for induc-
tion rules, the induction hypothesis has to be known, and
(c) for quantifier rules, the appropriate instantiation has to
be provided. Since it would be a very hard task to adapt this
kind of information from the old rule application to the new
one, we either (1) use what is required in the new proof (as
computed by a matching algorithm) or, if matching does not
give an answer, (2) use the same information as in the old
proof.

4. Evaluating the Quality of Reuse Candidates

Recall, that a possible reuse pair consists of a rule appli-
cation in the old proof and a focus (formula, term, or pro-



function chooseReuse(list C of candidates, oldProof , newProof )
possibleReuses := {};
Goals := open goals of newProof ;
foreach c ∈ C do

foreach g ∈ Goals do
foreach position p in the sequent of g do

if rule(c) is applicable at p then
possibleReuses := possibleReuses ∪ 〈c, p〉;

fi;
od;

od;
od;
if possibleReuses = {} then return ⊥ fi;
select 〈c, p〉 from possibleReuses with score(〈c, p〉) maximal;
if score(〈c, p〉) > ε then

return 〈c, p〉;
else

return ⊥;
fi;

Table 2. Function for best possible reuse pair.

gram) in the new proof where the same rule is applicable.
To assess the quality of possible reuse pairs based on

similarity scoring is a key part of our reuse facility, since it
is one of the most crucial and difficult parts in our effort.
We have to distinguish between proof parts that are appro-
priate for reuse and parts that only seem to be so on first
sight. In other words, similarity scoring must prevent mis-
application of proof steps from the old proof that are not
appropriate for reuse.

When all possible reuse pairs have been computed for an
iteration step of the reuse algorithm, we are (usually) left
with a choice. Several features may influence the quality of
a reuse pair. The first and most important one is the sim-
ilarity between the application foci in the old and the new
proof. We distinguish three kinds of rules:

Program logic rules for symbolic execution: Such rules fo-
cus on a program part. The similarity score is deter-
mined by comparing these focus programs in the old
and the new proof (see Sect. 4.1). The logical parts of
the focus formulas are not considered, since they rarely
provide additional discriminating evidence.

Analytic first-order logic and rewrite rules: Such rules ma-
nipulate a (sub-)formula or term without modifying
program parts. A logical similarity analysis of these
foci is performed (see Sect. 4.2).

Focus-less rules: No similarity score can be computed for
such rules. The score of such a reuse candidate is

solely based on other features, in particular proof con-
nectivity (see below).

An additional feature that can be used to score possible
reuse pairs (besides similarity of rule foci), is the connec-
tivity of the new proof (as compared to the old proof). This
criterion gives a bias against tearing apart proof steps that
are connected in the old proof. Reuse pairs disrupting con-
nectivity are assigned a small penalty (of −0.1). This is
enough to tip the scales in case other features do not pro-
vide discrimination between several possible reuse pairs.

To get a single numerical quality value for a reuse pair,
we sum up the scores computed for different features.

4.1. Similarity Score for Program Parts

We evaluate the appropriateness of symbolic execution
proof steps by comparing the programs that these steps fo-
cus on. The comparison is not limited to the focus state-
ment, i.e., the statement that is active and being symboli-
cally executed by the rule application. Although an empha-
sis is put on this focus statement, the other parts of the focus
program are considered as well.

A straightforward way to compare two programs is to
compute the minimal edit script for turning one program
into the other. Successful experiments with the implemen-
tation of our reuse approach show that this is not only an
easy but also very useful way to compare programs.

Since, for example, the names of variables, methods, etc.



have no effect on the structure of proofs, we use an abstrac-
tion of the actual programs for comparison.

Below, (1) the algorithm for computing the minimal edit
script, (2) the program abstraction we use for comparison,
and (3) the computation of a numerical similarity score from
an edit script are explained in more detail.

Computing the minimal edit script. Myers’s classical
Longest Common Subsequence (LCS) algorithm [11] can
be used to efficiently compute the minimal edit script of
two sequences. It takes two sequences A = a1 a2 · · ·aN

and B = b1 b2 · · · bM as input, where the ai and bj are el-
ements of an arbitrary alphabet, and produces a list of A
and B’s longest common subsequences. From that list, the
minimal edit script for turning A into B can easily be ex-
tracted.

An edit script is a list of insertion and deletion com-
mands. The delete command “xD” deletes the symbol ax

from A. The insert command “x I b1 b2 · · · bt” inserts the
sequence of symbols b1 b2 · · · bt immediately after ax. The
script commands refer to symbol positions in A after the
preceding commands have been executed. The length of
the script is the number of symbols inserted or deleted.

Program abstraction. The computation of a minimal edit
script requires as input two sequences of symbols. To con-
struct such sequences from the two programs that are to be
compared, we first linearize the programs into a sequence of
statements. Then, the statements are abstracted into state-
ment signatures.

The first element of the abstraction of a statementS is the
name of S (e.g., If , LocalVarDecl , Assignment). In the
following cases, more elements are added to the abstraction:

• If the statement S is also an expression, the static type
of the expression is added. If, moreover, S is an as-
signment whose right operand is a boolean literal, then
the value of that literal is appended as well.

• If the statement S is a method invocation, the signature
of the method and the name of the class containing the
referenced implementation are added.

The statement signatures are defined to abstract from
names, expressions, literal values, etc. That is, they are
designed to abstract from all features that tend to not in-
fluence program control flow (and, thus, proof structure).
Consequently, our reuse algorithm can easily deal with such
program changes as renaming and changes in literal values.

One could devise more elaborate abstraction schemes.
Our experience, though, shows that this only leads to a mar-
ginal improvement and is in general not necessary.

From edit script to similarity score. To compute a simi-
larity score for two programs α and β, we have computed a
minimal edit script between their abstract representationsA
and B. Now we must condense this edit script into a single
numerical value.

Definition 3 Let E(A,B) = e1 e2 · · · en be the minimal
edit script for the abstractionsA,B of programsα, β. Then,
the similarity score of A,B resp. α, β is defined by

δ(α, β) = δ(A,B) = −
∑

ei∈E(A,B)

P (ei)

where the penalty P (e) for an edit command e is

P (e) =







t∑

k=1

0.75

x+ k
if e = x I b1 b2 · · · bt

1

x+ 1
if e = xD

Note that higher values of δ(α, β) mean higher similar-
ity, and that δ(α, β) is always less than or equal to zero.
The maximal value 0 is reached for programs with identical
signatures.

The function δ is not symmetrical, i.e., δ(A,B) differs
in general from δ(B,A). The penalty constants are chosen
such that statement insertions are penalized less than dele-
tions. The reason for defining δ in that way is that additional
statements in the new program are easier to handle for reuse
than missing statements. Deleting statements does usually
not simply correspond to deleting proof parts but requires
more complex changes of the proof.

Program differences are penalized less the farther they
are from the active (first) statement, which is the target of
symbolic execution.

Example 1 Consider the following two programs α and β:

α :



int x; int res;
res = x/x;

β :



int x; int res;
if (x==0) res=1; else res=x/x;

The result of abstracting them into sequences A resp. B of
signatures is:

A :



LocalVarDecl, LocalVarDecl,
Assignment(int)

B :



LocalVarDecl, LocalVarDecl,
If, Assignment(int), Assignment(int)

The underlined parts correspond to the insertions in the
minimal edit script. It consists of the two commands 2 I If
and 4 I Assignment(int).



The similarity score for the two programs is thus:

δ(α, β) = δ(A,B) = −
0.75

2 + 1
+ −

0.75

4 + 1
= −0.4 ,

which signifies a medium to high similarity. The score is
high enough to reuse the application of the local-variable-
declaration rule from the old proof in the new one.

4.2. Similarity Score for First-order Logic Parts

Assessing the quality of possible reuse pairs that do not
deal with symbolic program execution is a more difficult
challenge. This is due to the lower grade of local determin-
ism of the first-order fragment of the calculus and the high
“volatility” of first-order formulas in a proof.

We use two different similarity criteria for formulas and
terms. (1) A high bonus (+1.0) is added if the foci in the
old and the new proof are identical up to variable renam-
ing. Otherwise, a small penalty (−0.2) is added. (2) The
two formulas that contain the actual rule application foci are
compared in a similar manner as programs: First, formulas
are linearized, then names of variables, functions, etc. are
abstracted to sorts, and finally a minimal edit script is com-
puted. The script is scored uniformly, with every deletion
worth a penalty of 0.1 and every insertion a penalty of 0.05.
Additionally, the programs in the formulas contribute their
similarity scores with a weight of 0.25.

The results of using these criteria are sufficient for a high
ratio of correctly reused rule applications but are not as good
as for rule applications with a program part in focus.

5. Finding Reusable Subproofs

Our main reuse algorithm requires an initial list of reuse
candidates. These initial candidates, which are rule appli-
cations in the old proof, can be seen as the points where the
old proof is cut into subproofs that are separately reusable.
They are the points where reuse is re-started after program
changes required the user or the automated proof search
mechanism to perform new rule applications not present in
the old proof. The choice of the right initial candidates is
crucial for reuse performance.

Since program changes may lead to additional case dis-
tinctions in the new proof, it may be necessary to reuse old
subproofs repeatedly in the new setting. In order to deal
with this necessity, we make the initial candidate proof steps
persistent. As shown in Table 1, the initial candidates (they
are the elements of C0) are not consumed when they are
reused. Thus an initial candidate proof step is always avail-
able to seed the corresponding old subproof when needed.

The way initial candidates are computed depends on the
way the program (and thus the initial proof goal) has chan-
ged. For changes affecting single statements (local changes)

int x;
int res;
res=x/x;

int x;
int res;
if(x==0) {

res=1;
} else {

res=x/x;
}

(a) (b)

-- old
+++ new
@@ -1,3 +1,7 @@
int x;
int res;
+if(x==0) {
+ res=1;
+}else {
res=x/x;
+}

(c)

Figure 1. Change detection with GNU diff:
(a) old program, (b) new program, and (c) out-
put of “diff -uw”.

we extract the differences right from the source files, using
the GNU diff utility [5, 11]. It is based on the same algo-
rithm by Myers that we use for program similarity scoring.
GNU diff is well-known to produce meaningful change sets
for modifications of source files. The output of diff is used
to identify common sections of code in the old and the new
program. The proof fragments dealing with these common
parts are good candidates for reuse; thus, their root nodes
are marked as initial reuse candidates.

In the KeY system, the differences between program re-
visions are provided by the integrated source tracking sys-
tem based on CVS (which in turn uses GNU diff). Based on
that information, markers for initial reuse candidates are au-
tomatically inserted by our reuse facility into the (old) proof
that is to be reused.

Example 2 An example for the output of GNU diff is shown
in Figure 1. The lines starting with “+” have been added
to the old program. Lines starting with a “-” (not occur-
ring here) have been removed from the old program. Lines
starting with a space are common to both programs.

In this example, the common program parts start with
the statements int x; and res=x/x;. Thus we scan the
old proof top-down and look for proof steps with these state-
ments in focus. The result of this procedure yields two initial
reuse candidates for our example.

Figure 2 shows the prover window of the KeY system. The
right part of the window shows the current proof goal (the



Figure 2. Prover window with markers in the old proof.

initial node of the new proof), which is to show that the new
program always terminates with res set to 1. The left part
of the window shows a (partial) proof for the old program
with the symbol “>>” marking the initial reuse candidates
in the proof tree.

Our method for detecting initial reuse candidates relies
on a certain well-formedness of the programs. Its perfor-
mance can be impaired, for example, if the programmer puts
several statements in one line (which, however, is explicitly
discouraged by the official Java Coding Conventions [14]).
Given that this is (a) not too common and (b) caused by bad
programming style, we did not provide a solution (such as
an additional intra-line diff).

Non-local changes, such as renaming of classes or chan-
ges in the class hierarchy, cannot be detected in a meaning-
ful way by the standard GNU diff algorithm; other means
have to used to signal such changes. In our current imple-
mentation, the user indicates these changes to the reuse fa-
cility, which then automatically computes the appropriate
initial reuse candidates.

6. Extended Example

We will now demonstrate our approach using the two
programs from Example 2. For the sake of understandabil-
ity, we kept the example simple. As a result, these programs
do not have a useful purpose. The “old” program is shown
in Figure 1 (a). Its intended behavior and specification is
that it always terminates with res set to 1. The program,
however, contains a bug and cannot be proven correct, since

an arithmetic exception is thrown on division by zero.1 Its
(unfinished) correctness proof, which in the following will
be used as the “old” (template) proof, has one open branch
(the “division by zero” branch), corresponding to the case
where an exception is thrown. The other branch (the “nor-
mal execution” branch) can be closed.

The program is now amended by adding a case distinc-
tion, resulting in the “new” program shown in Figure 1 (b).
This new program is correct w.r.t. the specification. It al-
ways terminates with res set to 1. The proof for that con-
sists of a completely “new” branch for the case that x is
zero, and a “non-zero” subproof that handles the division
statement. The latter one contains the two branches from
above—here lies the possibility for reuse.

We will trace the first few interesting steps, while slightly
simplifying the presentation for clarity (e.g., the connectiv-
ity feature is not considered).

As explained in Example 2, our technique for computing
initial reuse candidates, in this case gives us two candidates.
For now we only consider the first one, namely the rule for
variable declarations applied to “int x;” in the old proof
(the rule of the second initial candidate is not applicable
anyway). It has one possible focus in the (new) initial proof
goal (it cannot be applied to the second variable declaration,
because our Java DL calculus always treats the left-most

1In fact, Java initializes the program variable x with 0. However, in the
remainder of this example, we treat x as if it were an input parameter with
unknown value.



active statement first):

` 〈int x; int res;
if (x==0) res=1; else res=x/x;〉 (res = 1)

The similarity score for the single possible reuse pair (see
Example 1 for the computation) is −0.4, and reuse is per-
formed. We get the new goal

` 〈int res;
if (x==0) res=1; else res=x/x;〉 (res = 1)

(1)
and a new reuse candidate (the child of the initial candidate
in the old proof), which is again an application of the rule
for variable declarations, this time applied to “int res;”.
It, also, has one possible focus in the new proof in goal (1).
The similarity score for the resulting possible reuse pair
is −0.62. That is less than before as there are now less
identical parts in the old and the new focus, and the first dif-
ference is closer to the active statement. Nevertheless, reuse
is still indicated. The resulting new goal sequent is

` 〈if (x==0) res=1; else res=x/x;〉 (res = 1)

(2)
and the new candidate is the rule handling the assignment
“res=x/x;” in the old proof (which happens to be iden-
tical to the second initial candidate). This candidate, how-
ever, is not applicable in (2). We have reached a genuinely
new part of the program and, thus, of the proof.

To deal with the new program parts, where no reuse is
possible, we manually apply the rules for handling the if
statement and evaluating its condition (in practice that can
be done automatically). The proof tree splits, and we get
two subgoals:

x = 0 ` 〈res=1;〉 (res = 1) (3)

¬(x = 0) ` 〈res=x/x;〉 (res = 1) (4)

The single candidate proof step is still the rule application
handling “res=x/x;” in the old proof. It cannot be ap-
plied to (3), as handling an assignments with a literal on
the right instead of a division requires the application of a
different rule. But the candidate can, of course, be applied
to (4). The similarity score for this possible reuse pair is 0.0.
The candidate is reused, and (4) is replaced by two new sub-
goals:

¬(x = 0) `
x = 0 →

(res = div(x, x) → 〈〉 (res = 1))
(5)

¬(x = 0) `
x = 0 →

〈throw new
ArithmeticException();〉 (res = 1)

(6)

We now have three open goals: (3) is on the “new” branch,
(5) is on the “normal execution” branch, and (6) is on the

“division by zero” branch. Things get a bit complicated
now, as we also obtain two new reuse candidates. Their foci
are the sequents that are similar to (5) and (6) in the old
proof. Both are applications of the same rule, namely the
rule for handling implications (this is a classical logic and
not a symbolic program execution rule). The two candidates
have possible foci in all three open goals, and we get six
possible reuse pairs. Only two of them are really useful (one
candidate must be reused at (5) and the other at (6)), and
the reuse facility must correctly decide which ones. Fortu-
nately, the two right possibilities have the highest similarity
scores and are selected for application (the scores of all six
possible reuse pairs range from −0.81 to −0.35).

From here on, reuse continues successfully without fur-
ther difficulties and the subbranches below (5) and (6) are
closed. The “new” branch can then easily be closed with
few rule applications.

If this example is done with our implementation in the
KeY system (with all details that we left out here), the “old”
proof has 191 rule applications, which are all reused.

Note, that the “division by zero” branch with goal (6)
could be closed in two steps because, after resolving the
implication, the antecedent of the sequent contains the in-
consistent formulas ¬(x = 0) and x = 0. That is, reuse is
not really necessary for this branch, but neither is it harmful.

7. Related Work

Global abstraction methods. An alternative to reusing
proofs incrementally, is global proof abstraction. This broad
group of methods attempts to capture the overall gist of a
given proof and instantiate it for a new problem. Examples
are Kolbe and Walther’s technique for proving conjectures
by induction [9] and the efforts of the Omega Project [7].
To our knowledge, this approach has not been successfully
applied to object-oriented software verification.

Constructive methods. A further non-incremental reuse
technique is constructive reuse. The constructive approach
is to analyze the changes made to the proof goal (i.e. the
program to be verified) and their effects, and to use this in-
formation to identify and reassemble parts of the template
proof into a new one. This approach, however, needs to
have exact knowledge of all calculus rules and effects of
program changes (“when an if-statement is inserted, an ap-
plication of the if-rule must be added to the proof and, below
that, the proof branches . . . ”). Thus, constructive methods
are infeasible for calculi with complex target programming
languages (e.g. Java) and a large number of rules.

The software verification system KIV [3], for example,
contains a constructive proof reuse facility [13]. It works
well as the programs that are verified with KIV are written



in a simple Pascal-like language, and the KIV calculus has
only a comparatively small number of program logic rules.

Replay methods. The simplest incremental reuse method
is to just replay the (old) proof script. This works well as
long as the information in which the new proof must dif-
fer from the old proof is not contained in the (linear) script
but can be inferred during rule application. An example for
such types of information are the instantiations of schema
variables, which are computed by a matching algorithm.
Significant changes in proof structure, however, cannot be
handled by a simple replay mechanism.

A typical example for this kind of reuse is the replay
mechanism of the Isabelle theorem prover [12]. It is quite
powerful as its proof scripts (usually) contain neither vari-
able instantiations nor the foci of rule applications (which
are inferred during rule/tactic application according to sim-
ple rules). On the other hand, it cannot automatically cope
with changes in proof goal ordering or resume reuse after
an intermittent failure.

Similarity guided methods. Melis and Schairer pursue
another variation of replay [10]; this time specifically for
reuse of subproofs in the verification of invariants of re-
active systems, which are specified using first-order logic.
Due to symmetries and redundancies in the state space, such
proofs give rise to many similar subproofs.

Melis and Schairer’s approach identifies a suitable previ-
ously solved subproblem via a similarity measure on first-
order formulas and replays the stored subproof straight on.

This method is related to our work as it operates under
the assumption that similar situations (proof goals) warrant
similar actions (rule applications or sub-proofs). The simi-
larity assessment though is performed only once, which is
justifiable by a simpler setting.

8. Conclusions and Future Work

We have presented a new reuse method that works well
for program verification calculi. It is very flexible as noth-
ing has to be changed if new rules are added to the cal-
culus or even new logical operators and the corresponding
rules are added. And no knowledge has to be built into the
method about what effects a certain program change has on
the structure of its correctness proof.

Our method has been successfully implemented within
the KeY system [8, 2, 1] to reuse correctness proofs for Java
programs. It requires no modification even as the calculus
is constantly evolving.

Future work includes an extension and adaptation to the
case where not only the program to be verified but also the
specification may change.

It may be useful to use a tree editing distance algorithm
for the similarity measure (e.g. [15]). This would allow to
take the tree-like structure of programs into account.

References

[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese,
R. Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt. The KeY tool. Software and System Mod-
eling (SoSysM), pages 1–42, 2004. To appear. Available at
http://www.springerlink.com.

[2] W. Ahrendt, T. Baar, B. Beckert, M. Giese, R. Hähnle,
W. Menzel, W. Mostowski, and P. H. Schmitt. The KeY sys-
tem: Integrating object-oriented design and formal methods.
In R.-D. Kutsche and H. Weber, editors, Proceedings, Inter-
national Conference on Fundamental Approaches to Soft-
ware Engineering (FASE), Grenoble, France, LNCS 2306,
pages 327–330. Springer, 2002.

[3] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and
A. Thums. Formal system development with KIV. In
T. Maibaum, editor, Proc., Fundamental Approaches to Soft-
ware Engineering (FASE), LNCS 1783. Springer, 2000.

[4] B. Beckert. A dynamic logic for the formal verification
of Java Card programs. In I. Attali and T. Jensen, editors,
Java on Smart Cards: Programming and Security. Revised
Papers, Java Card 2000, International Workshop, Cannes,
France, LNCS 2041, pages 6–24. Springer, 2001.

[5] S. D. Gathman. GNU Diff for Java. Available at www.
bmsi.com/java/#diff, 2003.

[6] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT
Press, 2000.

[7] X. Huang, M. Kerber, J. Richts, and A. Sehn. Planning
mathematical proofs with methods. Journal of Information
Processing and Cybernetics (EIK), 30, 1994.

[8] KeY Project. Website at www.key-project.org.
[9] T. Kolbe and C. Walther. Reusing proofs. In European Con-

ference on Artificial Intelligence, pages 80–84, 1994.
[10] E. Melis and A. Schairer. Similarities and reuse of proofs

in formal software verification. In Proceedings, Euro-
pean Workshop on Advances in Case-Based Reasoning
(EWCBR), Dublin, Ireland, LNCS 1488, pages 76–78, 1998.

[11] E. W. Myers. An O(ND) difference algorithm and its vari-
ations. Algorithmica, 1(2):251–266, 1986.

[12] L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS
828. Springer, 1994.

[13] W. Reif and K. Stenzel. Reuse of proofs in software verifi-
cation. In Proceedings, Foundations of Software Technology
and Theoretical Computer Science, LNCS 761, pages 284–
293. Springer, 1993.

[14] Sun Microsystems, Inc. Code Conventions for the Java
Programming Language. Available at java.sun.com/
docs/codeconv.

[15] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM
Journal on Computing, 18(6):1245–1262, 1989.


